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Abstract

An object-oriented neural network simulator kernel
is presented. It is based on a general mathematical
model for arbitrary feedforward nets. We propose a
C++ implementation of this model which satisfies the
following requirements : expandability (allowing an
easy implementation of a new neural model), portabil-
ity and efficiency (the kernel does not increase signifi-
cantly computation times for classic models, compared
to a direct object-oriented implementation). Learning
algorithms such as gradient-based ones can be written
for arbitrary nets and are therefore directly available
for every particular model.

1 Introduction

Due to the lack of mathematical theories about the
capabilities of neural networks, the discovery of in-
teresting properties of these networks strongly relies
on computer simulations. One of the main practical
problems we have to deal with when trying to exper-
iment a new network model is the development of an
implementation of this model in order to conduct ex-
perimentations.

Many simulation softwares have been developed in
order to make the realization of complex simulations
easier (e.g., [1, 2, 5, 8, 13, 14, 16, 17, 18, 19, 26, 27]). In
general, these simulators are based on a computer sci-
ence model, such as object-oriented programming or
actor languages (see [6]). They do not include a formal
mathematical model, except for instance in [15] which
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describes a functional approach to neural nets. The
main problem is that these softwares have not been
designed to allow an easy implementation of a new
model : when we want to add a new neural model to
the general framework, many things have to be rede-
fined. These things include of course the model in it-
self but also some already implemented methods (e.g.,
backpropagation) which have only been implemented
for isolated networks (e.g., Multilayer Perceptron).

We think that this lack of generality is due to a con-
fusion between the backpropagation algorithm and the
gradient descent learning method. The backprop is an
excellent algorithm for computing the partial differen-
tials of the output of a Multilayer Perceptron (MLP)
with respect to its connection weights. It is not a
training method. The “backpropagation algorithm”
presented in [24] has in fact two building blocks :
the backprop and the gradient descent method which
is a classic optimization method for arbitrary real-
valuated functions. With the help of this point of view,
we have designed a mathematical model for arbitrary
feedforward neural nets in which backpropagation can
be used to compute differentials. This mathematical
model is based on ideas coming from [3], but our ap-
proach aims to be more precise than this one. It is an
extension of the classic MLP model.

With the help of this theory, we have created a
software, the Neural Simulator Kernel (NSK), which
simplifies the implementation process of a new model.
The main idea is to provide a general object-oriented
model for feedforward neural nets. A neural net con-
sists of a large number of cells, called neurons, each
with inputs, parameters and outputs. Some of these
cells have their inputs or their outputs connected to
the outside. Some cells have their outputs connected
to the inputs of some others cells. In a feedforward net,
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there is no cyclic connection between cells. In such a
net, the input cells which have inputs connected to the
outside receive global inputs. They propagate through
the network to the output cells which have outputs
connected to the outside : the observed outputs form
the global output of the neural net. The outputs of a
neuron are a function of its inputs and its parameters.

All classic feedforward models are particular cases
of the general one. This is true in particular for Mul-
tilayered Perceptrons, Radial Basis Function Nets (as
defined in [22]), Wavelet Networks (as defined in [28]),
etc ... Furthermore, if the functions computed by all
the neurons in an arbitrary feedforward net are dif-
ferentiable, then the global function is also differen-
tiable and its differentials can be computed with the
help of an extended backpropagation algorithm (see
[3, 10]), which does not depend on the chosen neu-
rons. Our model is therefore powerful enough to han-
dle properly standard applications which generally use
gradient-based learning methods. In fact, many neural
learning algorithms, and especially the gradient-based
ones, do not depend on the exact nature of the neural
net they are working on. In our software, new train-
ing algorithms can be included without modifying the
general model. When a new model is implemented, all
classic algorithms are immediately available. There is
a strict separation between training algorithms and
neural models, but algorithms that are only available
for a restricted set of networks can also be designed.

Moreover, implementing classic models with our
general-purpose software does not reduce significantly
their speed compared to a direct object-oriented im-
plementation. In order to implement a particular
model, two simple tasks are to be done :

• Setting constraints on the network structure.

• Implementing the local computation done by the
new model of neurons.

With the help of code factorization given by inheri-
tance, the implementation of the local computation is
no more than a simple C++ translation of the mathe-
matical relation between inputs, parameters and out-
puts. This translation is even further simplified by
using general mathematical classes such as vector and
matrix.

The remainder of the paper is organized as follows.
Section 2 gives a summary of the mathematical expres-
sion of our feedforward model and describes a classic
model in this framework. Section 3 describes the de-
sign of our simulator. Section 4 shows the implemen-
tation of MLP and gives some application examples,
and section 5 gives some concluding remarks.

2 General Feedforward Neural Net-

works

In this section, a mathematical model of arbitrary
feedforward neural networks is given. We present first
the mathematical description of a neural net and then
explain how to compute the function defined by this
net. An extended backpropagation allows us to com-
pute the differentials of this function.

2.1 Neuron

The building block of the general model is called a
neuron. A good mathematical model for such a neuron
is to handle it as a function ([15]).

Let I , P and O be vectorial spaces of finite dimen-
sions on IR (i.e., I =IRi, P =IRp and O =IRo). A
neuron N is a function from I×P to O. When x ∈ I

and p ∈ P are respectively the input and the parame-
ter of the neuron, its output is N(x, p).

The neuron N is differentiable when the partial
functions N1(., p) and N2(x, .) are both differentiable.

2.2 Ordered Graph

An ordered graph is only a classic graph in which
nodes and incoming edges are ordered.
More precisely, an ordered graph is a triplet G =
(N , E , (≤n)n∈N ) where :

1. N is a totally ordered finite set of nodes.

2. E is a part of N2. e = (i, j) ∈ E is an edge

connecting node i to node j.

3. (≤n)n∈N is a family of orders. For each node
n ∈ N , ≤n is a total order on the set of its pre-
decessors, i.e., Pred(n) = {i ∈ N | (i, n) ∈ E}.

Some definitions

Given the order ≤n, an ordered sequence of the ele-
ments of Pred(n) can be defined. Let Pred(n)k be
the terms of this sequence.
The set of the successors of a node is defined as
Succ(n) = {j ∈ N | (n, j) ∈ E}.
A path of length m from n to p in a graph is a sequence
of nodes, (ni)0≤i≤m verifying : n0 = n, nm = p and
∀i < m, (ni, ni+1) ∈ E .
A cycle is a non-zero length path from one node to
itself. A graph is cyclic when it has at least one cycle.

Intuitive point of view

A graph is in fact a list of pairs. The first element
of the pair is the node itself (i.e., n ∈ N ) and the
second element is the possibly empty list of the prede-
cessors of the node, i.e., the indices of the nodes which



are connected to the observed node by an edge. The
orders are automatically defined with the help of the
lists : the first element of one list is the smallest one
of the corresponding set. A complete example is given
in subsection 2.6.

2.3 Neural Net

Let G = (N , E , (≤n)n∈N ) be a non-cyclic ordered
graph. Let us assume that N = {N 1, . . . , Nn} is a set
of neurons. Ik, P k and Ok are respectively the input,
parameter and output spaces of the neuron Nk.

In what follows, we will not make any differences
between the neuron Nk and its index k. For instance,

INk

is another notation for Ik.
The graph G is a neural net if it fulfills the following
condition :

∀Nk ∈ N ,
∑

Ni∈Pred(Nk)

dim Oi = dim Ik (1)

This condition allows us to identify1 the product vec-

torial space
∏

i OPred(Nk)i with Ik. The input of the
neuron Nk is well defined as the appending of the out-
put of its predecessors in the graph, in the order which
is locally defined by the graph.

2.4 Computation model

Input, output and parameter

Let In be the set of the input nodes, i.e., In = {Nk ∈
N | Pred(Nk) = ∅}. Let Out be the set of the output
nodes, i.e., Out = {Nk ∈ N | Succ(Nk) = ∅}. None
of these sets is empty because the graph is non-cyclic.
The order on N can be restricted to In and Out. Let
then Ini (resp. Outi) be the ordered sequence of ele-
ments of In (resp. Out).

Let I , the input space of the neural net, be
∏

k IInk , let P , the parameter space, be
∏

k P k and
let O, the output space, be

∏

k OOutk . Intuitively,
we give an input to the net when we give an input
to every input neuron. The parameters of the net are
of course the “set” of the parameters of every neuron
and the output of the net is obtained by gathering the
outputs of every output neuron.

How to compute the output ? Intuitive point

of view

The computation of the output of the net can be ex-
plained in a four steps process :

1 These vectorial spaces are only isomorphic. In order to
avoid cumbersome notation, we will always identify these spaces
with the help of the canonical isomorphism. For instance, the
vector ((a), (b)) ∈IR×IR is “equal” to the vector (a, b) ∈IR2.

1. The parameter vector of the net is sliced and each
sub-vector is dispatched to its neuron, according
to the order on N .

2. The input vector is processed with the same
method as the parameter vector i.e., it is sliced
and each sub-vector is dispatched to its corre-
sponding input neuron.

3. In order to compute the output of a neuron, we
wait for all its predecessors to compute their out-
put. Then all these outputs are gathered to form
a new vector, the input of the neuron. The output
can then be computed by using the node function.

4. The outputs of the output neurons are appended
together in order to obtain the global output vec-
tor.

With this method, we can view the neural net as a
neuron.

Mathematical point of view

Let i1, . . . , ip be the indices of the neurons belonging
to In. Let o1, . . . , oq be the indices of the neurons
belonging to Out. Let x = (xi1 , . . . , xip) ∈ I and
p = (p1, . . . , pn) ∈ P be respectively an input vector
and a parameter vector. Let us define Rk the output
of the neuron Nk recursively :

• If Nk ∈ In, then Rk = Nk(xk, pk).

• If Nk 6∈ In, let Ck be

(RPred(Nk)1 , . . . , RPred(Nk)q ). Then,
Rk = Nk(Ck , pk).

Rk is well defined due to condition 1 and non-cyclicity
of the graph (see [10]).

Let R be (Ro1 , . . . , Roq ). Then we have R ∈ O. R

is the output of the net and is a function of x and p.
We have defined a new neuron GN , with input space
I , parameter space P and output space O.

2.5 Extended backpropagation

Differentiable neural net

Let G = (N , E , (≤n)n∈N ) be a neural net. It defines a
“neural net neuron”, GN . If every Nk in N is differen-
tiable, then GN itself is differentiable (GN is obtained
by composition of the neuron functions). Both dif-
ferential dGN1 and dGN2 can be computed with an
extended backpropagation algorithm. The end of this
subsection gives some mathematical details about this
extended backpropagation.

Some definitions



We need first to extend the notion of predeces-
sor. Pred∞(Nk) is the subset of N , verifying N ∈
Pred∞(Nk) ⇐⇒ there exists a path from N to Nk.

When Nk is an element of Pred(N j), its output is
only a part of the input of N j and more precisely the
ith part of this input. Let ∂iN

j
1 be the corresponding

part of the jacobian matrix dN i
1. This new matrix

is obtained by extracting the columns corresponding
to the inputs coming from node Nk. We have then :
dN

j
1 = (∂1N

j
1 ∂2N

j
1 . . . ∂lN

j
1 ).

Backpropagation

Let dR
j
k be the “backpropagated signal” coming from

output node N j and evaluated at node Nk. dR
j
k is

technically a jacobian matrix, the differential of the
output of the neuron N j with respect to the output of
the neuron Nk and is defined as follows :

• dR
j
j = Id, the identity matrix of Nk’s output

space.

• If Nk 6∈ Pred∞(N j), then dR
j
k = 0.

• If Nk ∈ Pred∞(N j),

then dR
j
k =

∑

Ni∈Succ(Nk)

dR
j
i ∂kN i

1

The following property is verified (see [10]):

dGN2 =







dR
o1

1
dN

o1

2
. . . dRo1

n
dN

o1

2

...
. . .

...
dR

oq

1
dN

oq

2
. . . dR

oq
n dN

oq

2






(2)

A similar property is also verified for dGN1. In or-
der to compute dGN2, we compute dRoi

j for each out-

put neuron Noi and for each infinite predecessor N j of
Noi . This computation is done in a reverse order, i.e.,
from the output nodes and to the input nodes (whereas
the output computation order is direct, i.e., from the
input nodes to the output nodes).

Computational cost

The backpropagation algorithm has a lower computa-
tion time than a direct computation of the differen-
tials of the output (this direct computation method
is obtained by using the composed function derivation
formula). We have proven that the extended back-
propagation has the same time complexity than the
standard backpropagation for a MLP ([10]).

In order to reduce computation time for MLP, we
can gather neurons in a layer object. This method
is useful if we have optimized matrix products (see
subsection 3.2).

Our general model does not introduce loss of time
compared to the classic MLP model.
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Figure 1: Output computation in a neural net

2.6 A complete example

We give here a simple example. Figure 1 shows a
graphical representation of a neural net. The corre-
sponding mathematical and simple representations of
its graph are given hereafter :

1. The graph can be defined as the following list :
{

1,
}

,
{

2, [1]
}

,
{

3, [2, 6]
}

,
{

4,
}

,
{

5, [4, 2]
}

,
{

6, [2, 5]
}

2. N = {1, 2, 3, 4, 5, 6}, with the natural order.

E =
{

(1, 2), (2, 3), (2, 5), (2, 6), (4, 5), (5, 6), (6, 3)
}

.
As the predecessor sets Pred(1) and Pred(4) are
empty, they do not need any order. Node 2 needs
no order too because it has only one predecessor.
For node 3, we have 2 ≤3 6. For node 5, we have
4 ≤5 2 and for node 6, we have 2 ≤6 5.

We have In = {1, 4} and Out = {3}. We have then

I = I1 × I4, P =
∏6

i=1 P i and O = O3. Let x be an
input vector, i.e., x = (x1, x4) and let p be a parameter
vector p = (p1, . . . , p6). We have then :

1. R1 = N1(x1, p1) because 1 ∈ In and
R4 = N4(x4, p4) because 4 ∈ In.

2. C2 = R1 because Pred(2) = {1}. Therefore
R2 = N2(R1, p2).

3. C5 = (R4R2) because Pred(5) = {2, 4} and
4 ≤5 2. Therefore R5 = N5(R4R2, p5).

4. C6 = (R2R5) because Pred(6) = {2, 5} and
2 ≤6 5. Therefore R6 = N6(R2R5, p6).

5. C3 = (R2R6) because Pred(3) = {2, 6} and
2 ≤3 6. Therefore R3 = N3(R2R6, p3).



Let us now study the partial differentials of node
N3 with respects to the outputs of node N 2 and N4

for instance. We have :

• dR3
4 = dR3

5∂4N
5
1 ,

• dR3
2 = dR3

6∂2N
6
1 +dR3

3∂2N
3
1 = dR3

6∂2N
6
1 +∂2N

3
1 .

We see in the second case how the local formula can
get rid of a complex situation in which a node exercises
a double (direct an indirect) influence on another one.

2.7 Input sharing

There is a difference between an input node and an-
other one in the neural net : the former can not share
its inputs whereas the latter can. For instance, two
“inside” neurons can receive the output of one single
neuron. On the contrary, two input neurons can not
receive the same input from the “outside” (this is the
exact meaning of the definition of I the input space of
net).

This difference is useless and in fact cumbersome.
We can easily get rid of it : we add before the input
of the neural net a function F from the new vectorial
input space NI to I . The output of the net is now
GN(F (x), p) for the input vector x and for the pa-
rameter vector p. The role of F is to dispatch the in-
put vector to the input neurons. For instance, we can
choose for F the function defined by F (x) = (x, x).
If we have two input neurons, F allows us to share a
single input vector between the two neurons.

Introducing such a function does not change the
backpropagation algorithm. We just have to change
the final computation of dGN1 (for details, see [10]).

Parameter sharing is also used in many neural ap-
plications. We can use the same method as for input
sharing, especially since F will often have a linear form
which allows computation optimization (with the help
of the Jacobian method, see subsection 3.2).

2.8 MLP mathematical representation

We use here our model to describe the classic Multi
Layer Perceptron model (see [24]). Let us recall the
main features of a MLP :

• A MLP consists of several layers of neurons.

• Each neuron of a layer is connected to every neu-
ron of the previous layer.

• In the first layer, every neuron has the same num-
ber of real valuated inputs and shares its input
vector (i.e., the input vector of the net) with all
neurons of the layer.

are not neurons)
Inputs (which 

Layer 1

Layer 2
Layer 3

Hidden layers

Output neurons

Figure 2: A multilayer perceptron

• Every neuron has a transfer function f and con-
nection weights ai describing the connection com-
ing from previous layer neurons. It has a thresh-
old b above which the neuron is“activated”. If the
input of a neuron is (x1, . . . , xp), then its output
is f(

∑n

i=1 aixi + b).

• Usually, the neuron transfer function is
the same for all neurons and is a sigmoid

(e.g., f(x) = 1−e−x

1+ex ). MLP with a linear
transfer function in the last layer can be used
also.

Figure 2 shows a graphical representation of such a
MLP.

Let us explain now how to describe a MLP with the
language of our model :

• Let I , P and O be respectively IRq, IRq+1 and
IR. The neuron function is defined as follows. If
x = (x1, . . . , xq) and p = (p1, . . . , pq, o) are re-
spectively the input and the parameter vectors,
we have N(x, p) = f(

∑q

i=1 xipi + o). Of course, q

depends on the layer of the neuron.

• The architecture of the graph is exactly the same
as the one of the MLP (which is in fact a special
kind of graph).

• The neural net uses the sharing system described
above to share the same input between all the
input neurons.

This simple example shows that the main difference
between our model and a classic one lies in the mean-
ing of a connection. In our model, a connection is only
a wire that conveys a vectorial information from one
neuron to another. In the MLP model, a connection



has an influence on the real information it conveys.
There is a very strong relationship between parame-
ters and connections : this is not general enough to
handle complex neural structures.

3 Simulator Design

Many neurons, networks, algorithms, ... have al-
ready been implemented in NSK. But this section es-
pecially deals with the general design of the kernel and
with the problems of expandability. It is intended to
provide a general understanding of the programming
method of NSK.

The simulator consists of the following parts :

1. General tools (Lists, Vectors, etc ...).

2. Neurons.

3. Neural nets.

4. Learning algorithms.

3.1 General tools

We have implemented simple numerical classes,
List, Vector and Matrix. Some practical features
of C++ were used in order to implement them in an
efficient way.

Template classes

We use intensively parametrized classes (called tem-
plate classes in C++, see [25]). This is a natural ap-
proach in order to design a list class for instance. The
main idea is to allow users to experiment the effect of
coding the connection weights of a MLP as double, as
float or as fixed point real numbers for instance. This
is a very important issue when we are trying to build
a real hardware implementation of a network.

Derived classes and encapsulating classes

Derived classes allow to build a common interface for
several different classes. In order to obtain the right
behavior from a derived class, it must be manipulated
with the help of a pointer (or a reference), as explained
in [25]. This is rather dangerous because pointer copy
semantics is not safe and introduces memory manage-
ment problems (who will delete the object and when
will it be deleted ?). In order to avoid such problems,
we use an encapsulating class. The purpose of this
class is to handle creation, access and deletion for the
encapsulated class. We obtain then all the advantages
of an object used without pointer and also the right
behavior for the methods of the obtained class (for
details about this method, see [9]).

We use a lazy semantics for the copy of numerical
types : when we write for instance that u=v, where
u and v are vectors, u becomes an “alias” for v. The
content of v is really copied into u when we really need
it (i.e., when we want to modify u).

As vector and matrix extractions are intensively used
in NSK, these methods have been implemented with a
lazy semantics and they do not make useless copies of
extracted values. The time needed to extract a vector
from another one is constant (it depends neither on the
size of the extracted vector, nor on the size of the first
vector). Of course, if we try to modify the extracted
vector, a real copy is done.

3.2 Neurons

A neuron is only a special kind of function. In order
to collect together the output function and its differen-
tials, we have implemented a neuron as a class : Neu-
ron. It is a template class and the template parameter
is the underlying type involved in the input, param-
eter and output spaces of the neuron (i.e., the class
Neuron<T> works with vectors of type Vector<T>).

If we look at the formula which defines the back-
propagation algorithm, we observe that the jacobian
matrices of a neuron are used only as right members
of matrix products. Therefore, they do not have to be
implemented as matrices, but only as a special tem-
plate class : Jacobian.

The purpose of such a class is to allow easy opti-
mization of these matrix products. Sometimes, the
jacobian matrices of a neuron have only few non zero
terms. Matrix products involving such matrices can be
optimized in order to reduce their computation time.
Optimizing some pseudo-matrix class derived from the
Matrix class is not a good idea because we have to re-
define all matrix operations, which is useless. On the
contrary, by using a special Jacobian class that can
be cast into Matrix, we only have to redefine a semi-
product.

Jacobian is in fact an encapsulating class for the
JacobianRep class. A derived class has to be imple-
mented in order to add a new optimization method. A
reference counting copy system is implemented by the
Jacobian class. The JacobianRep objects are created
outside of the Jacobian but deleted inside this class.

A neuron is then the following class :

template<class T> class Neuron {

protected:

typedef Vector<T> V;

virtual



JacobianRep<T> *d_in(const V &,

const V &) const=0;

virtual

JacobianRep<T> *d_param(const V &,

const V &) const=0;

public:

virtual V operator()(const V &,

const V &)const=0;

Jacobian<T> diff_in(const V &,

const V &) const;

Jacobian<T> diff_param(const V &,

const V &)const;

....

};

In order to implement a new neuron, we only have to
redefine the virtual functions, the constructor and the
destructor. Let us now describe the purpose of each
method :

• operator() computes the output of the neuron.
The first argument is the input vector and the
second is the parameter vector.

• d_in and d_param compute the two differentials
of the neuron as JacobianRep<T> *. The output
of these functions can be accessed with the help
of the public functions diff_in and diff_param.
These functions translate the JacobianRep * into
Jacobian.

3.3 Neural nets

Neural net implementation is based on a Graph

class. This class is an implementation of the ordered
graph described in section 2.2. It uses a list of triplets.
Each triplet consists of a node, the list of its prede-
cessors and the list of its successors. This class is of
course a template class and gives all needed methods :
edge and node insertion, In and Out computation,
cyclicity checking, etc...

The NeuralNet class is obtained as a derived class
from both Graph and Neuron classes. It uses a tem-
plate class VectorialFunction to implement input
sharing (and parameter sharing, see [10]). This class
is intended to provide an implementation for differen-
tiable functions from IRp to IRq . A VectorialFunc-

tion has got a differential which can be computed as a
Jacobian, in order to obtain optimized computation.
We use the encapsulating class VectorialFunction

for a real class VectorialFunctionImp.
The NeuralNet class implements the extended

backpropagation in order to compute the differentials
of the function computed by the net. It allows to view

the output of a neuron in the net and the values of the
backpropagated error term.

3.4 Learning algorithms

A general implementation of learning algorithms is
rather difficult. We have designed here a model for su-
pervised learning algorithms which is rather complete.

The “general” model

We think that the best paradigm for supervised neu-
ral learning is a functional one : we have a function F

that we want to learn, an arbitrary norm ‖.‖ on the
vectorial space to which the function belongs and we
are looking for a neural net N and a parameter vector
for this neural net p that minimizes the approximation
error ‖F (.) − N(., p)‖.

In this framework a learning algorithm is a method
which allows us to find such a neural net and such
a parameter. We will restrict ourselves to stepwise
learning. In such a learning method, we start with an
initial network N0 and an initial parameter vector p0.
With a current guess (Ni, pi) the algorithm is able to
compute a new guess (Ni+1, pi+1) which “converges”
towards a minimizing pair (N∞, p∞).

A learning algorithm has got an internal state which
can provide information of its former steps. Genetic
algorithms have been implemented this way: the inter-
nal state contains a population of networks and each
step makes an evolution of this population. The ob-
tained guess is the best individual of the population
(see [11]).

C++ implementation

As we are working in the “real”world, we can not stay
as abstract as above. In order to learn a function, we
must compute it. In most experiments, the function
is in fact a set of input-output pairs. We have then
a sampled function. This notion is implemented with
the help of several classes :

• The Sample<T> class describes a sample. We can
obtain the vectorial value of this sample (this
value is a Vector<T>).

• The SampleSet<T> class describes sets of sam-
ples. Iteration through a SampleSet is allowed.
We can get the nth sample of a set. It is also
possible to extract a subset of samples.

• The SampledFunction<T> class describes sam-
pled functions. Methods are given to obtain the
sample set of the function and to compute its out-
put as a function of a sample. It is of course an
encapsulating class for the SampleFunctionImp

class.



The norm is implemented as an ErrorFunction. This
class allows the computation of a distance between a
neuron function (and therefore a neural net which is
a special kind of neuron) and a sampled function. It
uses a SampleSet which is a subset of the Sample-

Set of the sampled function. This set can be dynam-
ically changes while learning which allows to imple-
ment stochastical gradient descent and similar algo-
rithms (see section 4). The distance between the neu-
ron function (for a fixed parameter vector) and the
sampled function depends only on the output of these
functions computed for the samples belonging to the
sample set of the ErrorFunction. The differential of
the error function (considered as a function of the pa-
rameter vector of the neuron) can be computed by
using the extended backpropagation.

A learning algorithm is then a SupervisedAlgo. It
has an internal state which can be reset to an initial
one. A method allows to compute one step of the
algorithm. In order to learn and to compute the ap-
proximation error the SupervisedAlgomust be linked
to a SampledFunction, to an ErrorFunction and to
an initial NeuralNet with its initial parameter vector.
After each step, we can look at the obtained Neu-

ralNet, at the obtained parameter vector and at the
remaining approximation error. During the learning
process, we can modify the sampled function and/or
its sample set.

Function Minimization

Many gradient based learning algorithms can be ex-
pressed as minimization algorithms for arbitrary real
valuated functions. This is true for gradient de-
scent (with or without momentum term), for delta-
bar-delta, for quickprop, for Polak-Ribiere conjugate
gradient and many other algorithms (see [7]). These
algorithms can be expressed in a general way in C++

as a class MinimizingAlgo. This class work with a
ScalarFunctionwhich allows to handle differentiable
functions from IRp to IR. We have implemented the
eight different algorithms presented in [7]. They can
be used to minimize arbitrary functions and they are
important classic training algorithms for neural nets.

We have then implemented a special ScalarFunc-
tion which translates a NeuralNet, an ErrorFunc-

tion and a SampledFunction into a real valuated
function (the function takes as input a parameter vec-
tor for the neural net and gives as output the ap-
proximation error with this parameter). Therefore we
have the GradientAlgo class, derived from the Su-

pervisedAlgo class, which allows us to use the Min-

imizingAlgo algorithms.

4 Application examples

4.1 How to handle gradient descent for
MLP ?

MLP

The MLP mathematical model has been presented in
subsection 2.8. We have just to implement a MLP
neuron, which is in fact a pseudo linear neuron. The
MLP is only a special kind of NeuralNet and can be
derived from this class in order to add methods to
simplify the insertion of layer of nodes (of course this
is not mandatory but useful).

Gradient descent

The simple gradient descent algorithm has the follow-
ing mathematical definition for an arbitrary vectorial
function F from IRq to IR :

• p0 is a first guess for the minimum of the function.

• For step i + 1, the new guess is obtained through
this way : pi+1 = pi − εi∇F , where εi is a se-
quence of strictly positive reals.

Therefore, it can be implemented as a Minimizin-

gAlgo very easily with a constant ε parameter or with
εi = 1

i+1 for instance.

ErrorFunction

The most commonly used error function is the
quadratic error. Let us assume that the sample set
is S = {si} with 0 ≤ i ≤ n. The local error be-
tween the function to learn F and the MLP N is
E(si, p) = ‖F (si) − N(si, p)‖2, where ‖.‖ is the eu-
clidean norm in the output space. If the error func-
tion has got as sample subset S ′ ⊂ S, then we have
E(p) =

∑

si∈S′ E(si, p). The choice of the subset is
very important because if S ′ has only one element
randomly chosen among the elements of S we have
an on-line learning (also called stochastic backprop)
and if S′ = S we have an off-line learning. We have
to implement an extracting class SelectSubSetwhich
allows us to choose a subset of S.

Conclusion

The MLP is implemented as a NeuralNet. The gra-
dient descent algorithm is a MinimizingAlgo. The
quadratic error function is an ErrorFunction and we
have implemented some SelectSubSet classes. The
GradientAlgo class must use all of these objects and
a step of its minimizing process goes through the fol-
lowing stages :

1. Selecting a current sample subset with the help
of the SelectSubSet object.



2. Building a ScalarFunction using the neural net,
the error function, the sampled function and the
sample subset.

3. Calling the MinimizingAlgo to optimize the
ScalarFunction.

4.2 Geometrical parametrization of MLP

In a recent article we have proposed a new method
to reduce training time for multilayer perceptrons [23].
This method is based on a geometrical view of the pa-
rameters of MLP neurons. As explained in subsection
2.8, the output of a neuron in a MLP is f(

∑n

i=1 aixi +
b) for the vectorial input x = (x1, . . . , xn). Let
a = (a1, . . . , an) be the connection vector. The output
of the neuron is then f

(

(a|x) + b
)

. In order to achieve
a more stable learning process, we introduce two pa-
rameter vectors, the dilatation vector d = (d1, . . . , dn)
and the translation vector t = (t1, . . . , tn). The out-
put of the neuron is now f

(

d
∣

∣(x− t)
)

. The differences
between this model and the classic MLP model are
very simple, but it might be rather cumbersome to
modify a classic program to handle the new model (or
to handle both models). With NSK we only have to
add a new class derived from Neuron. All the classic
learning methods are immediately available. Testing
our new model is then rather easy.

4.3 Other works

• Experiences with wavelet networks have also been
conducted with NSK (see [12]).

• Genetic algorithms are studied as learning algo-
rithms for neural networks (and also as general
optimization methods) with NSK (see [11]).

5 Conclusion and future works

In this paper, we have presented an object-oriented
simulator kernel. NSK is built on a general theory
of feedforward neural nets and has therefore strong
mathematical bases. It is easily expandable because of
its highly modular organization. It has been designed
to offer rather good runtime performances and allows
implementation of optimized computing. The C++

framework allows rather simple notation for mathe-
matical algorithms and the notion of derived classes
turns the adding of a new model into a very simple
task.

NSK consists of approximatively 15000 lines of code
and has been implemented with the Sun C++ com-
piler on a Sparcstation 10. We are currently modifying
it in order to obtain code compatible with the GNU

C++ compiler : unfortunately, unlike ANSI C, C++

is not yet really portable, but the general availability
of GNU C++ on virtually every UNIX based worksta-
tion will greatly simplify the adaptation process. D.S.
NSK is still under development. We are working on
an extension of the feedforward model in order to deal
with recurrent networks as described in [20]. We also
plan to include a code generator for parallel hardware :
our goal is to provide an automatic parallelization tool
that can produce C code for MIMD machines from a
NSK neural net. This automatic parallelization will
take two different aspects : parallelization of the neu-
ral computation, using advanced parallel algorithms
for task graphs (our graph-based point of view is there-
fore well adapted, see [4]), and parallel computation by
partitioning the sample set of the SampledFunction to
learn, as in [21]. Of course, a simulation environment
for NSK will be very useful, but the first aim is to
provide a kernel and almost stand-alone tools (such as
the Vector or MinimizingAlgo) rather than an envi-
ronment.
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