
Geometrical Initialization, Parametrization and Control of

Multilayer Perceptrons: Application to Function Approximation0

Fabrice ROSSI1 and Cédric GEGOUT

Ecole Normale Supérieure de Paris
Thomson-CSF/SDC

7, rue des Mathurins, 92223 Bagneux Cedex, FRANCE

Abstract— This paper proposes a new
method to reduce training time for neural nets
used as function approximators. This method
relies on a geometrical control of Multilayer
Perceptrons (MLP). A geometrical initializa-
tion gives first better starting points for the
learning process. A geometrical parametriza-
tion achieves then a more stable convergence.
During the learning process, a dynamic ge-
ometrical control helps to avoid local min-
ima. Finally, simulation results are presented,
showing drastic reduction in training time and
increase in convergence rate.

I. Introduction

Mathematical theorems prove the existence of a two-
layer perceptron, with sigmoidal units in the hidden
layer, that approximate a given real valued multi-
variate continuous function to a given degree of ac-
curacy [3, 5, 8]. Such approximation methods are
very important for pratical purposes : they can be
used, for instance, in black-box identification and
control of nonlinear systems, or in time series predic-
tion. The main problem is that the training of neural
approximators is very difficult. Some authors have
given initialization methods that reduce the training
to a simpler problem (e.g. [4, 7]) but these meth-
ods depend on a selection method which extracts few
key prototypes from an important data set, and fur-
thermore, they introduce modifications to the sim-
ple MLP model. Decision tree based methods are
also available (e.g. [2, 12]), but they are not re-
ally adapted for function approximation. Moreover,
all these methods focus on the initialization process
whereas all the approximation process must be im-
proved : both initialization and learning.

In order to fulfill these requirements, we propose

0In Proceedings of the IEEE International Conference on Neu-
ral Networks, Orlando, June 94.
Available at http://apiacoa.org/publications/1994/icnn94.pdf

1Up to date contact informations for Fabrice Rossi are avaible
at http://apiacoa.org/

to switch from the standard MLP parametrization
to a geometrical one, as proposed in [15]. The ini-
tialization of the network is carried out by a simpli-
fied version of the methods proposed in [10] and [14].
This new training process is faster than the classic
one provided a good starting point is chosen among
the possible ones. With the bad starting points, the
network can get very fastly stuck into a false min-
imum. Many of these minima can be explained by
the fact that some neurons give the same output on
the training data and are thus useless. We present
a simple geometrical method which allows us to con-
trol this behavior and to avoid many false minima.
Used with the geometrical initialization and training
methods, it yields very good results. Simulation re-
sults show that it greatly increases the convergence
rate while reducing the average training time.

II. Geometrical parametrization

A. Geometrical point of view

The output of a two layer perceptron with one linear
neuron in its last layer is given by :

f(~x) =

n
∑

i=1

γiσ(~αi. ~x + βi) + γ0, (1)

where ~x is the vectorial input of the network, and σ

is the transfer function of the hidden neurons. To
speed up the training process, we propose to switch
from the classic point of view to a more“geometrical”
and intuitive one. We rewrite equation 1 in :

f(~x) =

n
∑

i=1

γiσ
(

~di. (~x − ~ti)
)

+ γ0 (2)

We call ~di the dilatation parameter and ~ti the trans-
lation parameter. As pointed out in [15], the partial
derivative

∂F

∂~αi

= γiσ
′(~αi. ~x + βi)~x, (3)

http://apiacoa.org/publications/1994/icnn94.pdf
http://apiacoa.org/

depends on the value ~x, whereas the partial derivative

∂F

∂~di

= γiσ
′
(

~di. (~x − ~ti)
)

(~x − ~ti), (4)

depends on the value (~x − ~ti) and is thus less de-
pendent from translation of all the input space and
therefore more stable. Another reason for this choice
is explained in section IV.

B. Complexity

Let M be a 2 layer perceptrons with n entries, p

hidden neurons and one output, used with classic
parametrization. Let C be the time needed to com-
pute the product of two real numbers. If we as-
sume that computing σ(x) takes about 10C, then
the time needed to compute the ouput of M is about
p(2n + 12)C ([11]). The time needed to compute the
gradient of the quadratic error made by M on one
example is about p(3n + 25)C.

With the geometrical parametrization, new
weigths are added to the network. In this case, the
time needed to compute the output of M is about
p(3n + 11)C. The computation time of the gradient
is about p(5n + 24)C. Furthermore, the number of
parameters is no longer p(n+2)+1 but p(2n+1)+1.
Therefore, using this gradient is more time consum-
ing than using the classic gradient.

Working with a small n is not really a problem
and the complexity difference can be neglected. But
if the entries number is large, the computation time
of the geometrical method is about 1.7 times longer
than the one of the classic method.

III. Geometrical initialization

The equation ~αi. ~x + βi = 0 describes a hyperplane.
Due to the general properties of the commonly used
transfer functions, the output of the ith neuron is non
constant only near this hyperplane. As pointed out
in [14], the relative positions of the hyperplane and
the input data are very important. A bad configura-
tion may result in a local minima. It is very difficult
indeed for a gradient procedure to correct a constant
output on the training set because the derivative of
the transfer function is localized and non zero only
near the hyperplane. Therefore, if this hyperplane is
“far away” from the input data, the partial deriva-
tives of the error ∂E

∂αij
are close to zero, which slows

down any learning method that use the gradient.
The classic random initialization does not enable

to find a good starting point for the training pro-
cess. Indeed, picking randomly and independently ~ai

and βi does not enable to control the position of the

hyperplane because this position depends on −βi

||~ai||
.

On the contrary, the proposed parametrization turns
the simple random initialization into a more efficient
method : one can achieve easily a simple control on
the hyperplane position because it depends rather in-
dependently on ~ti and ~di.
In fact, the ouput of a neuron depends on three pa-
rameters :

1. The position of its “center of activity” (i.e., the
translation parameter ~ti).

2. The orientation of its decision hyperplanes (i.e.,
~di

||~di||
).

3. The selectivity of its transfer function (i.e.,

||~di||).
Obviously, a simple way to achieve better perfor-

mances than with a simple random initialization is
to separate the initialization process into three parts,
each of them dealing with one parameter.
A simple version of this initialization process was
used :

The three parameters are selected randomly from
three differents sets. The translation set is, for in-
stance, the part of the input space on which the func-
tion to learn is defined. The direction set can be the
unit sphere and the selectivity set is chosen in order
to avoid saturation or linearity of the starting neu-
rons on all the training examples.

Let us consider, for instance, the case of an one
input MLP. If the training examples are distributed
in the interval [a, b], then we take for the translation
set [a, b], for the orientation set {−1, 1} and for the
selectivity set [λ1

b−a
, λ2

b−a
], where λi are properly se-

lected constant depending on the transfer function.
For example, if σ(x) = tanh(x

2) is used, saturation
of the output begins when |x| > 5. The output can
be well approximated by x

2 when |x| < 1. In order
to avoid linearity or excessive saturation, one can set
for instance λ1 = 1 and λ2 = 10.

The weights of the last layer are not really impor-
tant because the error is a quadratic function of them
and can thus be optimized by any elaborate gradient
method. A good method is to initialize these weights
with small values or to set them to zero.

With this low cost method, we obtain a rather good
control on the position of the hyperplanes and of their
selectivity. On the contrary, the classic parametriza-
tion used with such a simple method does not allow
any control on the position of the hyperplanes, as
explained before. We can yet use the geometrical
parametrization for initialization and switch back to
the classic modal before learning.

Of course, more powerful methods can be used (see

[6, 14, 15]). But this one is general and its efficiency
does not depend on the data.

IV. Useless neurons

A. Description of the problem

During training process, one can frequently obtain
useless neurons, that is a neuron which gives an out-
put close to another neuron :
Let us assume that a classic transfer function is used.
The function σ must fulfill the following conditions :

• σ is odd.

• limx→∞ σ(x) = 1.

• σ′(0) = κ > 0.

Let us consider two neurons giving a summed out-
put,

F (~x) = γ1σ(~d1. (~x − ~t1)) + γ2σ(~d2. (~x − ~t2)).

Because of the oddity of σ, we can assume γi > 0. If
the two decision hyperplanes defined by the neurons
are close, we have :

∀~x,

∣

∣

∣

∣

∣

~d1

||~d1||
. (~x − ~t1)

∣

∣

∣

∣

∣

'

∣

∣

∣

∣

∣

~d2

||~d2||
. (~x − ~t2)

∣

∣

∣

∣

∣

If we have further ~d1. ~d2 > 0 and ||~d1|| ' ||~d2||,
then F can be approximated by only one neuron, i.e.,

F (~x) ' γmσ(~dm. (~x − tm ~dm)), where ~dm =
~d1+~d2

2 ,

γm = γ1 + γ2 and tm =
~t1. ~d1+~t2. ~d2

2 . One of the two
neurons is thus useless.

The main problem is that no gradient method us-
ing classic parametrization may separate the two neu-
rons. Since the hyperplanes are close, ~αi. ~x + βi are
close on the training set. Therefore the partial deriva-
tives calculated using equation 3 are close too and
the two neurons are moved together by a gradient
descent algorithm. On the contrary, the closeness of
the hyperplanes does not imply that ~t1 and ~t2 are
nearly equal. The partial derivatives calculated us-
ing equation 4 can thus be different. The geometrical
parametrization is therefore less sensitive to such a
collapse of neurons.

B. Dynamic control

Let us first consider the case of a function from IR to
IR. The sum of the output of two neurons is : F (x) =
γ1σ(d1(x − t1)) + γ2σ(d2(x − t2)). We assume that
t1 and t2 are nearly equal and we want to suppress
one neuron. One simple way to do that is to train
an unique neuron to approximate the output of the
two others. This might be efficient but rather slow.

One can use also some pruning method (e.g. [9]). We
prefer a simple direct geometric method :
The slope of F (x) for x ' 0 is κ(γ1d1+γ2d2). If |γ1| >

|γ2|, then the first neuron is the dominating one. We
will assume that the second neuron is useless if the
slope of the sum has the same sign as the slope of
the dominating neuron. If this condition is fulfilled,
the neuron given by γmσ(dm(x− tm)) gives a “good”
approximation of the two former neurons, if γm =
γ1 + γ2, tm = t1+t2

2 and dm = γ1d1+γ2d2

γm
. This allows

us to use the remaining neuron to reduce the error on
the rest of the training set (see the simulation part).

This heuristic can be extended to the multidimen-
sional case as follows :

We first assume that the hyperplanes defined by

the neurons are close. Let ~ni be
~di

||~di||
. We assume

that either ~n1 and ~n2 , either ~n1 and −~n2 are close,
i.e., |~n1.~n2| ' 1. Let ~nm be 1

2 (~n1 + ε~n2) (with ε = 1
or ε = −1, in order to sum the close vectors). Let θi

be ~ti. ~ni, and let x be the projection of ~x on ~nm. The
summed output of the two neurons is nearly equal
to : γ1σ(||~d1||(x − θ1)) + εγ2σ(||~d2||(x − θ2)).

The real function method can be applied to this
projected equation. We obtain a single neuron whose
translation parameter and dilatation parameter are

respectively tm = θ1+θ2

2 and dm = γ1||~d1||+εγ2||~d2||
γm

,
with γm = γ1 + εγ2. In the original space, we take
~dm = dm~nm and ~tm = tm~nm. Of course γm remains
unchanged.

C. Complexity

In order to find out useless neurons, a distance be-
tween every pair of hyperplanes must be computed.
The time needed to compute one distance is about
6nC, if ||~di|| = 1. The time required to compute the

~ni =
~di

||~di||
is about p(3n + 12)C. Therefore, the total

time is about p(3np + 12)C. If we assume that the
probability of useless neurons is rather low, we can
neglect the time needed to compute the parameters
of the new neurons.

With an off-line learning, such as the Broyden-
Fletcher-Golfard-Shanno (BFGS) conjugate gradi-
ent ([13]), the time needed to complete an iteration
is about (4n + 27 + 10(2n + 12))pkC where k is the
number of learning patterns (we assume here that
about 10 evaluations of the error are needed to per-
form the one-dimensional minimization required by
the BFGS method). The ratio is therefore less than

p(3n+12)
k(24n+147) . It is well known that only k − 1 hidden

units are needed to learn exactly an arbitrary map-
ping defined on k examples [1]. The ratio is thus less

than 1
8 . Therefore, the time needed to check for use-

less neurons can be neglected if this method is applied
only every 10 iterations.

V. Simulation results

This section compares the performances of the sev-
eral proposed optimizations on a simple example :

The function to learn was generated by a 2 layer
perceptron, with 4 hidden neurons. 31 training
points were uniformly spread throughout the training
interval, [−3, 4] (see figure 1). The BFGS conjugate
gradient algorithm was used to train 2 layer percep-
trons. They had between 4 and 8 hidden neurons.
The learning stopped when the mean square error
on the training set was lower than 0.01 or when the
number of iterations exceeded 500.

-3

-2

-1

0

1

2

3

4

5

-3 -2 -1 0 1 2 3 4

O
ut

pu
t

Input

Training set
f(x)

Figure 1: Function to learn

Two initialization methods were used : the clas-
sic one, called ClaI (i.e., weigths are chosen ran-
domly from [− 2

3 , 2
3]), and the geometrical one, called

GeoI (the translation and slope parameters are cho-
sen randomly respectivly from [−3, 4] and from
[3, 10]).

Two parametrization methods were used : the clas-
sic one, called ClaP, and the geometrical one, called
GeoP.

We have used a control method to avoid useless
neurons : when the mean square error remains al-
most constant during 10 iterations, the presence of
useless neurons is checked. When the distance be-
tween hyperplanes is inferior to 8% of the training
set length (7 here), the two concerned neurons are
approximated by only one. Let ρ be the normalized
mean square error defined by :

ρ(~xi) =
(F (~xi) − yi)

2

∑

j(F (~xj) − yj)2
,

where F is the MLP calculated function and yi the

desired output for input ~xi. Then the new translation
parameter for the remaining neuron is defined as the
center of gravity of the training set :

~t =
∑

j

~xjρ(~xj)

The dilatation parameter of this neuron keeps its old
value and γi is set to zero.

In order to obtain representative statistical data,
the training was repeated 100 times for each initial-
ization method, each time starting with a different
set of network parameters.

Table 1 gives the percentage of convergent runs and
the average number of iterations before convergence
for the convergent runs. The time needed to compute
an iteration of the algorithm is directly proportionnal
to the number of hidden neurons. The number called
“relative iterations”is the product of the average iter-
ation number and the complexity ratio between the
6 or 8 neurons case and the 4 neurons case. The
obtained averages are thus comparable.

The geometrical approach results in a drastic re-
duction of the training time. But without dynamic
control, the number of non convergent runs increases.
For 8 hidden neurons, the convergence rate is only
93% and the simple classic method is thus more reli-
able.

The dynamic control increases the convergence
rate for the geometrical algorithms but has a rather
bad influence on the classic method. The best algo-
rithm is obviously the total geometrical algorithm,
used with a dynamic control. This fact is confirmed
by other simulations.

VI. Conclusion

In this paper, we have presented a geometrical ap-
proach of neural network learning. This method re-
lies on previous works and on new ideas such as the
important dynamic control. It can divide by four or
more the training time and can increase the percent-
age of convergent runs. The proposed approach must
now be validated on more data, especially on multi-
dimensional data and real-world problems, such as
time series prediction. In addition, future work will
also include development of elaborated initialization
processes and control methods, and comparison be-
tween transfer functions.

References

[1] Masahiko Arai. Mapping abilities of three-layer
neural netwoks. In Proc. Int. Joint Conf. Neural

Networks, volume I, pages 419–423, 1989.
[2] Krzysztof J. Cios and Ning Liu. A machine

learning method for generation of a neural net-

Hidden Neurons 4 6 8
Parametrization ClaP ClaP GeoP ClaP ClaP GeoP ClaP ClaP GeoP
Initialization ClaI GeoI GeoI ClaI GeoI GeoI ClaI GeoI GeoI

Without control

iterations
relative iterations

26 %
334

34 %
112

37 %
61.2

92 %
231
346

85 %
69.4
104

88 %
46.5
69.8

99 %
179
358

93 %
55.5
111

93 %
26.2
52.4

With control

iterations
relative iterations

35 %
282

47 %
89.3

85 %
69.9

72 %
263
395

95 %
66.1
99.1

100 %
38.5
57.8

85 %
224
448

99 %
55.7
111

100 %
28.8
57.6

Table 1: Simulation results : convergence rates and average numbers of iterations

work architecture : A continuous ID3 algorithm.
IEEE Trans. On Neural Networks, 3(2):280–291,
March 1992.

[3] G. Cybenko. Approximation by Superposition of
a Sigmoidal Function. Mathematics of Control,

Signals and Systems, 2:303–314, 1989.
[4] Thierry Denoeux and Régis Lengellé. Initializing

Back Propagation Networks With Prototypes.
Neural Networks, 6:351–363, 1993.

[5] Ken-Ichi Funahashi. On the approximate real-
ization of continuous mappings by neural net-
works. Neural Networks, 2:183–192, 1989.

[6] Cédric Gégout and Fabrice Rossi. Continu-
ous Parameter Optimization with Genetic Algo-
rithms. Application to Neural Network Initial-
ization. Technical report, Thomson-CSF/SDC,
Nov. 1993.

[7] Shlomo Geva and Joaquin Sitte. A construc-
tive method for multivariate function approxi-
mation by multilayer perceptrons. IEEE Trans.

On Neural Networks, 3(4):624, July 1992.
[8] Kurt Hornik, Maxwell Stinchcombe, and Hal-

bert White. Multilayer feedforward networks
are universal approximators. Neural Networks,
2:359–366, 1989.

[9] Ehud D. Karnin. A Simple Procedure for Prun-
ing Back-Propagation Trained Networks. IEEE

Trans. On Neural Networks, 1(2):239–242, June
1990.

[10] D. Nguyen and Widrow B. Improving the Learn-
ing Speed of 2-layer Neural Networks by Choos-
ing Initial Values of the Adaptive Weights. In
Proc. Int. Joint Conf. on Neural Networks, vol-
ume 3, pages 21–26, San Diego, 1990. IEEE.

[11] Fabrice Rossi and Cédric Gégout. Apprentissage
pour les mlp : étude algorithmique. Technical
report, Thomson-CSF/SDC, Oct. 1993.

[12] Ishwar K. Sethi. Entropy nets : From de-
cision trees to neural networks. Proc. IEEE,
78(10):1605–1613, October 1990.

[13] D. F. Shanno. Conjugate Gradient Methods

with Inexact Searches. Mathematics of Opera-

tions Research, 3(3):244–256, 1978.
[14] Lodewyk F. A. Wessels and Etienne Barnard.

Avoiding false local minima by proper initial-
ization of connections. IEEE Trans. On Neural

Networks, 3(6):899–905, November 1992.
[15] Qinghua Zhang and Albert Benveniste. Wavelet

networks. IEEE Trans. On Neural Networks,
3(6):889–898, November 1992.

	Introduction
	Geometrical parametrization
	Geometrical point of view
	Complexity

	Geometrical initialization
	Useless neurons
	Description of the problem
	Dynamic control
	Complexity

	Simulation results
	Conclusion

