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Abstract

In this paper, we introduce a method that allows
to evaluate efficiently the “importance” of each co-
ordinate of the input vector of a neural network.
This measurement can be used to obtain informa-
tions about the studied data. It can also be used
to suppress irrelevant inputs in order to speed up the
classification process conducted by the network.

1 Introduction

Solving a “real world”classification problem is a chal-
lenging task. The first problem (the learning prob-
lem) is to construct a classifier with satisfactory
recognition rate. The second problem (the implemen-

tation problem) is to implement the obtained classi-
fier efficiently enough so that it can be used for real
problems (real time target recognition for instance).
In the case of supervised learning studied in this pa-
per, the classes are fixed and a set of already classified
examples (the learning set) is provided for the classi-
fier construction. With this knowledge, many differ-
ent algorithms can be used to construct a“good”clas-
sifier (e.g. nearest-neighbor or linear classifier, feed-
forward neural network, etc). Among them, neural
networks seem to be a good choice: they can approx-
imate Bayes optimal discriminant function [14] and
are therefore theoretically the best way to solve clas-
sification problems. Moreover, whereas they can be
quite difficult to train, the calculations they made
remain simple enough to allow efficient implementa-
tions. A lot of work have been done in order to reduce
the learning time for neural networks (e.g. [7, 17]).
The implementation problem is also widely studied
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and answers are obtained with the help of specialized
hardware (such as neural chips, e.g. [5, 9]) or with
parallel implementation (e.g. [10]).

Unfortunately, in some applications, specialized
hardware or parallel computers cannot be used (due
to price or size constraints). In this case, the only
way to speed up the implementation is to modify the
classification process. In general, this process has two
parts: first, a pre-processing phase extracts relevant
attributes from raw data (e.g. auto-regressive coeffi-
cients in a speech recognition problem); second, the
attributes are submitted to a classifier that computes
which class the given input belongs to (this is the
pure classification phase). In some cases, it is possible
to reduce the “size” of the classifier, therefore reduc-
ing its computation time. For Multi-Layer Percep-
trons (MLP), this goal can be achieved by suppress-
ing connections between neurons (or even complete
neurons): the goal is not only to reduce the classi-
fication time but also to improve the generalization
performances of the network [6]. But it is impossible
to reduce the network below a minimum size with-
out loosing accuracy in the classification. Moreover,
connection suppression methods are not general and
cannot be easily applied to other classifiers.

Another time saving method is to suppress the less
significant attributes: we save the time needed to
compute them and we reduce the input size of the
pure classification algorithm which will in general re-
duce its processing time. This method is closely re-
lated to projection methods (e.g. [2, 8, 15]) in which
new attributes are computed as a function of the orig-
inal attributes. The goal is of course to reduce the
number of attributes submitted to the classifier, in
order to simplify its task. This reduces also its com-
putation time, but in order to calculate the new at-
tributes, we need in general to compute all the orig-
inal attributes. Moreover, the projection in itself
introduces additional computation. Therefore, this
type of attributes reduction does not decrease com-
putation time as much as an attribute suppression

method.
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In this paper, we present a new method that allows
to choose automatically which attributes to suppress.
We assume that the studied classification task can be
performed by a parametric classifier which can be for
instance a MLP or a Radial Basis Function Network
(RBFN)[11]. An analysis of this classifier allows to
measure how much the classification depends on a
particular attribute and therefore to suppress the less
important ones. Previous results [4] imply that this
method can be efficiently used for totally arbitrary
feed-forward neural networks.

The remainder of this paper is organized as follows.
Section 2 introduces the mathematical aspect of our
attribute suppression method and compares it to ex-
isting methods. Section 3 gives some experimental
results on artificial and real-world data.

2 Input Study

2.1 Classic methods

Classic methods can be separated into two groups:
attribute selection methods and attribute projection
methods.

Attribute selection:

In this method, the most relevant attributes are
chosen with an iterative process: a first attribute is
chosen in order to maximize a given criterion; then, a
second one is chosen so that the pair maximizes the
same criterion (but the first attribute remain fixed),
etc. This approach has been used for decision tree
construction for instance (e.g. [16]). Its main draw-
back is that it cannot solve efficiently complex prob-
lems in which classification is impossible separately

with each axis but can be done with only few of them
used together.

A far more powerful version of this algorithm has
been proposed by Roberto Battiti ([1]). It is based on
mutual information which provides a reliable way to
compute the statistical relationship between a feature
and the classification task. This method gives good
results but not as good as our approach, as shown in
section 3.

Attribute projection:

Projection methods are widely used in order to re-
duce the size of the problem: we compute combina-
tions of the original attributes in order to obtain fewer
new attributes. As long as we are sure to keep the
most significant part of the data, we simplify here
the task of the classifier as it will process fewer data.
In the case of linear projection, computed by Prin-
cipal Component Analysis (PCA), or Discriminant
Analysis (DA), we can easily decide if some origi-
nal attributes are useless. Indeed, if P is a projec-
tion matrix, the norm of its i-th column measures

the importance of the i-th original attribute. If this
norm is very small compared to the ones of the other
columns, the new attributes do not depend signifi-
cantly on the i-th original attribute, which can there-
fore be discarded. The main drawback of this method
is that the projection is linear and therefore will not
be able to “understand”a highly non linear classifica-
tion problem. We might use a non-linear projection
method (e.g. [15]) but in this case, the analysis of the
relationship between original and projected attributes
become very difficult and is in fact a special case of
our method (see the following section).

2.2 Global attribute evaluation

The method presented in this section allows to choose
which attributes to suppress in an efficient and re-
liable way. The key idea is to analyze an already
trained classifier in order to measure how much its
calculation depends on each attribute: the evaluation
is global as in projection methods. Moreover, the
method can be applied to non linear classifiers and
therefore solve the linearity limitation.

Let F (x, w) be a parametric classifying func-
tion (e.g. a MLP): x is an input vector, w is a
weight vector that allows to modify the computa-
tion performed by F (e.g. the connection weights
in a MLP) and F (x, w) is the output of the func-
tion which belongs to [0, 1]c, where c is the num-
ber of classes of the problem. Let Ck be the stud-
ied k-th class and let χCk

(x) be the membership
function corresponding to Ck , i.e. χCk

(x) = 1 ⇔
x ∈ Ck. Let C(x) be the perfect classifying func-
tion, i.e. C(x) = (χC1

(x), χC2
(x), . . . , χCc

(x)). The
goal of the learning phase is to find w such that
F (x, w) ' C(x). In general w is chosen in order
to minimize some distance criterion between F (x, w)
and C(x) (for instance, the total quadratic error,
E(w) =

∑

x∈T ‖F (x, w) − C(x)‖2, where T is the
training set of the classification task).

Let us assume that we can compute the differen-
tial of F with respect to its first variable (i.e., the
input vector), called ∂F

∂x
(x, w). The k-th output of F ,

F (x, w)k , is a good approximation of χCk
, the mem-

bership function corresponding to class Ck. There-
fore, ∂Fk

∂xi
gives a good idea of the boundaries of class

Ck and can be used in order to obtain the general di-
rection of these boundaries. If a classification is pos-
sible, we can assume that each class consists of a set
of clusters. Inside a cluster of class Ck elements, χCk

is constant and therefore Fk is also almost constant,
which means ∂F

∂x
(x, w) ' 0. But at the cluster bound-

aries, χCk
(x) changes very rapidly. As a good ap-

proximation of χCk
, Fk(x, w) will change very rapidly

around this boundaries, and therefore, we can assume
that high values of
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boundaries. Moreover, near a boundary, ∂Fk

∂x
(x, w)

will be perpendicular to the local separation hyper-

plane. Therefore, a low value for
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∥) shows that the boundary nor-
mal is perpendicular to the i-th coordinate axis and
therefore that the local separation hyperplane con-
tains this axis: the i-th coordinate of the input vector
is locally useless for separating this cluster from other

classes. Therefore,
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is a good measure of

the local importance of the i-th coordinate axis.

The remaining problem is to combine the
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when x belongs to Ck in order to obtain

a global understanding of the relative importance of
the different coordinate axis. On a theoretical point of
view, it will be interesting to compute the mean nor-
mal vector of Ck boundary. But Ck may contain sev-
eral separated clusters for which the boundaries are
parallel but with opposite normal vectors: therefore,
computing the integral of ∂Fk

∂xi
(x, w) on Ck boundary

is not really meaningful.

In order to obtain a simple criterion, we define the
following matrix:

Sk,i =

∫

x∈∂Ck
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dx, (1)

where ∂Ck is the boundary of class Ck.

This value is quite simple to compute: when
∥

∥

∂Fk

∂x
(x, w)

∥

∥ is above a given threshold, we assume
that x ∈ ∂Ck, even if x 6∈ Ck. Therefore, we just
have to apply the following approximate formula:

Sk,i =
∑

x∈T,
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, (2)

where ε is the chosen threshold.

The obtained value Sk,i is therefore the global score
associated to the i-th coordinate axis as a classifying
axis for class Ck. Finally, we can define a mean score,
the vector S as:

Si =
1

c

c
∑

k=1

Sk,i (3)

Si is the mean global score associated to the i-th co-
ordinate axis as a classifying axis.

Each coordinate axis of the input space is associ-
ated to an attribute of the input vector. Therefore,
a high axis score is equivalent to an important at-
tribute: in order to suppress attributes, we just have
to discard the one with the lowest score.

2.3 Boundary examples

As explained in the previous section, the criterion vec-
tor S is computed with the help of boundary exam-
ples. In the case of an easy classification problem,
theses examples may not exist: if the clusters of the
different classes are well separated, the boundaries
computed by the classifier will not be close to the
clusters but right in the “middle”, where no example
exists. In this case, the criterion vector cannot be
computed.

For neural networks, the boundaries are moved dur-
ing training reflecting the weight changes. Before
reaching the perfect case, the number of misclassified
examples (and therefore of boundary examples) de-
creases. Therefore, we can compute the criterion vec-
tor S periodically during the training until the num-
ber of boundary examples reaches a minimum value.
If S can be computed quickly, this method will not
increase significantly the training time.

2.4 Links with previous works

The method explained in the two previous sections is
closely related to an algorithm introduced in [13]. In
this article, the authors introduce an attribute rank-
ing method based on first order differentials. There
are two important differences between the method
presented here and their algorithm:

• Priddy and al. combine the individual differen-

tial
∣
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∂Fk
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(x, w)

∣
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without normalization ;

• they take into account every examples (and even
additional points which are not examples) with-
out focusing on boundary examples.

In fact, the main justification of Priddy and al. is a
statistical one, whereas we are working on geometrical
arguments, which are in our opinion more suited to
the attribute suppression goal.

2.5 Feed-forward neural network case

We have demonstrated in a previous paper [4, 3], that
an extended back-propagation algorithm can be de-
fined for arbitrary feed-forward neural networks (in-
cluding in the same framework MLP, RBFN and
Wavelet Networks [18] for instance). This algo-
rithm allows to compute efficiently the differential of
F (x, w) with respect to its input x, if F is the output
of a neural network (with w as generalized weight
vector). It allows also to compute ∂E

∂w
(x, w), where

E(x, w), is the error made by the network on example
x (this gradient can be used to train the generalized
network). The time needed to compute ∂F

∂x
(x, w) is

approximately d times the time needed to compute
∂E
∂w

(x, w) where d is the output dimension of F .



For a MLP (or a RBFN) with c output nodes (i.e.,
a c class problem), computing ∂F

∂x
(x, w) involves

performing c backward computation passes, each
one similar to the classic back-propagation calcula-
tion. As a backward pass is not exactly the back-
propagation calculation, the time needed to compute
∂F
∂x

is not exactly equal to c times the time needed to

compute ∂E
∂w

, but we can assume that computing the
criterion vector S defined in the sub-section 2.2 takes
approximately the time needed to perform c back-
propagation epochs (i.e., computing ∂E

∂w
(x, w) c times

for each x in the training set). Therefore, as long as
the criterion is not computed too frequently (e.g., ev-
ery 10 epochs), its calculation will not slow down the
training process.

3 Experiments

3.1 Synthetic data

We first show in this section a simple example that
illustrates our method. This example is a modified
version of the well known XOR problem. We have
two classes C1 and C2. Each class is made of two
clusters (C1,1, C1,2, etc.). Each cluster obeys to a
Gaussian distribution in which both coordinates are
independent and have 1.0 as standard deviation. The
cluster centers are:

C1,1 C1,2 C2,1 C2,2

(0,−4) (0, 4) (−4,−4) (4, 4)

Figure 1 shows the training set (500 examples in each
cluster) after normalization (the total set is centered
and scaled so that its standard deviation is 1.0 on
both axis).
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Figure 1: Training set

Obviously, the classification can be performed only
with the y axis (in fact the x axis is useless for classi-
fication purpose). The problem is simple for a MLP
but cannot be solved by a linear method: we need at
least two straight lines to separate the classes.

A PCA gives for the projection the matrix Ppca =
(√

2
2 ,

√
2

2

)

. A DA gives another projection: Pda =

(0.76, 0.65). In both cases, it is impossible to use
the matrices in order to choose which attribute to
suppress (in fact, a DA based method will select the
wrong attribute).

We have trained five randomly initialized MLP (2
layers, 2 neurons in the hidden layer and 2 output
neurons, i.e. the minimal architecture, called a 2-2-2
MLP) on the given training set. After 30 iterations of
Polak Ribiere Conjugate Gradient, PRCG ([17]), the
classification rate and criterion vector for each MLP
are given in the following table:

1 2
classification rate 73 % 97 %
S (228.8, 329.2) (289.5, 2042)

3 4 5
97 % 97 % 97 %

(169.2, 1299) (81.19, 844.7) (422.9, 2619)

The first MLP failed to separate precisely the two
classes because of a bad starting point. For the other,
the ratio between S2 and S1 is larger than 6.2: this
allows to choose the y axis as the one to keep. When
this axis is chosen, a MLP with 2 layers, 1 input, 2
hidden neurons and 2 output neurons (i.e. a 1-2-2
MLP), obtains after 30 iterations of PRCG a mean
classification rate of 96.5 %. The method described
in [13] gives very similar results, with a high ratio be-
tween the importance of input 1 and 2. This method
selects therefore the y axis and overcomes also linear
method limitations (this is also the case of Battiti’s
algorithm [1]).

3.2 Real data

Some experiments were conducted on real world data.
We have chosen the Proben1 data set ([12]) which is
easily available by ftp1. We show here results based
on the thyroid problem, in which biological informa-
tions are used in order to determine if the observed
thyroid has over function, under function or normal
function (therefore, there are three classes). The in-
put vector has 21 attributes. We have not followed
here the Proben rule, in which the classification rate
is computed on the whole test set, regardless of the
relative pattern number for each class. Indeed, in the
thyroid problem, there are 92.6 % normal thyroid
samples. Therefore, a classifier that gives always the
normal answer obtain 92.6 % as classification rate,
whereas its result is totally wrong. We have therefore
chosen to compute the classification rate for each class
and to take the mean of the three rates as the per-
formance criterion of the classifier. In the case of the

1at ftp.ira.uka.de:/pub/neuron/proben1.tar.gz



previous classifier, we obtain therefore 30.87 % which
gives a good idea of its bad performances. The goal of
our simulation is to keep as few attributes as possible.
We tried several different methods:

3.2.1 Neural methods

We trained a simple MLP with 21 inputs, 16 hidden
neurons and 3 output neurons (i.e., a 21-16-3 MLP),
from five different starting weight sets. After 500 it-
erations of PRCG, the best MLP (selected with the
help of the validation set) obtain 95.60 % as classi-
fication rate on the test set (we have used the thy-

roid1 set in which the inputs where rescaled to mean
0 and standard deviation 1). The method described
in the previous section gives the following criterion
vector (with ε = 0.001):

Attribute 17 3 8 19 21 5

Value 105 31.7 23.0 10.8 9.53 6.39

Attribute 10 20 18 7 1 14

Value 6.25 5.12 4.53 3.58 3.17 3.07

Attribute 13 2 6 4 11 16

Value 2.87 2.79 2.02 1.79 1.61 1.33

Attribute 12 9 15

Value 1.28 1.04 0.61

This vector allows us to choose to keep 5 attributes:
(17, 3, 8, 19, 21).

The method described in [13] gives a differ-
ent ordering and the five best attributes are:
(17, 3, 8, 10, 19).

3.2.2 Linear methods

We tried two different methods. A DA first give a
projection matrix P from IR21 to IR2 (the maximum
size of the projection space for the DA is the number
of classes minus one). An analysis of its columns al-
lows to rank the attributes. In our problem, the five
best attributes are (17, 3, 10, 19, 2).

We computed also the optimal linear classifier for
our problem. We obtained in this case a “projection”
matrix L, from IR21 to IR3. In order to use it to rank
the attributes, we can apply a technique very close
to the general one presented in subsection 2.2. In
fact, the relative importance of attribute j for class k

is given by the ratio of the j-th coordinate of the k

line of L to the norm of this line (if we consider that
F (x) = Lx is the linear classification function, we
have obviously ∂F

∂x
(x) = L and we obtain exactly the

criterion matrix of subsection 2.2 with the simple ra-
tio computed here). Therefore, the total importance
of attribute j is the sum of this ratio for k ranging
from 1 to c, the number of classes. In our problem,
the five best attributes are (17, 19, 3, 10, 18).

It is important to notice that the linear optimal
classifier has a performance rate of 58.37 % (on the

learning set), which is really bad compared to the
MLP.

3.2.3 Statistical Method

We have also used Battiti’s algorithm, as described
in [1]. This method combines two measures: the mu-
tual information between a feature and class infor-
mation, MI(f, C), and the mutual information be-
tween a feature and the already selected features,
MI(f1, f2, . . . , fp, f). The algorithm chooses the
most important feature f1 (highest mutual informa-
tion between it and class information). Then, it
chooses the second feature as the one which maxi-
mizes MI(f, C) − λMI(f1, f), etc. The parameter λ

has to be heuristically chosen. Battiti says that values
ranging from 0.5 to 1.0 give good results.

In order to have a fair comparison with our method,
which does not tale into account redundancy, we have
chosen two value for λ: 0 (no redundancy informa-
tion) and 0.5. These choices give the following at-
tribute sets:

λ Attribute set
0 (17, 21, 19, 18, 20)

0.5 (17, 21, 15, 5, 13)

The first set is called Battiti 1 and the second one is
Battiti 2.

3.2.4 Comparison

In order to compare the different methods (and in
fact the selected attribute sets), we have trained a
5-16-3 MLP on the thyroid1 sets. 10 different ran-
domly chosen starting weight sets were used for the
MLP. The performance for one starting point is the
classification rate on the test set for the best MLP
obtained after 500 iterations of PRCG (the MLP is
selected with the help of its mean square error on the
validation set). The following table shows the mean
performance for the 10 starting weight sets and both
attribute sets (in the table, the neural method pro-
posed in [13] is called the Priddy method):



attribute set mean classification rate
Neural based 98.23 %
Battiti 2 96.49 %
Linear based 95.06 %
DA based 94.39 %
Priddy method 93.86 %
Battiti 1 93.77 %

attribute set standard deviation
Neural based 0.7563
Battiti 2 1.65
Linear based 2.135
DA based 1.278
Priddy method 1.887
Battiti 1 1.92

This table shows that our neural network based selec-
tion allows better performances than all other meth-
ods. Therefore, our method can overcome some limi-
tations implied by the linear ones. Moreover, the use
of boundary examples overcomes limitations of the
method proposed in [13]. Our method can also over-
come the mutual information based method proposed
in [1].

4 Conclusion

In this paper we have introduced a new method that
allows to suppress data attributes in a classification
task. The goal of this suppression is to reduce the pre-
processing and classification times. It is based on an
analysis of the calculation performed by a paramet-
ric classifier such as a multi-layer perceptron. With
the help of previous results, we have shown that this
method was easy to use for arbitrary feed-forward
neural networks and that it does not slow down sig-
nificantly their training process. Experiments con-
ducted on synthetic and real data show that this
method is efficient and can therefore be used for real
world applications.
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