
Second Differentials in Arbitrary Feed-Forward Neural Networks∗

Fabrice ROSSI†

THOMSON-CSF/AIRSYS
7-9, rue des Mathurins

92221 BAGNEUX, FRANCE
e-mail : rossi@ceremade.dauphine.fr

Abstract

We extend here a general mathematical model for feed-forward neural networks. Such a network is repre-
sented as a vectorial function f of two variables, x (the input of the network) and w (the weight vector). We
have already shown that the differential of f can be computed with an extended back-propagation algorithm as
well as with a direct method. In this paper, we show that the second differentials of f can also be computed
with several different algorithms. Evaluating the theoretical complexities of these methods allow to choose the
fastest algorithm for a particular architecture. This will allow us to handle arbitrary feed-forward neural network
learning with the help of recent training and analysis techniques based on the Hessian matrix of the error.

1 Introduction

Léon Bottou and Patrick Gallinari have proposed in [2] a general framework for the cooperation of neural modules.
In a former paper [6] we have extended this model in order to derive a general feed-forward neural network model
that easily adapts to neural network simulation software design [4]. The key idea of this model is to generalize the
notion of neuron and to allow an arbitrary feed-forward connection graph. The main limitation of the classic MLP
and of all its derivatives is the strong relationship between the communication structure (the graph) that allows
neurons to talk to each other and the controlling structure (the weights) that allows a training algorithm to modify
the local computation performed by a neuron. Our generalization breaks this link: we use an arbitrary non cyclic
graph for the communication structure and a control vector for each neuron. This weight vector does not control
communications as a connection weight: the relationship between the input of the neuron, its control vector and
its output is only modeled by a vectorial function which can be of any type. Moreover, the output of a neuron is
a vectorial value: this allows to handle for instance a layer of MLP neurons as a complex neuron ans includes the
traditionnal case of single output neurons. This model is mathematically described in section 2. The main problem
with such a model is of course to train it. Gradient based optimization algorithms are directly usable for such
a training, as the gradient of the error made by a given network can be computed with two algorithms (a direct
algorithm and an extended back-propagation). These results demonstrated in [5, 6] are recalled in 3.

Computing the Hessian matrix of the error made by a neural network is very useful for practical purpose such
as post training analysis or second order training (see [3] for a review of such methods). In this paper, we show
that, unlike what was stated in [1], it is always possible to compute exactly the second differential of the output of
any neuron of the network. We also extend the results about second derivatives presented in [3]: the authors use
a model close to Bottou and Gallinari’s model and do not study the complexity of the computation.

Due to space limitation, the proofs are omitted in this paper. All the necessary details can be found in technical
reports ([5, 7]).

∗This work was performed on Mrs Kim K. PHAM’s responsibility, at THOMSON-CSF/AIRSYS.
Published in ICNN 96.
Available at http://apiacoa.org/publications/1996/icnn96.pdf

†Up to date contact informations for Fabrice Rossi are avaible at http://apiacoa.org/

http://apiacoa.org/publications/1996/icnn96.pdf
http://apiacoa.org/

2 The general model

2.1 The neuron

In our model, a neuron is a vectorial function of several variables:

Definition 1 Let n be a positive integer and let I1, . . . , In, W and O be n + 2 vectorial spaces on IR of finite
dimensions. A n-input neuron is a C2 function from I1 × I2 × . . . × In × W to O.

If N is such a neuron, we write dNw = ∂N
∂w

its partial differential with respect to its (n + 1)-th variable and

dNik
= ∂N

∂ok its partial differential with respect to its k-th variable. Ni is the i-th coordinate of the output of the

neuron. ∂Ni

∂wj
is the (i, j) term of the Jacobian matrix ∂N

∂w
(a similar notation is available for ∂N

∂ok). ∂2Ni

∂o
j

t
∂wu

is the

differential with respect to the u-th coordinate of N (n + 1)-th variable of the differential of Ni with respect to the

t-th coordinate of its j-th variable (∂2Ni

∂o
j

t
∂om

u

and ∂2Ni

∂wt∂wu
have similar definitions).

In this definition, W , Ik and O are respectively the weight space of the neuron, its k-th input space and its output
space.

2.2 The neural net

The structure of our generalized neural network is based on a graph and in order to simplify the rest of the paper
we introduce here some notations: G = (N , E) is a graph with exactly n nodes (N is its node set and E its edge set);
N1, . . . , Nn is the sequence of the graph nodes; P (Nk) = P (k) is the set of the predecessors of Nk; S(Nk) = S(k)
is the set of the successors of Nk. We assume that node Nk has exactly pk predecessors and sk successors, and
that we call P (k)1, . . . , P (k)pk the sequence of the predecessors of Nk. In general, superscripts correspond to node
numbers and subscripts correspond to input or output numbers. Furthermore, we will not make any distinction
between a node Nk and its rank k.

We also need to generalize the notion of predecessor: for an arbitrary node N , we define P 0(N) as {N} and
recursively P k(N) as {M ∈ N | ∃Q ∈ P k−1(N) so that (M, Q) ∈ E}. We have therefore P 1(N) = P (N). We call
also P+(N) the set ∪∞

k=1P
k(N) and P ∗(N) = P 0(N) ∪ P+(N). Similar sets can be defined in order to generalize

the notion of successor.
We can now define a neural network:

Definition 2 A feed-forward neural network is a non cyclic graph G = (N , E) which fulfills the following
conditions:

1. The elements of N are neurons. The output space of N k is Ok and its weight space is W k.

2. If pk > 0 then neuron Nk is a pk-input neuron. The input spaces of Nk are Ik
1 , . . . , Ik

pk .

3. If pk = 0 then neuron Nk is a 1-input neuron with input space Ik.

4. If pk > 0 then for each input i of the neuron Nk the following condition holds: dim Ik
i = dim OP (k)i .

Let us now introduce some additional definitions related to the neural network.
In = {N ∈ N | P (N) = ∅} = {In1, . . . , Inin} is the subset of N which elements have no predecessor . An

element of In is an input node. As we make no distinction between a node and its rank, we can call for instance
OInk the output space of the node N j = Ink, which is in fact Oj .

Out = {N ∈ N | S(N) = ∅} = {Out1, . . . , Outout} is the subset of N which elements have no successor . An
element of Out is an output node.

The neural network has for input space I =
∏in

k=1 IInk , for output space O =
∏out

k=1 OOutk and for weight space
W =

∏n

k=1 W k.

2.3 Computing the output

We define the output of the network like this:

Definition 3 Let G be a feed-forward neural network. Let x = (x1, . . . , xin) ∈ I be an input vector and let
w = (w1, . . . , wn) ∈ W be a weight vector. For each l, 1 ≤ l ≤ n, ol(x, w), the output of the neuron N l, and
El(x, w), the generalized input of N l, are computed with the help of the following recursive construction:

• ol(x, w) = N l(El(x, w), wl)

• If N l ∈ In, we have N l = Ink. Then El(x, w) = xk.

• If N l 6∈ In : El(x, w) =
(

oP (l)1(x, w), . . . , oP (l)
pl (x, w)

)

.

Then the output of the network is G(x, w) =
(

oOut1(x, w), . . . , oOutout (x, w)
)

.

Of course this definition is correct only because the underlying graph is non cyclic.

2.4 Computing the differential

2.4.1 Direct method

As a composed function, G is C2 (since the N i are C2). The first method to compute its differential is to use the
standard derivation rule of composed functions. This is the direct method. The general formula is:

∂ol

∂wj
(x, w) =

pl

∑

k=1

dN l
ik

(

El(x, w)
) ∂oP (l)k

∂wj
(x, w) (1)

2.4.2 Back-propagation

The key idea of the back-propagation algorithm is to consider ol(x, w), the output of neuron N l, as a function of
oj(x, w), the output of another neuron N j . We define in fact ol→j(x, w, f j) which is the output of node N l when
oj is “free” from the network constraints and can take arbitrary values (represented by f j). We have of course
ol→j(x, w, oj(x, w)) = ol(x, w) and the following equation:

∂ol

∂wj
(x, w) =

∂ol→j

∂oj

(

x, w, oj(x, w)
)

dN j
w

(

Ej(x, w)
)

(2)

The back-propagation algorithm provides us with a recursive method to compute ∂ol→j

∂oj (This differential can also
be computed with a direct method using an equation close to equation 1). We first need an additional definition:

Definition 4 Let G be a graph and let Nk and N l be two nodes of G. r(k, l) is the rank of Nk in the predecessor
set of N l, i.e., Nk is the r(k, l)-th predecessor of N l.

Then, we have the following general formula:

∂ol→j

∂oj

(

x, w, oj(x, w)
)

=
∑

Nk∈S(j)

∂ol→k

∂ok

(

x, w, ok(x, w)
)

dNk
ir(j,k)

(Ik(x, w)) (3)

In order to simplify the rest of the paper, we will use the following slightly incorrect notation: ∂ol

∂oj (x, w) =
∂ol→j

∂oj

(

x, w, oj(x, w)
)

2.4.3 Error function

Computing the first differential of the error made by G with respect to some given pattern can also be done
with the direct method or with the back-propagation. We assume that E , the error function, is a function from
OOut1 × . . . × OOutout (the output space of the network) to IR. ∂E

∂ok is the partial differential of E with respect to

the output of OOutk . Moreover, E→l is the error of the network as a function of the output of node N l.
• the direct method gives:

∂E

∂wj
(x, w) =

out
∑

k=1

∂E

∂ok
(x, w)

∂oOutk

∂wj
(x, w) (4)

• the back-propagation method gives:

∂E→j

∂oj

(

x, w, oj(x, w)
)

=
∑

Nk∈S(j)

∂E→k

∂ok

(

x, w, ok(x, w)
) ∂Nk

∂or(j,k)
(Ik(x, w)) (5)

An equation similar to equation 2 allows to compute ∂E
∂wl with the help of ∂E→l

∂ol .

3 The second differentials

Computing the Hessian matrix of the error made by a neural network is a quite difficult task because the simplest
approach (i.e., applying the chain rule) gives time consuming methods and we must therefore study extended
differentiation methods which give better results but are more difficult to study. In this section, we summarize our
general results.

3.1 The direct method

This method is a simple application of the chain rule and gives for the general case (i.e., when m 6= l and j 6= l):

∂2ol
i

∂w
j
t ∂wm

u

=

pl

∑

k=1

nP (l)k
∑

q=1





∂o
P (l)k
q

∂w
j
t

(x, w)

pl

∑

r=1

∂2N l
i

∂ok
q∂or

∂oP (l)r

∂wm
u

+
∂N l

i

∂ok
q

∂2o
P (l)k
q

∂w
j
t ∂wm

u



 (6)

If j = l and m 6= l, we have:

∂2ol
i

∂wl
t∂wm

u

=

pl

∑

r=1

∂2N l
i

∂wl
t∂or

∂oP (l)r

∂wm
u

(7)

When j = l = m,
∂2ol

i

∂wl
t
∂wl

u

is simply a local Hessian matrix.

Similar formulae are fulfilled for ∂2E

∂w
j

t
∂wm

u

. The key point for these formulae is that in order to compute the

Hessian of ol
i, we need the Hessian of ok

s for all k ∈ P (l) (and for all s). Recursively this implies that in order to
compute the Hessian matrix of the error, we need the Hessian matrix for the output functions of every node of the
network.

3.2 The mixed method

Another method for computing the second differentials is to differentiate the back-propagation formulae (i.e.,
equations 2 and 3). We obtain the following results (similar formulae are fulfilled for E):
• For the local equation:

when m 6= j,
∂2ol

i

∂w
j
t ∂wm

u

=
nj

∑

q=1





∂ol
i

∂o
j
q

pj

∑

r=1

∂2N j
q

∂w
j
t ∂or

∂oP (j)r

∂wm
u

+
∂2ol

i

∂o
j
q∂wm

u

∂N j
q

∂w
j
t



 (8)

when m = j,
∂2ol

i

∂w
j
t ∂w

j
u

=

nj

∑

q=1

(

∂2ol
i

∂o
j
t∂w

j
u

∂N j
q

∂w
j
t

+
∂ol

i

∂o
j
q

∂2N j
q

∂w
j
t ∂w

j
u

)

(9)

• When Nm 6∈ S(j), we have a recursive equation, when j 6= l:

∂2ol
i

∂o
j
t∂wm

u

=
∑

Nk∈S(j)

nk

∑

q=1





∂ol
i

∂ok
q

pk

∑

r=1

∂2Nk
q

∂o
r(j,k)
t ∂or

∂oP (k)r

∂wm
u

+
∂2ol

i

∂ok
q∂wm

u

∂Nk
q

∂o
r(j,k)
t



 , (10)

and when j = l:
∂2ol

i

∂ol
t∂wm

u

= 0 (11)

• When Nm ∈ S(j), the recursive equation is:

∂2ol
i

∂o
j
t∂wm

u

=
∑

Nk∈S(j),k 6=m

nk

∑

q=1





∂ol
i

∂ok
q

pk

∑

r=1

∂2Nk
q

∂o
r(j,k)
t ∂or

∂oP (k)r

∂wm
u

+
∂2ol

i

∂ok
q∂wm

u

∂Nk
q

∂o
r(j,k)
t





+

nm

∑

q=1

(

∂2ol
i

∂om
q ∂wm

u

∂Nk
q

∂o
r(j,m)
t

+
∂ol

∂om
q

∂2Nm
q

∂o
r(j,m)
t ∂wm

u

)

(12)

This method is very similar to the back-propagation method: in order to compute
∂2ol

i

∂w
j

t
∂wm

u

, we need
∂2ol

i

∂o
j
s∂w

j
u

(for all

s) and in order to obtain
∂2ol

i

∂o
j
s∂w

j
u

, the recursive method needs
∂2ol

i

∂ok
q ∂wm

u
, for each Nk ∈ S(j) and therefore recursively

for each Nk ∈ S+(j). The efficiency of the method comes from the fact that
∂2ol

i

∂ok
q ∂wm

u
can also be used to compute

∂2ol
i

∂wk
q ∂wm

u
which is needed in order to obtain the complete Hessian matrix.

The main problem of this method is that it is not symmetric: when a differentiation order is chosen for (N j , Nm),
we must keep it for all (Nk, Nm), where Nk ∈ S+(N j). See [7] for a complete discussion on the drawbacks of this
method.

3.3 The back-propagation method

The key idea of the back-propagation method is to compute
∂2ol

i

∂o
j

t
∂w

j
u

with a method close to the first order back-

propagation. We define first a “free” first order differential
(

∂ol

∂oj

)→m

, a function from I ×W ×Om to L(Oj , Ol) (the

matricial space of linear functions from Oj to Ol):

• if N j = N l:
(

∂ol

∂oj

)→m

(x, w, fm) = IdOj .

• if N j 6∈ P ∗(l):
(

∂ol

∂oj

)→m

(x, w, fm) = 0Oj ,Ol

• if N j ∈ P+(l):

(

∂ol

∂oj

)→m

(x, w, fm) =
∑

Nk∈S(j)

(

∂ol

∂ok

)→m

(x, w, fm)
∂Nk

∂or(j,k)

(

oP (k)1→m(x, w, fm), . . . , wk
)

(13)

Then we have the following powerful result if Nm 6∈ S+(j) [7]:

∂2ol
i

∂o
j
t∂wm

(x, w) =
∂

∂om

(

∂ol
i

∂o
j
t

)→m

(x, w, om(x, w))
∂Nm

∂w
(Em(x, w), wm) (14)

Therefore in order to obtain
∂2ol

i

∂o
j

t
∂wm

, we just need to compute ∂
∂om

(

∂ol
i

∂o
j

t

)→m

(x, w, om(x, w)).

• if N j ∈ P+(l):

∂

∂om
v

(

∂ol
i

∂o
j
t

)→m

=
∑

Nk∈S(j)

nk

∑

q=1





∂ol
i

∂ok
q

pk

∑

r=1

∂2Nk
q

∂o
r(j,k)
t ∂or

∂or

∂om
v

+
∂

∂om
v

(

∂ol
i

∂ok
q

)→m
∂Nk

q

∂o
r(j,k)
t



 (15)

• if N j 6∈ P+(l):

∂

∂om
v

(

∂ol
i

∂o
j
t

)→m

= 0Om,IR (16)

The main advantage of this method is its symmetry:

As explained in the previous section, when we choose to compute
∂2ol

i

∂w
j

t
∂wm

u

, we need ∂
∂om

u

(

∂ol
i

∂ok
s

)→m

for all Nk ∈

S∗(j). For efficiency reasons, this means that we will compute
∂2ol

i

∂wk
s ∂wm

u
with this differentiation order. But as

the calculation formulae are not symmetric, this might be longer than using the alternate order. Both orders are
available for the pair (Nk, Nm) only if Nm 6∈ S+(Nk) and N j 6∈ S+(Nm). A quite complex proof leads to the
following fundamental property (demonstrated in [7]):
Property If Nm 6∈ S+(Nk) and Nk 6∈ S+(Nm):

∂

∂om
u

(

∂ol
i

∂ok
s

)→m

(x, w, om(x, w)) =
∂

∂ok
s

(

∂ol
i

∂om
u

)→k

(x, w, ok(x, w)) (17)

Therefore, each time the differentiation order can be chosen, the results are equivalent and therefore, choosing the
order wj before wm does not imply anything for the successors of N j (see [7] for details). This result is really

important and does not appear if we use an inaccurate notation such as
∂2ol

i

∂ok
s∂om

u
(used in [3]). The simple meaning

of this notation is in fact
∂2o

l→k,m

i

∂ok
s∂om

u
where the output of ol depends on the “free”outputs of ok and ol. But in general,

∂2o
l→k,m

i

∂ok
s∂om

u
6= ∂

∂om
u

(

∂ol
i

∂ok
s

)→m

.

In summary, the back-propagation method applies three formulae: equation 8 (or 9) which connects
∂2ol

i

∂w
j

t
∂wm

to

∂2ol
i

∂o
j

t
∂wm

; equation 14 in order to obtain
∂2ol

i

∂o
j

t
∂wm

from ∂
∂om

v

(

∂ol
i

∂o
j

t

)→m

and equation 15 (or 16) in order to recursively

compute ∂
∂om

v

(

∂ol
i

∂ok
s

)→m

for all Nk ∈ S∗(j).

The case of the Hessian matrix of the error is almost the same. The main difference is for the particular cases
which use other formulae (see [7]).

3.4 Complexity

The theoretical complexity of the second differential calculation is fully studied in [7]. We give here a simple
summary.

3.4.1 The pure second order part

This part of the complexity takes only into account the calculation needed to compute the Hessian matrix assuming
that every needed local first and second differentials, and every non-local first differentials have been already
computed.

The obtained complexity formulae are really complex and in fact they are not directly comparable. On one
hand, for the simple case of a multi-layer perceptron (MLP), the back-propagation method is the best algorithm.
On the other hand, for very particular architectures, the direct method can be better than the back-propagation.

In fact, the problem is close to the first order differential problem explained in [6]. The theoretical complexity
must be computed for the used architecture in order to decide which algorithm to use.

3.4.2 The first order part

We can provethat in order to compute the Hessian matrix of the error, we need the first order differential ∂ol

∂ok for
all node pairs in the network [7]. Once again, we can compute the theoretical time needed to compute these values
with the first order direct method or with the first order back-propagation method [5, 7]. For a classic MLP with
a decreasing number of neurons (i.e. the number of neurons in layer k is less or equal to the number of neurons
in layer k − 1 for k > 1), the direct method is faster than the back-propagation and in spite of what is proposed
in [3], the fastest way to compute the gradient of the error (as long as we want to compute simultaneously the

Hessian) is the direct method. For less common networks (such as compression networks) with a bottleneck, the
back-propagation algorithm might be faster.

4 Conclusion

In this paper, we have extended results presented in [6]. We have described a general mathematical model for
feed-forward neural networks in which first and second differentials can be efficiently computed. This model is
used at present as the theoretical basis of a general neural networks simulator software [4]. The results presented
here allow to use for very complex and uncommon neural structures recent training and analysis techniques based
on the Hessian matrix of the error. More precise results available in [7] can be use in order to choose the fastest
Hessian evaluation algorithm for a given architecture.

References

[1] Léon Bottou. Une Approche théorique de l’Apprentissage Connexioniste ; Applications à la reconnaissance de
la Parole. Thèse de doctorat, Université d’Orsay, 1991.

[2] Léon Bottou and Patrick Gallinari. A Framework for the Cooperation of Learning Algorithms. In R.P. Lipp-
mann, J.E. Moody, and D.S. Touretzky, editors, Neural Information Processing Systems, volume 3, pages
781–788. Morgan Kauffman, 1991.

[3] Wray L. Buntine and Andreas S. Weigend. Computing Second Derivatives in Feed-Forward Networks : A
Review. IEEE Trans. on Neural Networks, 5(3):480–488, May 1994.

[4] Cédric Gégout, Bernard Girau, and Fabrice Rossi. NSK, an Object-Oriented Simulator Kernel for Arbitrary
Feedforward Neural Networks. In Int. Conf. on Tools with Artificial Intelligence, pages 93–104, New Or-
leans (Louisiana), November 1994. IEEE.

[5] Cédric Gégout, Bernard Girau, and Fabrice Rossi. A General Feed-Forward Neural Network Model. Tech-
nical report NC-TR-95-041, NeuroCOLT, Royal Holloway, University of London, May 1995. Available at
http://apiacoa.org/publications/1995/neurocolt1995.pdf.

[6] Cédric Gégout, Bernard Girau, and Fabrice Rossi. Generic Back-Propagation in Arbitrary Feedforward Neural
Networks. In D. W. Pearson, N. C. Steele, and R. F. Albrecht, editors, Int. Conf. on Artificial Neural Nets and
Genetic Algorithms, pages 168–171, Alès, April 1995. Springer Verlag.

[7] Fabrice Rossi. Second Differentials in Arbitrary Feed-Forward Neural Networks. Technical re-
port THOMSON-CSF/AIRSYS/RDTE-594/96, THOMSON-CSF/AIRSYS, September 1996. Available at
http://apiacoa.org/publications/1996/thomson1996second.pdf.

	Introduction
	The general model
	The neuron
	The neural net
	Computing the output
	Computing the differential
	Direct method
	Back-propagation
	Error function

	The second differentials
	The direct method
	The mixed method
	The back-propagation method
	Complexity
	The pure second order part
	The first order part

	Conclusion

