
Geometrical Selection of Important Inputs with Feedforward Neural

Network0

Fabrice ROSSI1

THOMSON-CSF/AIRSYS/RD/RDTE
7-9, rue des Mathurins

92221 BAGNEUX, FRANCE

Université Paris-IX Dauphine
UFR MD

Place du Maréchal de Lattre de Tassigny
75016 PARIS, FRANCE

e-mail: rossi@ceremade.dauphine.fr

Abstract

In this paper, we introduce a method that allows
to evaluate efficiently the “importance” of each co-
ordinate of the input vector of a neural network.
This measurement can be used to obtain informa-
tions about the studied data. It can also be used
to suppress irrelevant inputs in order to speed up the
classification process conducted by the network.

1 Introduction

Variable selection is one of the key issues of classi-
fication tasks (and more generally of model estima-
tion). In order to solve a classification problem, we
start in general with a lot of measures coming from
the real world. If these measurements are well chosen
and if the problem is simple enough, we can reason-
ably assume that a classifier could be designed from
the data. Unfortunately, it will in general perform its
classification as a black-box, without giving any infor-
mation about the underlying task. One of the direct
application of variable selection is to suppress the use-
less input variables of the classifier: this suppression
helps to understand the classification and give im-
portant informations about the task itself. Moreover,
the suppression allows to simplify the classifier itself
and therefore to speed up the classification process.
It is also very important to notice that variable sup-
pression speeds up the acquisition process (i.e., the
measurement of the real world in order to produce
the input variables).

A huge work has been done by statisticians in order
to study variable selection when the regression tool is

0This work was performed on Mrs Kim K. PHAM’s respon-
sibility, at THOMSON-CSF/AIRSYS.
Published in ICANNGA’97 Proceedings.
Available at
http://apiacoa.org/publications/1997/icannaga97.pdf

1Up to date contact informations for Fabrice Rossi are
avaible at http://apiacoa.org/

linear (e.g., [6]). The purpose of this article is not to
review these methods but to work on problems that
cannot be correctly solved with linear tools. When
the classifier is non linear, the problem is more com-
plex and several neural based method have been pro-
posed to solve it (e.g., [2, 8, 9]). In this paper, we pro-
pose an extension of a previously introduced method
[9] and compare it with other neural approaches and
with a statistical method which was proposed in the
neural network community [1].

The remainder of this paper is organized as follows.
Section 2 introduces the mathematical aspect of our
variable selection method and compares it to existing
methods. Section 3 gives some experimental results
on artificial and real-world data.

2 Geometrical Variable Selec-

tion (GVS)

2.1 The proposed method

The method presented in this section allows to choose
which attributes to suppress in an efficient and re-
liable way. The key idea is to analyze an already
trained classifier in order to measure how much its
calculation depends on each attribute: the evalua-
tion is global. Moreover, the method can be applied
to non linear classifiers and therefore solve the linear-
ity limitation of traditional methods.

Let F (x, w) be a parametric classifying func-
tion (also called a non-linear regression model, e.g.
a MLP): x is an input vector, w is a weight vec-
tor that allows to modify the computation performed
by F (e.g. the connection weights in a MLP) and
F (x, w) is the output of the function which be-
longs to [0, 1]c, where c is the number of classes
of the problem. Let Ck be the studied k-th class
and let χCk

(x) be the membership function corre-
sponding to Ck, i.e. χCk

(x) = 1 ⇔ x ∈ Ck.
Let C(x) be the perfect classifying function, i.e.

Page 1

http://apiacoa.org/publications/1997/icannaga97.pdf
http://apiacoa.org/

C(x) = (χC1
(x), χC2

(x), . . . , χCc
(x)). The goal of

the learning phase is to find w such that F (x, w) '
C(x). In general w is chosen in order to mini-
mize some distance criterion between F (x, w) and
C(x) (for instance, the total quadratic error, E(w) =
∑

x∈T ‖F (x, w) − C(x)‖2, where T is the training
set of the classification task). In fact, minimizing
this quadratic distance is equivalent to minimizing
a quadratic probabilistic distance between F (x, w)k

(the k-th output of F) and P (Ck | x), the a posteri-

ori probability of class Ck, given x (see [10]).

Let us assume that we can compute the differen-
tial of F with respect to its first variable (i.e., the
input vector), called ∂F

∂x
(x, w). The optimal Bayes

decision rule [3], if Fk is a good approximation of
P (Ck | x), is to assume that x belongs to class j if
Fj(x, w) is strictly greater than Fi(x, w) for all i 6= j.
The boundary between Ck and Cl is the set of point
x ∈ ∂Ck,l such that Fk(x, w) = Fl(x, w) and for all
i 6= k and i 6= l, Fi(x, w) < Fl(x, w). Therefore,
the boundary is locally described by the equation
Fk(x, w) = Fl(x, w). Then, the unitary normal to
the boundary at point x is nk,l(x), given by:

nk,l(x) =
∂Fk(x,w)

∂x
− ∂Fl(x,w)

∂x
∥

∥

∥

∂Fk(x,w)
∂x

− ∂Fl(x,w)
∂x

∥

∥

∥

(1)

A low value for
∣

∣

∣
n

k,l
i (x)

∣

∣

∣
(the i-th coordinate of the

normal unitary vector) shows that the boundary nor-
mal is perpendicular to the i-th coordinate axis and
therefore that the local separation hyperplane (which
approximate the boundary) contains this axis: the i-
th coordinate of the input vector is locally useless2

for separating elements from Ck from elements of Cl.

Therefore,
∣

∣

∣

n
k,l
i (x)

∣

∣

∣

is a good measure of the local

importance of the i-th coordinate axis.

The remaining problem is to combine the
∣

∣

∣
n

k,l
i (x)

∣

∣

∣

when x belongs to ∂Ck,l in order to obtain a global
understanding of the relative importance of the differ-
ent coordinate axis. On a theoretical point of view, it
will be interesting to compute the mean normal vec-
tor of boundary between Ck and other classes. But
Ck may contain several separated clusters for which
the boundaries are parallel but with opposite normal
vectors: therefore, computing the integral of nk,l on
∂Ck,l is not really meaningful.

In order to obtain a simple criterion, we define the

2In fact, this is true only if the tangent hyperplane does not
run through the boundary, a case which is quite unlikely to
happen.

following matrix:

Sk,i =
∑

l6=k

∫

∂Ck,l

∣

∣

∣
n

k,l
i (x)

∣

∣

∣
dσx, (2)

The main problem is now to obtain points belonging
to ∂Ck,l. As this boundary has at most a dimension
of n − 1 (if n is the dimension of the input space of
the classifier, i.e., the number of variables), we cannot
obtain points in ∂Ck,l with a random selection. In
order to find a point belonging to ∂Ck,l, with start
by randomly choosing two points (in the training or
validation set), x1 and x2 such that x1is classified by
F in Ck and x2 is classified in Cl. Then, we study
the function

g(λ) = (3)

Fk (λx1 + (1 − λ)x2) − Fl (λx1 + (1 − λ)x2)

The definition of g and assumptions on x1 and x2

implies that g(0) < 0 and g(1) > 0. Moreover, as
F is assume to be differentiable with respect to x,
g is obviously continuous. Therefore, for a specific
λ ∈]0, 1[(which can be easily found with simple zero
finding algorithms [7] such as dichotomy), we have
g(λ) = 0. Of course, there is not guaranty that the
corresponding x = λx1 + (1 − λ)x2 belongs to ∂Ck,l

(because we can have for a specific j, Fj(x) > Fk(x))
but this is quite likely to happen. This method can be
used to build a first description of ∂Ck,l. Of course,
this description is far from being perfect, but it is easy
to test if the obtained points really belongs to the
boundary and therefore, we will end up with ∂C̃k,l, a
finite subset of ∂Ck,l.

The obtained value Sk,i is therefore the global score
associated to the i-th coordinate axis as a classifying
axis for class Ck. Finally, we can define a mean score,
the vector S as:

Si =
1

c

c
∑

k=1

Sk,i (4)

Si is the mean global score associated to the i-th co-
ordinate axis as a classifying axis.

Each coordinate axis of the input space is associ-
ated to a variable. Therefore, a high axis score is
equivalent to an important variable: in order to sup-
press variables, we just have to discard the one with
the lowest score.

2.2 Links with previous works

The method explained in the previous section is
closely related to an algorithm introduced in [8]. In

Page 2

this article, the authors introduce an attribute rank-
ing method based on first order differentials. There
are two important differences between the method
presented here and their algorithm:

• Priddy and al. combine the individual differen-

tial
∣

∣

∣

∂Fk

∂xi
(x, w)

∣

∣

∣

without normalization ;

• they take into account every examples (and even
additional points which are not examples) with-
out focusing on boundary examples.

In fact, the main justification of Priddy and al. is a
statistical one, whereas we are working on geometrical
arguments, which are in our opinion more suited to
the attribute suppression goal.

In a previous paper [9], we have introduced a first
version of the method presented in the previous sec-
tion. This paper shows that this method was more
efficient than the one introduced in [8]. The main dif-
ference between the old version and the improved one
is the use in the current method of an exact determi-
nation of boundary examples and an exact value for
the normal vector. The current method has therefore
stronger theoretical justification. On the real data
given in the following section, there is no important
differences between results obtained by the previous
method and the current one, but such differences were
observed for artificial problems (for which GVS per-
forms better).

2.3 Feed-forward neural network case

We have demonstrated in a previous paper [5, 4], that
an extended back-propagation algorithm can be de-
fined for arbitrary feed-forward neural networks (in-
cluding in the same framework MLP, RBF networks
and Wavelet Networks [11] for instance). This algo-
rithm allows to compute efficiently the differential of
F (x, w) with respect to its input x, ∂F

∂x
(x, w), if F is

the output of a neural network (with w as general-
ized weight vector). Therefore, our algorithm can be
applied to any feed-forward neural network.

3 Experiment on real data

Some experiments were conducted on real world data:
we have chosen to work with radar data. In this case,
we have 32 inputs corresponding to different physical
measurements. The goal is to decide whether a given
input vector represents a target or some clutter. We
have a big database, with around 40 000 points. This
database contains only 5 000 target points, there-
fore, we will characterize the performances with two

numbers: the average classification rate on the whole
test set and the mean of the recognition rate of
both classes. In order to applied a stopped train-
ing method, the database was split into three parts:
around 20 000 training examples, 10 000 validation
examples and 10 000 test examples.

The goal of our simulation is to keep as few variable
as possible.

We tried several different methods:

3.1 Neural methods

We trained a simple MLP with 32 inputs, 16 hidden
neurons and 2 output neurons (i.e., a 32-16-2 MLP).
After 200 iterations of Polak Ribiere Conjugate Gra-
dient [7] (PRCG), the best MLP (selected with the
help of the validation set) obtain 96.43 % as classi-
fication rate on the test set (and 89.93 % as mean
classification rate).

We applied on this best MLP two neural based
variable saliency computation methods: OCD [2] and
GVS proposed in this article. The saliencies obtained
by these algorithms allow to rank the different vari-
ables. The order for the 7 best variables is given in
the following table:

OCD 2 21 22 18 20 15 6

GVS 2 21 20 22 13 6 15

In fact, there is only one difference: OCD chooses
attribute 18, whereas GVS chooses 13.

3.2 Statistical Method

We have also used Battiti’s algorithm, as described
in [1]. This method combines two measures: the mu-
tual information between a feature and class infor-
mation, MI(f, C), and the mutual information be-
tween a feature and the already selected features,
MI(f1, f2, . . . , fp, f). The algorithm uses a param-
eter λ which measures the importance of the between
features mutual information. It has to be heuristi-
cally chosen. Battiti says that values ranging from
0.5 to 1.0 give good results. We have chosen to com-
pare three values: 0.5, 0.75 and 1.0. These choices
give the following attribute orders:

λ =0.5 2 22 21 15 14 20 18

λ =0.75 2 32 19 26 6 8 29

λ =1.0 2 32 19 26 6 8 19

The first set (λ = 0.5) is called B1 and the second
one (valid for λ = 0.75 and λ = 1) is called B2.

Page 3

3.2.1 Comparison

In order to compare the different methods (and in
fact the selected attribute sets), we have trained a
7-16-2 MLP on the data. For neural based methods,
we have pruned in the best MLP the useless inputs
and we have retrained the obtained MLP from this
starting point. For Battiti’s method, we have chosen
randomly a starting point for a 7-16-2 MLP. In or-
der to allow a fair comparison, we have increased the
learning time for this MLP (400 iterations instead of
200). The performance for one starting point is the
classification rate on the test set for the best MLP
obtained after the training (the MLP is selected with
the help of its mean square error on the validation
set). The following table shows the performances:

attribute set rate mean rate
GVS 95.81% 87.64%
OCD 95.42 % 87.79%
B1 94.00% 81.70%
B2 93.41% 80.98%

This table shows that our neural network based se-
lection obtains good performances. It overcomes lim-
itations of the mutual information based method [1]
which does not select attributes needed to maintain a
satisfactory recognition rate of the target examples.
Our method obtains results very similar to OCD [2].
The main advantage of our method is that it can be
applied to any neural network, even one for which a
zero weight does not mean that this weight can be
suppressed (for instance RBF networks). Moreover,
OCD is quite difficult to use because it cannot be ap-
plied if the network is not at a minimum of the error
function. This is not the case of GVS.

4 Conclusion

In this paper we have introduced a new method that
allows to suppress data attributes in a classification
task. The goal of this suppression is to reduce the
preprocessing and classification times. It is based
on an analysis of the calculation performed by a
parametric classifier such as a multi-layer perceptron.
With the help of previous results, we have shown
that this method was easy to use for arbitrary feed-
forward neural networks. An Experiment conducted
on real data show that this method is efficient and can
therefore be used for real world applications. Addi-
tional work is needed to prove the consistency of this
method and to demonstrate its performances on other
real world data.

References

[1] Roberto Battiti. Using Mutual Information
for Selecting Features in Supervised Neural Net
Learning. IEEE Trans. On Neural Networks,
5(4):537–550, July 1994.

[2] Tautvydas Cibas, Françoise Fogelman Soulié,
Patrick Gallinari, and Sarunas Raudys. Variable
selection with neural networks. Neurocomputing,
8(12):223–248, 1996.

[3] R. O. Duda and P. E. Hart. Pattern Classifi-

cation and Scene Analysis. Wiley, New York,
1973.

[4] Cédric Gégout, Bernard Girau, and Fab-
rice Rossi. A General Feed-Forward Neu-
ral Network Model. Technical report NC-
TR-95-041, NeuroCOLT, Royal Holloway, Uni-
versity of London, May 1995. Available
at http://apiacoa.org/publications/1995/

neurocolt1995.pdf.

[5] Cédric Gégout, Bernard Girau, and Fabrice
Rossi. Generic Back-Propagation in Arbitrary
Feedforward Neural Networks. In D. W. Pear-
son, N. C. Steele, and R. F. Albrecht, editors,
Int. Conf. on Artificial Neural Nets and Genetic

Algorithms, pages 168–171, Alès, April 1995.
Springer Verlag.

[6] A. J. Miller. Subset Selection in Regression.
Chapman and Hall, 1990.

[7] William H. Press, Saul A. Teukolsky, William T.
Vetterling, and Brian P. Flannery. Numerical

Recipes in C. Cambridge University Press, sec-
ond edition, 1992.

[8] Kevin L. Priddy, Steven K. Rogers, Dennis W.
Ruck, Gregory L. Tarr, and Matthew Kabrisky.
Bayesian selection of important features for feed-
forward neural networks. Neurocomputing, 5:91–
103, 1993.

[9] Fabrice Rossi. Attribute suppression with multi-
layer perceptron. In CESA Multiconference, vol-
ume Symposium on Robotics and Cybernetics,
pages 542–547, Lille-France, July 1996. IMACS.

[10] Halbert White. Learning in Artificial Neural
Networks: A Statistical Perspective. Neural

Computation, 1(4):425–464, 1989.

[11] Qinghua Zhang and Albert Benveniste. Wavelet
networks. IEEE Trans. On Neural Networks,
3(6):889–898, November 1992.

Page 4

	Introduction
	Geometrical Variable Selection (GVS)
	The proposed method
	Links with previous works
	Feed-forward neural network case

	Experiment on real data
	Neural methods
	Statistical Method
	Comparison

	Conclusion

