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Abstract. A new constrained model is discussed as a way of incorpo-
rating efficiently a priori expert knowledge into a clustering problem of
a given individual set.

The first innovation is the combination of fusion constraints, which re-
quest some individuals to belong to one cluster, with exclusion con-
straints, which separate some individuals in different clusters. This situa-
tion implies to check the existence of a solution (ie if no pair of individuals
are connected by fusion and exclusion constraints).

The second novelty is that the constraints are expressed in a symbolic
language that allows compact description of group of individuals accord-
ing to a given interpretation.

This paper studies the coherence of such constraints at individual and
symbolic levels. A mathematical framework, close to the Symbolic Data
Analysis[3], is built in order to define how a symbolic description space
may be interpreted on a given individual set. A partial order on symbolic
descriptions (which is an usual assumption of Artificial Intelligence), al-
lows a symbolic analysis of the constraints. Our results provide an indi-
vidual but also a symbolic clustering.

1 Introduction

In order to take into account prior expert knowledge, it is quite common to
implement constraints in classification algorithms [4]. The general goal of clas-
sification is to find a satisfying partition of the population (set of individuals).
Adding constraints allows to reduce the set of acceptable partitions. In this paper
we consider only fusion and exclusion constraints. A fusion constraint implies to
keep specified individuals into one cluster. For instance, we will not accept par-
titions in which individuals with a given property (e.g., small size) are classified
into separated clusters. An exclusion constraint is exactly the opposite: we ask
for specified individuals to remain in distinct clusters.
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It is possible to take into account fusion and exclusion constraints at the same
time, which introduces a coherency problem: some sets of fusion and exclusion
constraints cannot be satisfied together by any partition. For instance, if we ask
for x to belong to y’s cluster (fusion) and also for x to be in a different cluster than
y (exclusion), it is obvious that no partition can satisfy both constraints. The
coherency problem (solution existence) can be solved with a simple algorithm,
as shown in [2]. The proposed algorithm works on a population and checks if a
constraint set is coherent. When it is, the algorithm gives the smallest partition
which satisfies the constraints (a partition P is smaller than a partition Q when
each cluster of P is included in a cluster of Q). One of the drawbacks of this
algorithm is that it works directly at the individual level, which can be slow on
big populations because the global analysis is needed to compute the smallest
partition: it is not simple in general to work on subsets of the population and to
merge the results. Moreover, working at the population level gives results that
can be difficult to analyze.

In order to improve this algorithm, we propose to work at a symbolic level. We
will describe individual subsets thanks to a symbolic approach that allows short
representation of such subsets. For instance, a subset C of individuals might be
defined thanks to a conjunction of properties that all the individuals of C satisfy,
e.g., individuals whose weight belongs to a specified interval.

A mapping called ext (for extension) interprets each symbolic description on
the set of individuals. It allows to build the actual individual subset associated to
a description. Each constraint is defined as a pair of symbolic descriptions (d, d′).
The interpretation mapping translates each pair into a classical constraint on the
population, as follows:

1. if (d, d′) is a fusion constraint then, individuals which are described by d and
individuals which are described by d′ must belong to one cluster;

2. if (d, d′) is an exclusion constraint then, individuals which are described by d

and individuals which are described by d′ must belong to different clusters;

In this paper, we prove that under reasonable assumptions on the description
space, the coherency problem can be studied directly at the symbolic level. The
main advantage of this approach it to reduce the processing cost because each
description can cover a lot of individuals. Moreover, when the constraints are
coherent, the proposed algorithm gives a symbolic description of the smallest
partition. Another interesting point is that the interpretation mapping can be
changed without modifying the coherency result, as long as it stays in a broad
class of acceptable mappings.

The rest of the paper is organized as follows: we start by defining the proposed
mathematical framework. Then we present three important results. First we
provide a mixed approach that allows to study symbolic constraints in relation
to their interpretation on a given set of individuals. Then, we give our pure
symbolic coherency results.

Due to size constraints, proof are omitted and can be found in [6].



2 Mathematical framework

2.1 Description space and context definition

The considered constrained classification problem involves:

1. the description space (called D) corresponds to high level (symbolic) de-
scription of individuals (or groups of individuals);

2. the population (called Ω) is a set of individuals that can be described
thanks to the description space;

3. the interpretation mapping (called ext) is a map from D to P(Ω) (the
set of all subsets of Ω). It transforms a symbolic description into a set of
individuals that are correctly described by this description. For a description
a, ext(a) is called the extension of a.
The pair G = (Ω, ext) is called a context for D.

In general, the description space D is fixed, but the population or the interpreta-
tion mapping can change. For instance, if D uses very high level description such
as “tall”, the exact interpretation of “tall” might depend on the chosen semantic
(e.g., if “tall” is applied to human beings, it might describe men higher than
1m80 at current time, or men higher than 1m70 several centuries ago). If the
population is stored in a database the extension mapping can be considered as a
two step process: first we translate the symbolic description into a SQL SELECT
query and then we let the database compute the corresponding result which is
the extension of the description.

In general, it is possible to provide an order denoted ≤ for D (see for instance
[5] for examples of such symbolic orders). In our framework, we need such an
order to be able to provide pure symbolic analysis (see section 4). The only
technical assumption needed on the ordered set (D,≤) is that any totally ordered
subset of D must be bounded below.

The intuitive meaning of the symbolic order is linked to description precision.
More precisely, a ≤ b means that a is less general than b. In other words, a is
a particular case of b, for instance “blue” is less general than “red or blue”. The
interpretation mapping must translate this meaning into an equivalent property
on the population. Technically, we have:

Definition 1 An ordered description space is a pair (D,≤), where D is a
description space and ≤ an order on D. If Ω is a population and ext is a mapping
from D to P(Ω), the context G = (Ω, ext) is consistent with (D,≤) if and only
if

1. ext is an increasing mapping from (D,≤) to (P(Ω),⊂);
2. for any a and b in D:

min(a, b) = ∅ ⇒ ext(a) ∩ ext(b) = ∅, (1)

where min(a, b) = {c ∈ D | c ≤ a and c ≤ b}.



Keeping in mind that u ≤ v means u is less general than v, min(a, b) = ∅ means
that no description can be more precise than a and b at the same time. Therefore,
if there are some individuals in ext(a) ∩ ext(b), this means that there is no way
to describe those individuals more precisely than with a or b. This is a symptom
of inadequacy of the description space to the context and we assume therefore
that this condition cannot happen.

Example Let’s consider a population Ω a subset of Color × Weight(g) ×
Height(cm), where Color = {Y ellow, Blue, Red}, Weight(g) = [1, 100] and
Height(cm) = [1, 25]. Each individual ω (a spare part) is defined as a triplet
ω = (ωc, ωw, ωh).

Let D = P∗ (Color)×I∗ (Weight)×Height a set of symbolic descriptions
where P∗ (Color) is the set of the subsets (parts) of Color minus the set ∅,
I∗ (Weight) is the set of the subsets (intervals) of Weight minus the set ∅

and Height= {Small, Tall}.

We denote a symbolic description d = (dc, dw, dh) and the symbolic order on
D is defined as follows:

d � d′ ⇔ dc ⊆ d′c, dw ⊆ d′w, dh = d′h

An interpretation mapping (ext) can be defined for instance as follows:

{
ext ((dc, dw, Small)) = {ω ∈ Ω | ωc ∈ dc , ωw ∈ dw , 1 ≤ ωh < 15}
ext (dc, dw, T all) = {ω ∈ Ω | ωc ∈ dc , ωw ∈ dw , 15 ≤ ωh ≤ 25}

2.2 Constraints

Definition 2 A constraint set for a description space D is a pair of subsets
of D2, (F, E). The first subset F represents fusion constraints and the second
subset E represents exclusion constraints.

2.3 Constrained binary relation

Definition 3 Let D be a description space and (Ω, ext) be a context for D. Let
(F, E) be a constraint set for D. A binary relation r on Ω is compatible with
(F, E) if and only if:

∀(a, b) ∈ F,∀x ∈ ext(a), ∀y ∈ ext(b), r(x, y) (2)

∀(c, d) ∈ E,∀x ∈ ext(c), ∀y ∈ ext(d), ¬r(x, y) (3)

Our goal is to study constrained classification: in general, we will focus on equiv-
alence binary relations.



2.4 Notations

Let R be a subset of T 2, an arbitrary set. R is the graph of a binary relation on
T and we can define the following sets:

– tR is the transposed (or dual) relation defined by: (x, y) ∈ tR ⇔ (y, x) ∈ R;
– Rs is the symmetric closure of R, defined by: Rs = R ∪ tR;
– if S is a subset of T 2, RS, the product (or composition) of R and S, is defined

as follows: RS = {(a, b) ∈ T 2 | ∃c ∈ T such that (a, c) ∈ R and (c, b) ∈ S}
– Rk is the k-th power of R, defined as follows: R0 = IT (IT is the diagonal of T ,

i.e., IT = {(x, x) | x ∈ T}) and Rk = {(x, y) ∈ T 2 | ∃z ∈ T so that (x, z) ∈
Rk−1 and (z, y) ∈ R}, for k > 0. Thanks to the previous definition, this can
be rewritten in Rk = Rk−1R;

– R+ is the transitive closure of R, defined by: R+ =
⋃

k≥1
Rk;

– R∗ is the reflexive and transitive closure of R, defined by: R∗ = R+ ∪ IT ;
– S(R) is the support of R, defined by: S(R) = {x ∈ T | ∃y ∈

T so that (x, y) ∈ R or (y, x) ∈ R}, which can be simplified into S(R) =
{x ∈ T | ∃y ∈ T so that (x, y) ∈ Rs}.

3 Population based analysis

The purpose of this section is to analyze the coherency problem at symbolic
level, but taking into account the interpretation and the population.

3.1 Fusion constraint closure

To state our results, we need first to introduce some technical definitions:

Definition 4 Let R and S be two binary relations on the same set T . R is said
to be stable with respect to S if and only if for all a, b, c and d in T , we have:

(a, b) ∈ R, (b, c) ∈ S and (c, d) ∈ R ⇒ (a, d) ∈ R, (4)

i.e., RSR ⊂ R.

In informal terms, this means that S does not introduce short-circuits in R.

Definition 5 Let R and S be two binary relations on the same set T . We call
RS the closure of R by S, which is defined as the smallest binary relation that
contains R and that is stable with respect to S. Let us define R0

S
= R and for

k > 0, Rk

S
= Rk−1

S
SR. We have the following properties:

1. RS =
⋃

k≥0
Rk

S
;

2. is R is a symmetric relation on T and is S is a symmetric relation, then RS

is a symmetric relation;
3. is R is a transitive relation on T , then RS is a transitive relation.



Definition 6 Let F be a binary relation on D a description space and let G =
(Ω, ext) be a context for D.

We denote FG = {(a, b) ∈ F | ext(a) 6= ∅, ext(b) 6= ∅} (EG is defined in a
similar way).

We denote F̃G the closure of ((FG)s)+ by S, where S is defined by:

S = {(a, b) ∈ D | ext(a) ∩ ext(b) 6= ∅} (5)

F̃G is a symmetric and transitive relation. Moreover, for each a ∈ S(FG), (a, a) ∈

F̃G , which means that F̃G is an equivalence relation on S(FG).

This closure is an useful tool for classification study: if we have (a, b) ∈ F , where
F is the fusion part of a constraint set, this means that elements in ext(a) and
ext(b) must be related by compatible binary relations. If (c, d) ∈ F , the same
property is true for ext(c) and ext(d). Let us assume now that ext(b)∩ext(c) 6= ∅,
and let y be an element of this intersection. Let now x be an element of ext(a) and
z an element of ext(d). If r is a compatible binary relation on Ω, we have r(x, y)
and r(y, z). Therefore, if r is transitive (this is the case for classification, where r

is an equivalence relation), we have r(x, z). Therefore, r is also compatible with

F ∪ {(a, d)} and we have, by construction, (a, d) ∈ F̃G .

3.2 Constraint set coherency on a population

Definition 7 Let (F, E) be a constraint set on D a description space and let
G = (Ω, ext) be a context for D. We say that (F, E) is coherent on G, and we
note F /G E, if and only if the following conditions are satisfied:

1. for all (a, b) ∈ E, ext(a) ∩ ext(b) = ∅;
2. for all (a, b) ∈ F and (c, d) ∈ E, ext(a) ∩ ext(c) = ∅ or ext(b) ∩ ext(d) = ∅.

We can now give our first result:

Theorem 1 Let (F, E) be a constraint set on D a description space and let
G = (Ω, ext) be a context for D. The following properties are equivalent:

1. there is a binary equivalence relation on Ω compatible with (F, E);

2. F̃G /G E.

Moreover, the smallest equivalence relation on Ω compatible with (F, E) can be

defined as follows: r(x, y) if and only if there are (a, b) ∈ F̃G with x ∈ ext(a) and
y ∈ ext(b).

3.3 Discussion

The practical implications of theorem 1 are important. It builds an equivalence
relation on S(FG), a subset of the description space. This equivalence relation is
used for two purposes:



1. it gives a simple criterion for the existence of a solution to the constrained
clustering problem;

2. the smallest clustering is the “image”of the symbolic equivalence relation by
ext.

In a database system, the advantages of this approach are obvious: rather than
working on the global population, we simply have to compute intersection of
extensions. As in general, computing an extension is simply a SQL SELECT
query, it is straightforward to calculate the intersection query. Therefore we
never need to extract the full population from the database, but only to make
some queries to first build S(FG) and then to check if F̃G /G E.

Whereas this approach gives results easier to interpret than the pure popu-
lation based approach given in [2], it is still based on the population and results
depend on the context G.

4 Pure symbolic analysis

In this section, we use the symbolic order so as to provide a pure symbolic
answer to the coherency problem: given a constraint set (F, E) on an ordered
description space (D,≤), can we prove that (F, E) is coherent enough so that
for any consistent context G, there will exist a compatible equivalence relation
(i.e., a solution to the constrained clustering problem).

4.1 Description set based closure

Definition 8 Let F be a binary relation on (D,≤) an ordered description space.

We call F̃ the closure of (F s)+ by S, where S is defined by:

S = {(a, b) ∈ D | min(a, b) 6= ∅} (6)

F̃ is a symmetric and transitive relation. Moreover, for each a ∈ S(F ), (a, a) ∈

F̃ , which implies that F̃ is an equivalence relation on S(F ).

4.2 Constraint set coherency

Definition 9 Let (F, E) be a constraint set on (D,≤) an ordered description
space. We say that (F, E) is coherent on D, and we note F / E, if and only if
the following conditions are satisfied:

1. for all (a, b) ∈ E, min(a, b) = ∅;
2. for all (a, b) ∈ F and (c, d) ∈ E, min(a, c) = ∅ or min(b, d) = ∅.

Theorem 2 Let (F, E) be a constraint set on (D,≤) an ordered description
space such that any totally ordered subset of D is bounded below. The following
properties are equivalent:

1. F̃ / E
2. for each consistent context G = (Ω, ext), there exists a equivalence relation

r on Ω compatible with (F, E)



4.3 Discussion

The practical implications of theorem 2 are quite important:

1. the computation is done at a pure symbolic level, which reduces in general
the cost compared to previous approaches (if the population is stored in a
database, the pure symbolic analysis makes no access to this database);

2. if obtained, the coherency result applies to any consistent context, which
avoids to assume that the studied population is exhaustive or fixed (for
instance). Moreover, this allows to change the interpretation, if needed;

3. the equivalence relation built on S(F ) does not give directly (through the
interpretation mapping) the smallest compatible equivalence relation on a
given context, but only one among many possible equivalence relations. Some
clusters are constructed by the closure calculation, based on stability through
min. On a particular context, it might happen that min(a, b) 6= ∅ but that
ext(a) ∩ ext(b) = ∅. If the description space is well suited to describe the
population, a possible interpretation is to say that the population is not
exhaustive. For instance, if we consider “Red or Blue” and “Red or Yellow”
descriptions, the description space will in general contain a “Red” descrip-
tion (this is for instance the case in the example defined in section 2.1). It
might happen that the population does not contain a “Red” individual. At
the symbolic level, such individual potentially exists, and must be taken
into account. The equivalence relation induced by F̃ take them into account
and is therefore bigger than the smallest that might available. The sym-
bolic approach shows therefore relationship that are hidden on a particular
context.

5 Conclusion

In this paper, we have introduced a new approach for studying symbolic con-
strained classification. This approach allows to work both on a population and
at a pure symbolic level. The symbolic tools give efficient algorithms (especially
when the population is big) as well as easy result analysis.

The proposed symbolic approach has been implemented in the SODAS frame-
work [1] and is currently being benchmarked against the population based ap-
proach.
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