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Abstract. In this paper, we propose a new way to use Functional Multi-
Layer Perceptrons (FMLP). In our previous work, we introduced a nat-
ural extension of Multi Layer Perceptrons (MLP) to functional inputs
based on direct manipulation of input functions. We propose here to rely
on a representation of input and weight functions thanks to projection
on a truncated base. We show that the proposed model has the universal
approximation property. Moreover, parameter estimation for this model
is consistent. The new model is compared to the previous one on sim-
ulated data: performances are comparable but training time it greatly
reduced.

1 Introduction

In many practical applications, multivariate representation of studied objects is
not a very satisfactory choice. If we study for instance the growth of a group of
children, it is interesting to take into account the fact that the height of each
child is a continuous function from a real interval (the time period of the study)
to IR. Functional Data Analysis (FDA) [5] is an extension of traditional Data
Analysis to individuals described by one or several regular real valued func-
tions. The main difference between multivariate analysis and FDA is that the
latter manipulates the functional representation of each individual and therefore
can take into account smoothness of the considered functions. Moreover, when
measurement points differ from one individual to another, multivariate repre-
sentation is quite difficult because features (or variables) are now different from
one individual to another: direct comparison is no more possible.

In [6, 7], we have proposed an extension of Multi-Layer Perceptrons (MLP)
that works on functional inputs. Given an input x in IRn, a numerical neuron
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calculates an output given by T (ax+ b), where T is an activation function from
IR to IR, a is a vector in IRn and b is a real number. The main idea of Func-
tional MLP (FMLP) is to replace the linear form x 7→ bx by a continuous linear
form defined on a functional space. This approach is quite different from what is
commonly used in FDA. FDA is indeed mostly based on linear methods. More-
over, we proposed a direct manipulation of functions, whereas FDA relies on a
pre-processing phase. In this phase, each input function is projected on a set
of smooth functions (for instance on a truncated B-Spline base). In the present
paper, we show that FMLP can also be applied to pre-processed functions. The
main advantage of such a solution is that computation time can be greatly re-
duced without impairing performances (for low dimensional input spaces). The
price to pay is less flexibility in the way continuous linear form are represented
and therefore reduced performances for high dimensional input spaces.

The paper is organized as follows. We first introduce the FMLP model and
our new projection based approach. Then we give important theoretical results
for the new model: universal approximation and consistency of parameter esti-
mation. We conclude with some experiments that illustrate differences between
direct and projection base approaches.

2 Functional MLP

2.1 Functional neurons

As explained in the introduction, the main idea of FMLP is to replace in a neuron
a linear form on IRn by a continuous linear form defined on the input space of
the neuron. This idea was proposed and studied on a theoretical point of view in
[8]. Basically, a generalized neuron takes input in E, a normed vectorial space.
It is parametrized thanks to a real number b and a weight form, i.e., an element
w of E∗, the vectorial space of continuous linear forms on E. The output of the
neuron is T (w(x) + b).

Of course, it is quite difficult to represent arbitrary continuous linear forms.
That’s why we proposed in [7] to restrict ourselves to functional inputs. More
precisely, we denote µ a finite positive Borel measure on IRn (the rational for
using such a measure will be explained in section 3), and Lp(µ) the space of
measurable functions from IRn to IR such that

∫
|f |pdµ <∞. Then we can define

a neuron that maps elements of Lp(µ) to IR thanks to an activation function T ,
a numerical threshold b and a weight function, i.e. a function w ∈ Lq(µ) (where
q is the conjugate exponent of p). Such a neuron maps an input function g to
T (b+

∫
wg dµ) ∈ IR.

2.2 Functional MLP

As a functional neuron gives a numerical output, we can define a functional MLP
by combining numerical neurons with functional neurons. The first hidden layer
of the network consists exclusively in functional neurons, whereas subsequent



layers are constructed exclusively with numerical neurons. For instance an one
hidden layer functional MLP with real output computes the following function:

H(g) =

k∑

i=1

aiT

(
bi +

∫
wig dµ

)
, (1)

where wi are functions of the functional weight space.

3 Practical implementation

3.1 Two problems

Unfortunately, even if equation 1 uses simplified linear forms, we still have two
practical problems: it is not easy to manipulate functions (i.e., weights) and we
have only incomplete data (i.e., input functions are known only thanks to finite
sets of input/output pairs). Therefore, computing

∫
wg dµ is quite difficult.

3.2 Projection based solution

We have already proposed a direct solution to both problems in [6, 7]. The main
drawback of the direct solution is that computation times can be quite long.

In this paper, we propose a new solution based on projected representation
commonly used in FDA (see [5]). The main idea is to use a regularized repre-
sentation of each input function. In this case we assume that the input space
is L2(µ) and we consider (φi)i∈IN∗ a Hilbertian base of L2(µ). We define Πn(g)
as the projection of g ∈ L2(µ) on the vectorial space spanned by (φ1, . . . , φn)
(denoted span(φ1, . . . , φn)), i.e. Πn(g) =

∑n

i=1
(
∫
φig dµ)φi. Rather than com-

puting H(g), we try to compute H(Πn(g)). Its is important to note that in the
proposed approach we consider Πn(g) to be the effective input function. There-
fore, with the projection based approach, we do not focus anymore on computing
H(g).

In order to represent the weight functions, we consider another Hilbertian
base of L2(µ), (ψi)i∈IN∗ and we choose weight functions in span(ψ1, . . . , ψp). For
the weight function w =

∑p

i=1
αiψi, we have:

∫
wΠn(g) dµ =

n∑

i=1

p∑

j=1

(

∫
φig dµ)αj

∫
φiψj dµ (2)

For well chosen bases (e.g., B-splines and Fourier series),
∫
φiψj dµ can be easily

computed exactly (especially if we use the same base for both input and weight
functions!). Moreover, the values do not depend on actual weight and/or input
functions. Efficiency of the method is deeply linked to this fact which is a direct
consequence of using truncated bases.

A FMLP based on this approach uses a finite number of real parameters
because each weight function is represented thanks to its p real coordinates in



span(ψ1, . . . , ψp). Weights can be adjusted by gradient descent based algorithms,
as the actual calculation done by a functional neuron is now a weighted sum of its
inputs if we consider the finite dimensional input vector (

∫
φ1g dµ, . . . ,

∫
φng dµ).

Back-propagation is very easily adapted to this model and allows efficient cal-
culation of the gradient.

3.3 Approximation of the projection

Of course, Πn(g) cannot be computed exactly because our knowledge on g is
limited to a finite set of input/output pairs, i.e., (xi, g(xi)). We assume that the
measurement points xi are realizations of independent identically distributed
random variables (Xl)l∈IN (defined on a probability space P) and we denote
PX the probability measure induced on IRn by those random variables. This
observation measure weights measurement points and it seems therefore natural
to consider that µ = PX .

Then we can define the random element Π̂n(g)m as the function
∑n

i=1
βiφi

that minimizes 1

m

∑m

i=1
(g(xi) −

∑n

i=1
βiφi(xi))

2
. This is a straightforward gen-

eralized linear problem which can be solved easily and efficiently with standard
techniques. Therefore, rather than computing H(Πn(g)) we compute a real-

ization of the random variable H(Π̂n(g)m). Following [1] we show in [4] that

Π̂n(g)m converges almost surely to Πn(g) (in L2(µ)). This proof is based on an
application of theorem 1.1.1 of [3].

4 Theoretical results

4.1 Universal approximation

Projection based FMLP are universal approximators:

Corollary 1. We use notations and hypothesis of subsection 3.2. Let F be a
continuous function from a compact subset K of L2(µ) to IR and let ε be an
arbitrary strictly positive real number. We use a continuous non polynomial ac-
tivation function T . Then there is n > 0 and p > 0 and a FMLP (based on T and
using weight functions in span(ψ1, . . . , ψp)) such that |H(Πn(g)) − F (g)| < ε for
each g ∈ K.

Proof. Details can be found in [4]. First we apply corollary 1 of [7] (this result
is based on very general theorems from [8]) to find a FMLP H based on T

that approximates F with precision ε
2
. This is possible because (ψi)i∈IN∗ is a

Hilbertian base of L2(µ) which is its own dual. p is obtained as the maximum
number of base functions used to represent weights functions in the obtained
FMLP.

H is continuous (because T is continuous) and therefore uniformly continuous
on K. There is η > 0 such that for each (f, g) ∈ K2, ‖f − g‖2 < η implies
|H(f)−H(g)| < ε

2
. As (φi)i∈IN∗ is a basis and K is compact, there is n > 0 such

that for each g ∈ K, ‖Πn(g) − g‖2 < η, which allows to conclude.



In the practical case, Πn(g) is replaced by Π̂n(g)m which does not introduce any
problem thanks to the convergence result given in 3.3.

4.2 Consistency

When we estimate optimal parameters for a Functional MLP, our knowledge of
data is limited in two ways. As always in Data Analysis problems, we have a finite
set of input/output pairs. Moreover (and this is specific to FDA), we have also
a limited knowledge of each input function. Therefore we cannot apply classical
MLP consistency results (e.g., [9]) to our model. Nevertheless, we demonstrate
a consistency result in [4], which is summarized here.

We assume that input functions are realizations of a sequence of independent
identically distributed random elements (Gj)j∈IN with values in L2(µ) and we
denote G = G1. In regression or discrimination problems, each studied function
Gj is associated to a real value Y j ((Y j)j∈IN is a sequence of independent iden-
tically distributed random variables and we denote Y = Y 1). Our goal is that
the FMLP gives a correct mapping from g to y. This is modeled thanks to a
cost function l (in fact we embed in l both the cost function and the FMLP
calculation). If we call w the vector of all numerical parameters of a FMLP, we
have to minimize λ(w) = E(l(G, Y,w)).

As we have a finite number of functions, the theoretical cost is replaced by the
random variable λ̂N (w) = 1

N

∑N

j=1
l(Gj , Y j , w). Moreover,H(Πn(g)) is replaced

by the random variable H(Π̂n(g)m). Therefore, we have to replace l by an ap-

proximation which gives the random variable λ̂N (w)m = 1

N

∑N

j=1
l(Gj , Y j , w)m.

We call ŵm
N a minimizer of λ̂N (w)m and W ∗ the set of minimizers of λ(w).

We show in [4] that limn→∞ limm→∞ d(ŵm
n ,W

∗) = 0.

5 Simulation result

We have tried our model on a simple discrimination problem: we ask to a func-
tional MLP to classify functions into classes. Example of the first class are func-
tions of the form fd(x) = sin(2π(x − d)), whereas function of the second class
have the general form gd(x) = sin(4π(x− d)).

For each class we generate example input functions according to the following
procedure:

1. d is randomly chosen uniformly in [0, 1]
2. 25 measurement points are randomly chosen uniformly in [0, 1]
3. we add a centered Gaussian noise with 0.7 standard deviation to the corre-

sponding outputs

Training is done thanks to a conjugate gradient algorithm and uses early stop-
ping: we used 100 training examples (50 of each class), 100 validation examples
(50 of each class) and 300 test examples (150 for each class).

We have compared on those data our direct approach ([6]) to the projec-
tion based approach. For both approaches we used a FMLP with three hidden



functional neurons. Each functional neuron uses 4 cubic B-splines to represent
its weight function. For the projection based approach, input functions are rep-
resented thanks to 6 cubic B-splines. Both models use a total of 19 numerical
parameters. For the direct approach, we obtain a recognition rate of 94.4 %
whereas the projection based approach achieves 97% recognition rate. Moreover,
each iteration of the training algorithm takes about 20 times more time for the
direct approach than for the projection based approach.

We have conducted other experiments (for instance the circle based one de-
scribed in [6]) which give similar results. When the dimension of the input space
of each function increases, the generalized linear model used to represent in-
put and weight functions becomes less efficient than a non linear representation
([2]). We have therefore to increase the number of parameters in order to remain
competitive with the direct method which can use numerical MLP to represent
weights.

6 Conclusion

We have proposed in this paper a new way to work with Functional Multi Layer
Perceptrons (FMLP). The projection based approach shares with the direct one
very important theoretical properties: projection based FMLP are universal ap-
proximators and parameter estimation is consistent for such model.

The main advantage of projection based FMLP is that computation time
is greatly reduced compared to FMLP based on direct manipulation of input
functions, whereas performances remain comparable. Additional experiments are
needed on input functions with higher dimensional input spaces (especially on
real world data). For this kind of functions, advantages of projection based FMLP
should be reduced by the fact that they cannot use traditional MLP to represent
weight and input functions. The direct approach does not have this limitation and
should therefore use less parameters. Our goal is to establish practical guidelines
for choosing between both approaches.
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1. Christophe Abraham, Pierre-André Cornillon, Eric Matzner-Lober, and Nicolas
Molinari. Unsupervised curve clustering using b-splines. Technical Report 00–04,
ENSAM–INRA–UM II–Montpellier, October 2001.

2. Andrew R. Barron. Universal Approximation Bounds for Superpositions of a Sig-
moidal Function. IEEE Trans. Information Theory, 39(3):930–945, May 1993.

3. Helga Bunke and Olaf Bunke, editors. Nonlinear Regression, Functional Relations
and Robust Methods, volume II of Series in Probability and Mathematical Statistics.
Wiley, 1989.

4. Brieuc Conan-Guez and Fabrice Rossi. Projection based functional multi layer per-
ceptrons. Technical report, LISE/CEREMADE & INRIA, http://www.ceremade.
dauphine.fr/, february 2002.

5. Jim Ramsay and Bernard Silverman. Functional Data Analysis. Springer Series in
Statistics. Springer Verlag, June 1997.



6. Fabrice Rossi, Brieuc Conan-Guez, and François Fleuret. Functional data analysis
with multi layer perceptrons. In IJCNN 2002/WCCI 2002, volume 3, pages 2843–
2848. IEEE/NNS/INNS, May 2002.

7. Fabrice Rossi, Brieuc Conan-Guez, and François Fleuret. Theoretical properties of
functional multi layer perceptrons. In ESANN 2002, April 2002.

8. Maxwell B. Stinchcombe. Neural network approximation of continuous functionals
and continuous functions on compactifications. Neural Networks, 12(3):467–477,
1999.

9. Halbert White. Learning in Artificial Neural Networks: A Statistical Perspective.
Neural Computation, 1(4):425–464, 1989.


