
Multi-layer Perceptron on Interval Data?

Fabrice Rossi13 and Brieuc Conan-Guez2

1 LISE/CEREMADE, UMR CNRS 7534, Université Paris-IX Dauphine,
Place du Maréchal de Lattre de Tassigny, 75016 Paris, France

2 INRIA, Domaine de Voluceau, Rocquencourt, B.P. 105
78153 Le Chesnay Cedex, France

3 Up to date contact informations for Fabrice Rossi are avaible at
http://apiacoa.org/

Abstract. We study in this paper several methods that allow one to use interval
data as inputs for Multi-layer Perceptrons. We show that interesting results can
be obtained by using together two methods: the extremal values method which is
based on a complete description of intervals, and the simulation method which is
based on a probabilistic understanding of intervals. Both methods can be easily
implemented on top of existing neural network software.

1 Introduction

Interval-valued data are quite natural in many applications where they rep-
resent uncertainty on measurements (confidence intervals for instance), vari-
ability (minimum and maximum temperatures during a day), extremal be-
havior (maximal wind speed in a given area), etc. Many data analysis tools
have been already extended to handle in a natural way interval data: Prin-
cipal Component Analysis, K-means, etc. (see for instance Bock and Diday,
(2000)).

In this paper we focus on nonlinear processing of interval-valued data
thanks to Multi-layer Perceptrons (MLP). Several methods can be used to
allow MLP to work with interval-valued data. In this paper, we present two
kind of methods: the very simple extremal values approach and two proba-
bilistic methods. Those methods can be implemented very easily on top of
existing neural network software. We show that the naive center (or mean)
based method should be replaced by the simulation-based approach which
gives in general better results. We show on synthetic data that the simple
extremal values method should be used together with the simulation-based
method in order to provide meaningful results.

? Published in IFCS’2002 Proceedings.
Available at http://apiacoa.org/publications/2002/ifcs02.pdf

http://apiacoa.org/
http://apiacoa.org/publications/2002/ifcs02.pdf


2 Rossi and Conan-Guez

2 Interval processing methods for MLP

2.1 Framework

We consider in this paper that each studied individual is described by n

intervals, i.e. ([x1, x1], . . . , [xn, xn]). The desired output can be an interval, a
real output, or a class: our main concern is to be able to work as efficiently
and simply as possible with interval-valued inputs.

Moreover, we consider that interval-valued inputs are kind of summary
of underlying precise data. For instance, if we study the climate, we can
describe a place by the minimum and maximum temperatures during the
day. We consider that the interval gives a good description of temperature
variations during the day. One requirement of our study is to be able to use
the trained MLP both on new interval-valued inputs and on new real valued
inputs. For instance, if we observe a temperature during the day, we want
to be able to use it as an input to the MLP, even if it was trained with
interval-valued inputs.

A very natural way to handle interval-valued inputs (and outputs) is to
rely on interval arithmetic (Moore (1966)). The main idea of interval arith-
metic is simply to define in a sound way interval product, sum, etc. It is
easy to define an interval based MLP, which can be trained thanks to a
modified back-propagation algorithm. Several authors have already worked
on this kind of model (see for instance Beheshti et al., (1998), Š́ıma (1995)
and Simoff (1996)). In this paper, we won’t work with interval arithmetic
for one main reason: it implies specific development, which means that this
approach cannot be easily integrated in existing neural network software. Ev-
ery thing (initialization, training, visualization, etc.) has to be modified and
adapted to interval arithmetic and we consider this is not affordable for many
practitioners.

2.2 Extremal values method

The simplest way to deal with interval-valued inputs is to transform each
interval in a pair of real numbers, for instance the lower and upper bounds of
the interval (or the middle and the length of the interval). We translate this
way n interval inputs into 2n real value inputs (i.e., ([x1, x1], . . . , [xn, xn]) is
simply replaced by (x1, x1, . . . , xn, xn)). The MLP is used exactly as a clas-
sical MLP with the augmented inputs. We call this approach the extremal

values method.

In order to use a MLP trained with the extremal values method on
real valued inputs, the simplest method is to replicate the data, i.e., input
(x1, . . . , xn) becomes (x1, x1, . . . , xn, xn). It might be possible to use more
elaborated methods, but this is outside the scope of this article.



Multi-layer Perceptron on Interval Data 3

2.3 Probabilistic methods

Another way to deal with interval-valued data is to consider them as simple
probabilistic data. If a sample for the MLP is described by the interval [a, b],
a possible interpretation is to assume that in fact the sample can take any
value between a and b, with uniform probability.

Considering intervals are only a way to express uncertainty, one can re-
place each interval by its middle (the mean) and train the network with the
obtained values. We call this approach the mean method. When we want
to use a trained MLP with new data, we replace again each interval by its
middle value. We handle real valued input directly.

Another way to proceed is to replace each sample by a set of real valued
samples. Those samples are obtained thanks to simulation, assuming that
the interval [a, b] corresponds to an uniform distribution in [a, b]. Moreover,
if we work with multiple interval inputs, we assume that each variable (each
input) is independent from the others. We call this approach the simula-

tion method. For new real valued inputs, we use the trained MLP directly.
For new interval-valued inputs, we generate simulated real valued inputs and
we compute normally corresponding outputs. One simple way to define the
output corresponding to the initial data is to use the interval of simulated
outputs. The practical meaning of this interval is the variability on the out-
put induced by the variability on the input. We can also define the output
for interval-valued inputs as the mean output for simulated inputs. Note
that even if the MLP as been trained with the mean approach, the simula-
tion approach can still be used to compute the output corresponding to an
interval-valued input.

3 Comparison of probabilistic methods

3.1 Theoretical discussion

The mean and simulation methods can use exactly the same neural archi-
tecture. Therefore, training a MLP with the simulation method takes longer
time than training it with the mean method, simply because we have more
examples for the first method. This is the main drawback of the simulation
method compared to the mean method.

The main drawback of the mean approach is that the MLP is trained
without any knowledge of the uncertainty on the samples and it will provide
overconfident answers in difficult cases, as will be shown in section 3.2. In
fact, the mean trained MLP will often have worse generalization results than
the simulation trained one. Indeed, using simulated data rather than the
mean is quite similar to noise injection techniques which were introduced by
Sietsma and Dow, 1991. The main idea of such techniques is to add noise to
input data during the training of a MLP. Simulation results in the pioneer
article showed that generalization performances where much improved by this



4 Rossi and Conan-Guez

technique. Several theoretical analysis of noise injection techniques have been
done (see for instance Bishop, (1995b) and Grandvalet et al., (1997)). They
tend to prove that noise injection is an efficient way to improve generalization.

We can therefore consider that the simulation method is a data driven
noise injection technique applied to the mean method. The main difference
with noise injection is that in our case, data give a precise description of
the noise which depends on the individual (and on the variable). Indeed,
each input variable is associated to an observed interval value, whereas for
noise injection methods, variations are artificially generated around observed
values.

3.2 Simulation results

In difficult cases, uncertainty should decrease the quality of the result pro-
vided by the MLP. Let us consider a simple example. We assume that we
have two classes. Elements of the first class are described by a real variable
chosen uniformly in [−1, 0]. For the second class, the variable is chosen uni-
formly in [0, 1]. In order to take into account measurement error, each real
value is replaced by a interval centered on the value and with a length of 0.2.
We have 20 interval-valued examples from each class and we simulate 10 real
valued examples for each original one in the simulation approach.

With the mean approach, the measurement error is not taken into account,
therefore we have perfectly separated classes. A simple MLP (one input, one
hidden neuron, one output) can be used to learn1 to separate samples with
no error. This is obviously an overconfident behavior. Indeed, when an input
is close to zero, the MLP should not give a sharp answer (0 or 1), but on the
contrary give an answer close to 0.5, as the measurement error implies that
the value can come from either class.

With the simulation approach, we obtain training samples from class one
with strictly positive value and samples from class two with strictly nega-
tive values. When we train the MLP (similar to the one use with the mean
approach), the prediction error does not reach zero (the mean square error
stays around 0.02). As illustrated by figure 1, for input values close to zero,
the MLP does not give a sharp output, but, on the contrary, outputs varying
between 0 (for class one) and 1 (for class two). In fact, as it is well known,
e.g. Bishop, (1995a), the MLP approximates the posterior probability of the
input to belong to the second class (which is trained with one as desired out-
put). This behavior is better suited to imprecise inputs because it’s the only
correct way to show that for some inputs, we cannot obtain a class, but only
a probability to belong to the classes.

It is also interesting to see what happen if we calculate the output of
trained MLPs for different input intervals:

1 All simulations have been done with SNNS (Zell, (1995)), using Scaled Conjugate
Gradient method.



Multi-layer Perceptron on Interval Data 5

0

0.2

0.4

0.6

0.8

1

-1.5 -1 -0.5 0 0.5 1 1.5

output
training: class two
training: class one

Fig. 1. Output of the MLP trained with the simulation approach

Input mean output interval output for mean simulation output
[−0.1, 0.1] 1.00 [0, 1] [0.12, 0.95]
[−0.1, 0] 0.00 [0, 1] [0.12, 0.59]
[−0.2, 0] 0.00 [0, 1] [0.022, 0.59]

[−0.3,−0.1] 0.00 [0, 0] [0.007, 0.12]
It is quite clear that results provided by the simulation method are more

interesting than results provided by the mean method. For the mean method,
interval outputs are quite useless, even with a short interval as [−0.1, 0] which
cannot be classified. Moreover, the mean method classifies [−0.1, 0.1] in the
second class, which is not a good result. The simulation method give inter-
esting intervals. For [−0.1, 0.1], we obtain a quite broad interval which shows
that it is quite difficult (and in fact meaningless) to try to classify this inter-
val. For [−0.1, 0] we obtain a wide interval, but closer to 0 than 1, therefore
we can classify this interval in the first class, but the wide result shows that
there is still a high probability that [−0.1, 0] corresponds to a member of class
two. Results obtained for other inputs show also that the simulation based
approach gives more realistic results than the mean approach.

4 Comparison of simulation method and extremal

values method

4.1 Theoretical comparison

The simulation method handles a n interval input with n input neurons,
whereas the extremal values method needs 2n input neurons. Assume that
we want to use a MLP with p hidden neurons and one output. Then, we
have exactly (n + 2)p + 1 numerical parameters for the simulation based
method. If we translate n intervals into 2n real values, we must use (2n +
2)p+1 parameters. Therefore, if we have a fixed number of training patterns,



6 Rossi and Conan-Guez

we must use less hidden neurons for the extremal values method than for
the simulation method, in order to obtain the same estimation quality for
parameters. Obviously, this reduces the computing power of the extremal
values method as illustrated in section 4.2.

Another drawback of the extremal values method is that it cannot be
extended easily to arbitrary probabilistic inputs. It can obviously be applied
to parametric probabilistic inputs (for instance Gaussian distributed inputs),
but not to histogram inputs (as long as the number of bin is not constant).

The extremal values method has two important advantages over the simu-
lation method. First of all, if we use roughly the same number of parameters,
the training time of the simulation method is in general longer than the one
of extremal values method, simply because the former uses much more ex-
amples then the latter. Moreover, in some cases, the extremal values method
can classify examples than cannot be separated by the simulation method,
as will be demonstrated in section 4.3.

4.2 XOR problem

As explained in previous section, extremal values method uses more numer-
ical parameters than probabilistic methods. Let us consider the case of two
dimensional interval-valued inputs. With the probabilistic methods, a MLP
with two hidden neurons and one output uses 9 parameters. With the ex-
tremal values method, it uses 13 parameters (and 7 with only one neuron).

Let us consider an interval version of the XOR problem. We have four
training examples, centered on (−1,−1) and (1, 1) for the first class, and
on (−1, 1) and (1,−1) for the second class. We assume that measurement
errors replace the exact values by intervals of length 0.2. It is well known
that we need at least 2 hidden neurons to solve the XOR problem. The
interesting point is that with the probabilistic methods, this can be done
with 9 parameters, whereas we need 13 parameters for the extremal values
approach.

Of course, experiments confirm this discussion (for the simulation ap-
proach, we use 10 simulated examples for each original example):

hidden neurons method Mean Square Error
2 extremal values 0.0
2 simulation 0.0
1 extremal values 0.17
1 simulation 0.17

4.3 Overlapping individuals

We consider a very simple two classes problem. The unique example of class
one is described by the interval [−0.5, 0.5], and the unique example of class
two is described by the interval [−1, 1]. With the extremal values approach,



Multi-layer Perceptron on Interval Data 7

we can use one hidden neuron to exactly classify both examples. With the
probabilistic methods, the situation is far less satisfactory. Obviously, the
mean method is not usable because both intervals have the same mean. For
the simulation based method, we trained a MLP with two hidden neurons.
Of course, we cannot correctly classify inputs that belongs to [−0.5, 0.5]. In
fact, if we assume that simulated points are chosen uniformly in each interval
and are in equal proportion, the probability that an input belongs to class
one knowing that we observe a value in [−0.5, 0.5] is 2

3
. The trained MLP

agrees with this number and therefore misclassifies one third of the inputs.

0

0.2

0.4

0.6

0.8

1

1.2

-1.5 -1 -0.5 0 0.5 1 1.5

MLP output

Fig. 2. Output of a MLP trained with the simulation method

Figure 2 gives that output of the trained MLP as a function of its input.
As expected, the output is an approximation of the posterior probability
of class two knowing the observed value. Therefore, when we submit a new
input to the MLP, it gives a sound result. But if we input an interval with the
simulation approach, we obtain less useful results. For instance, the output
of the MLP for [−1, 1] is the interval [ 1

3
, 1], whereas for [−0.5, 0.5], we obtain

approximately [ 1
3
, 1

3
]. It is quite difficult to use this kind of result.

If we use now the extremal values MLP to classify new inputs, we also
obtain unsatisfactory results which are summarized on figure 3. Any numer-
ical input considered as a zero length interval is in fact classified into class
one.

To summarize this simple numerical experiment, we have quite different
results with the two proposed methods. Extremal values method gives good
results on interval-valued inputs but cannot be use at all for numerical inputs
(it performs exactly as a random classifier). On the contrary, simulation based
method gives very useful results for numerical inputs, but cannot classify
correctly interval-valued inputs.



8 Rossi and Conan-Guez

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

boundary
training intervals

unique observations

Fig. 3. Classification results for a MLP trained with extremal values

5 Conclusion and future work

We have presented in this paper three methods that can be used to pro-
cess interval-valued inputs with multi-layer perceptrons. The mean method
is obviously a limited method which should be avoided as the simulation
method provides in general better results (with an increased training time).
Comparing the extremal values method and the simulation method is more
difficult. Whereas the extremal values method seems to perform better on
interval-valued inputs, it cannot be generalized to arbitrary probabilistic
inputs. Moreover, using a MLP trained with the extremal values method
to classify new real valued inputs can give very incorrect results. There-
fore, we recommend to use both methods together in order to add their
respective qualities. We are currently implementing those methods for the
ASSO (Analysis System of Symbolic Official data) European IST Project
(see http://www.info.fundp.ac.be/asso/).

References

Beheshti, M., Berrached, A., de Korvin, A., Hu, C., and Sirisaengtaksin, O. (1998).
On interval weighted three-layer neural networks. In Proceedings of the 31

Annual Simulation Symposium, pages 188–194. IEEE Computer Society Press.

Bishop, C. (1995a). Neural Networks for Pattern Recognition. Oxford Press.

Bishop, C. (1995b). Training with noise is equivalent to Tikhonov regularization.
Neural Computation, 7(1):108–116.

Bock, H.-H. and Diday, E., editors (2000). Analysis of Symbolic Data. Exploratory

methods for extracting statistical information from complex data. Springer Ver-
lag.

Grandvalet, Y., Canu, S., and Boucheron, S. (1997). Noise injection: Theoretical
prospects. Neural Computation, 9(5):1093–1108.

Moore, R. (1966). Interval Analysis. Englewood Cliffs, New Jersey.



Multi-layer Perceptron on Interval Data 9

Sietsma, J. and Dow, R. (1991). Creating articial neural networks that generalize.
Neural Networks, 4(1):67–79.

Simoff, S. J. (1996). Handling uncertainty in neural networks: An interval approach.
In Int. Conf. on Neural Networks, pages 606–610, Washington. IEEE.

Š́ıma, J. (1995). Neural Expert Systems. Neural Networks, 8(2):261–271.
Zell, A. et al. (1995). SNNS 4.1 user manual. University of Stuttgart.


	Multi-layer Perceptron on Interval Data

