
Functional Data Analysis With Multi Layer
Perceptrons0

Fabrice Rossi∗1, Brieuc Conan-Guez† and François Fleuret†

∗ LISE/CEREMADE, UMR CNRS 7534, Université Paris-IX Dauphine,
Place du Maréchal de Lattre de Tassigny, 75016 Paris, France

† INRIA, Domaine de Voluceau, Rocquencourt, B.P. 105
78153 Le Chesnay Cedex, France

Abstract—In this paper, we propose a way to apply Multi
Layer Perceptron (MLP) to Functional Data Analysis. We
introduce a computation model for functional input data
and we show that this model is a well behaving extension of
MLP: we show that the proposed model has the universal
approximation property. Moreover, parameter estimation
for this model is consistent. As a conclusion, we demon-
strate functional MLP possibilities on simulated data and
show they perform better than numerical MLP for a given
number of parameters.

I. Introduction

In many practical situations, studied objects can be ac-
curately described by one or more regular functions. For
instance, the size of a child at different ages is a continuous
function from a real interval to R (see [1]). Another ex-
ample is provided by the annual temperature variation in
a given region: previous years can be used to predict the
next year whole climate thanks to auto-regressive func-
tional models, as in [2].

It might be tempting to consider functional data as clas-
sical multivariate data, because they are in general de-
scribed by a finite set of input/output pairs (for instance
a set of ages is associated to a corresponding set of sizes in
the previously presented example). Unfortunately, multi-
variate manipulation does not take into account smooth-
ness or more generally structure of the underlying func-
tions, and numerous practical studies have shown that a
direct functional approach gives better results. This is
the purpose of Functional Data Analysis (FDA), which
is comprehensively presented in [1]. Moreover, in many
cases, measurement points differ from one input function
to another: multivariate treatment is not possible directly
in this case (see section IV for examples).

FDA methods are in general based on linear modeling.
Moreover, observed functions are generally replaced by
the coordinates of their projection on a well chosen base:
it is quite common for instance to use a spline based ap-
proximation of input functions. This allows to fall back to

0Published in IJCNN’02 Proceedings.
Available at
http://apiacoa.org/publications/2002/ijcnn02.pdf

1Up to date contact informations for Fabrice Rossi are avaible at
http://apiacoa.org/

a multivariate approach, but without loosing the smooth-
ness assumption which can be taken into account during
the projection (and also directly within the method).

In this paper, we propose to use Multi Layer Percep-
trons (MLP) for FDA, so as to enable non linear pro-
cessing of functional inputs. Our model does not use ba-
sis function expansion and can therefore work directly on
functional inputs.

The rest of this paper is organized as follows: we present
first our model. Then we give theoretical results that show
the proposed model is an universal approximator and that
consistent estimation of optimal parameters is possible.
We conclude with simulation results that illustrate the
results our model can achieve.

II. Functional Multi Layer Perceptrons

A. Neurons with infinite dimensional input

On a theoretical point of view, there is no obvious rea-
son to restrict MLP to finite dimensional inputs. Indeed
a classical MLP neuron maps an input x to the real out-
put T (b + wx), where T is an activation function from
R to R, b a real number and w a vector from R

n, ex-
actly as x. Whereas T and b cannot be easily extended,
x 7→ wx can: this function is a linear form on the input
space R

n, characterized by the vector w. If we consider a
general vectorial input space X , we can use a “weight” w

from X∗, the dual of X , i.e., the set of continuous linear
forms on X . With this approach, a generalized neuron
maps an input x ∈ X to the real output T (b + w(x)). In
this formula, w(x) is the generalization of wx to arbitrary
vectorial space. This approach is rather natural and was
precisely studied on a theoretical point of view in [3].

Using generalized neurons, it’s easy to build a MLP
that works on an arbitrary vectorial space X . As gener-
alized neurons provide a real output, we use them only
in the first hidden layer. Subsequent layers use numeri-
cal neurons. For instance, an one hidden layer perceptron
with one real output computes a function of the following
form:

H(g) =

k∑

i=1

aiT (bi + wi(g)) , (1)

http://apiacoa.org/publications/2002/ijcnn02.pdf
http://apiacoa.org/

where the ai are real numbers, as well as the bi, and wi

are continuous linear forms on X .

B. Functional MLP

Of course, equation 1 cannot be used directly, simply
because it’s not possible in general to manipulate linear
forms on arbitrary vectorial spaces. In this paper, we
consider only functional inputs, more precisely, X is a
Lp(µ) space, i.e. a set of measurable functions f from R

n

to R such that
∫
|f |pdµ < ∞, where µ is a finite positive

Borel measure on R
n (it’s the observation measure, see

following subsection). In this case, we know that a subset2

of the dual of Lp(µ) can be identified to Lq(µ), where q is
the conjugate exponent of p. Therefore, we can simplify
weights which are no more linear forms but functions.
Equation 1 turns into:

H(g) =

k∑

i=1

aiT

(
bi +

∫
wigdµ

)
, (2)

where the ai are real numbers, as well as the bi, and wi

are functions in Lq(µ).

C. Practical implementation

We still have two practical problems with equation 2:
it is not easy to manipulate functions (i.e., weights) and
we have only incomplete data (i.e., input functions are
known only thanks to finite sets of input/output pairs).

The first problem can be solved by embedding nu-
merical function approximators into generalized neurons.
More precisely, for each weight we can use a parametric
regressor, i.e., a function F from W × R

n to R, where
W is a compact subset of R

j . F is assumed to be eas-
ily computable. By adjusting numerical parameters, i.e.,
by choosing w ∈ W , we can modify the weight function
F (w, .). It is possible for instance to use a numerical MLP
for each parametric regressor, but it’s not mandatory (B-
splines as well as trigonometric series can be interesting
candidates).

Equation 2 turns now into:

H(g, w) =

k∑

i=1

aiT

(
bi +

∫
Fi(wi, x)g(x)dµ(x)

)
, (3)

where the ai are real numbers, as well as the bi, and
w = (w1, . . . , wk) are parameter vectors (from a finite
dimensional space) for parametric regressors.

The second problem is partly solved thanks to the ob-
servation measure µ. Indeed, each input function is in
general only known at a finite number of measurement
points. We assume that those measurement points are
independent identically distributed random variables (de-
fined on a probability space P) and we denote PX the

2In fact, if p < ∞ Lq(µ) can be exactly identified to the dual of
Lp(µ), whereas L1(µ) can only be identified to a strict subset of the
dual of L∞(µ).

probability measure induced on R
n by those random vari-

ables. This observation measure weights measurement
points and it seems therefore natural to consider that
µ = PX .

If we denote (Xl)l∈N the sequence of random variables
associated to measurement points for function g, the exact
output for the functional MLP proposed by equation 3 is
replaced by the following sequence of random variables:

Ĥ(g, w)m =

k∑

i=1

aiT

(
bi +

1

m

m∑

l=1

Fi(wi, Xl)g(Xl)

)
, (4)

where internal sums are approximations of:

E(Fi(wi, X)g(X)) =

∫
Fi(wi, x)g(x)dPX (x), (5)

if we denote X = X1.

D. Training

There is one practical problem left: how to train a
functional MLP? We propose as for numerical MLP to
rely on gradient based algorithms. Therefore, we need
to be able to compute the derivative of the output of a
generalized neuron with respect to its parameters. Un-
der regularity assumptions, derivating the mapping w 7→
U(w) = T

(
b +

∫
F (w, .)gdµ

)
is not a problem. Indeed, if

we assume the partial derivative ∂F
∂w

exists µ-almost ev-
erywhere, is measurable and is dominated by a positive
function of Lq(µ), then the differential of U is given by:

dU(w) =

T ′

(
b +

∫
F (w, .)gdµ

)∫
∂F

∂w
(w, x)g(x)dµ(x) (6)

To compute the differential of the modeling error made
by a functional MLP, we need to apply an extended back-
propagation which is described in [4]. For simple network
architecture such as the MLP one, the extended back-
propagation simply adapts classical formulae to the case
of arbitrary neurons for which the differential of the out-
put with respect to the numerical parameters can be com-
puted: we are exactly in this case.

III. Theoretical results

A. Universal approximation

One of the most important properties fulfilled by MLP
is the universal approximation property: given a suffi-
ciently regular function and a requested approximation
precision, there exists an one hidden layer perceptron that
computes a function which approximates the given func-
tion to the requested precision (see [5] for one of the first
results about universal approximation). In [3], M. Stinch-
combe extends universal approximation results to a very
broad class of MLP, including MLP on almost arbitrary
input spaces. The only practical drawback of those results

is that they use very general hypotheses on approximation
of linear forms on general vectorial spaces which are quite
technical. In this section, we propose a simplified corol-
lary of M. Stinchcombe’s results which shows that our
proposed model is an universal approximator.

Corollary 1. Let 1 ≤ p ≤ ∞ be an arbitrary real number
and q be the conjugate exponent of p. Let µ be a finite
positive Borel measure on R

n. If p = 1, µ is additionally
assumed compactly supported. Let M be a subset of Lq(µ)
either that is dense in Lq(µ) when p > 1 or that contains
a set which is uniformly dense on compacta in C(Rn, R)
when p = 1. Let T be a measurable function from R to R

that is non polynomial and Riemann integrable on some
compact interval (not reduced to one point) of R.

Let K be a compact subset Lp(µ) and f be a continuous
function from K to R. Then for each ε > 0, there is
a functional MLP that computes g from K to R so that
|f − g|∞ < ε. The functional MLP uses T as activation
function and elements of M as weight functions.

Proof: See section VI.
In practical situation, M is obtained thanks to paramet-
ric regressors. In particular, approximation results given
by [6], [7], [3] allow to use numerical MLP to realize M

for any p. The practical consequence of corollary 1 is
that given a continuous function from a compact subset
of a functional space to R and a requested approxima-
tion precision, there is a functional MLP based on em-
bedded numerical MLP (or on other parametric regres-
sors) that computes an approximation of the proposed
function within the requested precision. The quite unex-
pected thing is that the approximating MLP uses a finite
number of parameters despite the infinite dimension of
the input space.

B. Consistency

As explained in subsection II-C, input functions are rep-
resented in general by a finite set of input/output pairs.
Moreover, we have only a limited number of input ex-
amples. The problem is that when we estimate optimal
parameters for a functional MLP using those limited in-
formation, we have no a priori reason to believe that the
obtained parameters are correct approximation of the real
optimal parameters which could be theoretically obtained
if we had a complete knowledge.

This consistency problem has been assessed in [8] for
numerical MLP. Unfortunately, results of [8] cannot be
applied to our problem for two reasons: first, they explic-
itly ask to the MLP input to belong to a finite dimen-
sional vector space; second, we have two approximation
problems rather than one (we have limited inputs, but we
have also a limited knowledge on each input).

On the mathematical point of view, our problem can
be formalized as follows. We want to compute optimal
parameters for an approximation task. For a given in-
put function g, we know a desired output y ∈ R (exten-

sion to R
l is straightforward). We can use for instance a

quadratic error, that is we want to minimize (H(g, w)−y)2

for all g. Theoretically, we can describe example functions
and desired outputs as independent identically distributed
realization of a sequence of random elements (Gj , Y j)j∈N

defined on a probability space P . With this model, “true”
optimal parameters for a functional MLP are minimizers
of error expectation, i.e.:

λ(w) = E
(
(H(G, w) − Y)2

)
, (7)

where we denote G = G1 and Y = Y 1. Of course, other
error measures can be used, but we always end up with the
expectation of the cost for one example. Unfortunately,
λ(w) cannot be exactly computed and is replaced by the
following estimation (which is a random variable):

λ̂n(w) =
1

n

n∑

j=1

(H(Gj , w) − Y j)2 (8)

Moreover, H cannot be exactly computed but is replaced
by a finite sample estimation (which is also a random vari-
able, see section II-C). Therefore, we can only manipulate
the following quantity:

λ̂m
n (w) =

1

n

n∑

j=1

(Ĥ(Gj , w)mj

− Y j)2, (9)

where m = inf1≤j≤n mj . Let us call ŵm
n a minimizer of

λ̂m
n (w) and W ∗ the set of minimizers of λ(w). Estimated

optimal parameters are realization of ŵm
n , whereas true

optimal parameters belong to W ∗. We have the following
theorem:

Theorem 1. Under regularity assumptions on H and the
cost function, we have:

lim
n→∞

lim
m→∞

d(ŵm
n , W ∗) = 0 PX a.s. (10)

Proof: Proof is again omitted due to size constraints.
It can be found in [9].
Regularity assumptions on H are very technical (see [9]
for details), but can be summarized as follows: the error
for one example, e.g., d(g, w, y) = (H(g, w) − y)2 must
be continuous with respect to the parameters and mea-
surable with respect to the observations (input and out-
put). Moreover, d(., w, .) has to be dominated uniformly
on the parameter space by an integrable function. Simi-
lar conditions must be satisfied by embedded parametric
regressors. Traditional sigmoid based MLP satisfy all the
requested properties.

Because of the simplified presentation proposed here,
an important fact might remain hidden: the consistency
theorem does not request an uniform knowledge for each
input function. The number of evaluation points and their
position can depend on the input function. The only re-
quirement is that evaluation points are independent iden-
tically distributed random variables.

The proposed theorem is a generalization of consistency
results to functional MLP. The practical meaning is quite
simple: optimal parameters estimated from limited data
are consistent approximation of real optimal parameters,
in the precise sense that the more data we have, the closer
the estimated parameters are to the optimal ones.

IV. Simulation results

We present in this section simulation results based on
artificial data.

A. Function discrimination

We have tried our model on a simple discrimination
problem: we ask to a functional MLP to classify functions
into classes. Example of the first class are functions of
the form fd(x) = sin(2π(x − d)), whereas function of the
second class have the general form gd(x) = sin(4π(x−d)).

For each class we generate example input functions ac-
cording to the following procedure:

1. d is randomly chosen uniformly in [0, 1]
2. 25 measurement points are randomly chosen uniformly
in [0, 1]
3. we add a centered Gaussian noise with 0.7 standard
deviation to the corresponding outputs

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

class one: d=0.331904
class two: d=-0.155141

Fig. 1

Examples of smooth curves

Figure 1 give an example of both classes without the noise,
whereas figure 2 gives the corresponding actual data.

Training is done thanks to a conjugate gradient algo-
rithm and uses early stopping: we used 100 training ex-
amples (50 of each class), 100 validation examples (50 of
each class) and 300 test examples (150 for each class).
Using 3 hidden functional neurons, we achieved 94.4 %
recognition rate. Each functional neuron is built using
4 cubic B-splines centered at regularly spaced points in
[0, 1] (we have therefore 4 real parameters to which we
add one threshold). The functional MLP uses therefore a
total of 19 numerical parameters.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

class one: d=0.331904
class two: d=-0.155141

Fig. 2

Examples of actual data for curve classification

We have compared the functional MLP approach to a
numerical approach. It is obviously not possible to use
directly functional data as an input to a numerical MLP,
especially because evaluation points depend on the func-
tion. The simplest way to transform functions in a finite
number of values is to use averaging. For this experi-
ment, we have divided [0, 1] in four sub-intervals and we
have transformed a function into four values: the mean of
the function on each sub-interval. We have submitted the
obtained data to a numerical MLP with 3 hidden neurons
(using therefore 19 numerical parameters). The MLP has
been trained exactly as the functional ones (using early
stopping and with identical training sets up to the recod-
ing). After training, we obtain 94.7% recognition rate,
which is slightly better than the functional MLP.

We have conducted other similar experiments, with
different functional generator (for instance fd(x) =
sin(4π(x − d)) and gd(x) = sin(6π(x − d))). The general
behavior is always the same: functional and numerical
MLP obtain similar performances. There is no obvious
winner. We have presented a simulation in which numer-
ical MLP give slightly better results, but for other input
functions, the contrary is true.

Results of this experiment are a little bit disappoint-
ing, because the functional MLP does not outperform the
numerical one. The main explanation is that the aver-
aging strategy is quite well adapted to the data. With
low dimensional input space for the studied functions, it
is quite obvious that this kind of averaging strategy will
give a correct representation of the function. When we
use higher dimensional input spaces, the number of eval-
uation points needed to achieve a correct representation
by a simple averaging technique is too important. As the
next experiment will show, functional MLP will not suffer
too much from this low volume of data.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

in one circle
outside circles

Fig. 3

Examples of circle data with five circles (11111)

B. Circle counting

We have tried functional MLP on another difficult task.
We define five small circles in the plane (radius is 0.1).
Centers are uniformly spaced on a bigger circle (radius
is 0.3). The five circles are represented on figure 3. We
generate an input function as follows:

1. We first choose uniformly an integer from [0, 31]. The
binary representation of this number, b0b1b2b3b4, is used
as the desired output for the currently generated input (we
have therefore five output units). Moreover, each digit in
the binary representation corresponds to a circle.
2. Then we choose 200 measurement points uniformly in
[0, 1]× [0, 1]. The output of the function at a given point
is always 0 if the point falls out of the five small circles. If
the point falls in small circle number i, the output of the
function is bi. For instance, figure 3 is an observation of
the input function for 11111 = 31 and figure 4 corresponds
to 11010 = 26.

The goal of the functional MLP is to associate the func-
tion to the generating number translated into its binary
representation. We have use embedded MLP to represent
weight functions. Experiments have been conducted with
100 input functions for the training set as well as 100 in-
put functions for the validation set. Final performances
(after early stopping) were calculated on a test set with
300 examples. The following table summarizes experi-
ments. Mean square error and recognition rate have been
calculated on the test set. The recognition is obtained
by thresholding the output neurons to 1 if the output is
greater than 0.5, and to 0 on the contrary.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

in one circle
outside circles

Fig. 4

Examples of circle data with three circles (11010)

hidden
functional
neurons

hidden
numerical
neurons

weight
number

mean
square
error

recognition
rate

5 1 60 0.071 92%
6 1 71 0.059 97%
5 3 100 0.016 100%

We have tried to submit those data to a numerical MLP.
As in the previous experiment, the simplest choice is to
replace the sample data by average performed on a fixed
grid (more sophisticated procedures might be used, as ex-
plained below). To do this, we have divided the square
[0, 1]× [0, 1] into r×r regular sub-squares. We use a MLP
with r2 inputs. Each input is the average output value
of the example function on the considered square. For in-
stance with the functional input data represented in figure
4, we obtain the following reduced input data (for r = 4):

x ∈ [0, 1

4
[x ∈ [1

4
, 1

2
[x ∈ [1

2
, 3

4
[x ∈ [3

4
, 1]

y ∈ [0, 1

4
[0 0 0.37 0.14

y ∈ [1
4
, 1

2
[0 0 0 0

y ∈ [1
2
, 3

4
[0.45 0.24 0.056 0

y ∈ [3
4
, 1] 0 0.077 0.36 0

The desired output is encoded as for the functional MLP
by 5 output units. We obtain the following results (train-
ing sets are identical for both methods):

r hidden
neurons

weight
number

mean
square
error

recognition
rate

3 5 80 0.053 94%
4 5 115 0.013 99%

Those experiments clearly show that numerical MLP need
more weights than functional MLP to achieve similar re-
sults. We think that the power of functional MLP comes
from the fact it can adapt its averaging model to the
data, whereas it has to be fixed before training to pro-
duce good results with numerical MLP. It would have
been simple to chose a more adapted averaging strategy
for the studied case and therefore to increase numerical
MLP performances. But this kind of specialized averag-
ing is possible only with a very good understanding of the
data, whereas functional MLP have been applied without
any data driven modification. A complete comparison be-
tween data driven averaging strategies as a preprocessing
stage before numerical MLP processing on the one hand,
and functional MLP on the other hand, is currently our
main focus, especially when the input dimension is high.

V. Conclusion

In this paper, we have introduced Functional Multi
Layer Perceptrons (FMLP), a simple extension of MLP
to functional data. The proposed model is very interest-
ing on a theoretical point view because it shares with its
numerical counterpart useful properties.

We have indeed shown that FMLP are universal ap-
proximators, that is they can approximate continuous
mappings from a compact subset of a functional space
to R with arbitrary precision. For a given function to ap-
proximate to a given accuracy, the approximating FMLP
uses a finite number of numerical parameters.

Moreover, we have shown that parameter estimation
for FMLP is consistent: optimal parameters estimated
thanks to a finite number of functions known at a finite
number of measurement points converge to the set of true
optimal parameters when the size of the data increases.

We have shown on simulated data that FMLP perform
in a very satisfactory way. In high dimensional input
spaces, even if a numerical MLP approach is possible, it
will use more parameters than the corresponding FMLP.
More investigation is nevertheless needed to establish the
practical possibilities of Functional MLP, especially ex-
periment involving real data. Comparison with sophis-
ticated preprocessing techniques associated to numerical
MLP will be very interesting, because we think FMLP
are a way to integrate the preprocessing optimization di-
rectly in the MLP optimization and therefore to avoid an
explicit definition of this preprocessing phase.

VI. Proof of corollary 1

Dues to space constraints, we give only a sketch of
proof. The complete proof can be found in [9].

We denote AM the set of linear forms on Lp(µ) of the
form l(f) =

∫
fgdµ, where g ∈ M . We have to consider

three cases:
1. 1 < p < ∞: then, Lq(µ) can be identified to the dual of
Lp(µ). As M is dense in Lq(µ), AM is dense in (Lp(µ))∗

for the weak-∗ topology. According to [7], hypotheses on

T imply hypotheses on the generalized MLP activation
function needed by corollary 5.1.3 of [3]. Density of AM

is the other requested property of this corollary which can
therefore by applied to conclude that we have universal
approximation.
2. p = ∞: this case is slightly more technical. Basi-
cally, we need to prove that the set of functions defined
on L∞(µ) by l(f) = α +

∫
fgdµ, where g ∈ M , separates

points in K. That is, given two functions f1 and f2 from
K, we have to prove that there is a function l such that
l(f1) 6= l(f2). We do this by approximating the character-
istic function of the set H+ = {x ∈ R

n | f1(x) > f2(x)}
(is H+ as zero measure, we swap f1 and f2). This func-
tion is approximated by a function from M thanks to the
density assumption. When the separation property has
been established, we apply theorem 5.1 of [3] which im-
plies universal approximation.
3. p = 1: we prove that AM is dense in (Lp(µ))∗ for the
weak-∗ topology and using the identification of this dual
to L∞(µ). To do this, we first approximate a function
in L∞(µ) by a compactly supported continuous function
thanks Lusin theorem (e.g. [10]). Then we approximate
this function on the support of µ by an element of M

thanks to the hypothesis. Conclusion is again obtained
thanks to corollary 5.1.3 of [3].
It is interesting to note that additional hypothesis on µ

are needed for p = 1 because it’s not possible in general to
approximate functions (even regular) on R

n for the uni-
form norm with traditional tools (such as MLP or splines).
This kind of non-approximation results is studied in [3].

References

[1] Jim Ramsay and Bernard Silverman, Functional Data Analy-
sis, Springer Series in Statistics. Springer Verlag, June 1997.

[2] Philippe Besse, Hervé Cardot, and David Stephenson, “Au-
toregressive forecasting of some functional climatic variations,”
Scandinavian Journal of Statistics, vol. 4, pp. 673–688, 2000.

[3] Maxwell B. Stinchcombe, “Neural network approximation of
continuous functionals and continuous functions on compacti-
fications,” Neural Networks, vol. 12, no. 3, pp. 467–477, 1999.

[4] Cédric Gégout, Bernard Girau, and Fabrice Rossi, “Generic
Back-Propagation in Arbitrary Feedforward Neural Networks,”
in Int. Conf. on Artificial Neural Nets and Genetic Algorithms,
D. W. Pearson, N. C. Steele, and R. F. Albrecht, Eds., Alès,
April 1995, pp. 168–171, Springer Verlag,

[5] Kurt Hornik, Maxwell Stinchcombe, and Halbert White, “Mul-
tilayer feedforward networks are universal approximators,”
Neural Networks, vol. 2, pp. 359–366, 1989,

[6] Kurt Hornik, “Approximation capabilities of multilayer feed-
forward networks,” Neural Networks, vol. 4, no. 2, pp. 251–257,
1991.

[7] Kurt Hornik, “Some new results on neural network approxi-
mation,” Neural Networks, vol. 6, no. 8, pp. 1069–1072, 1993.

[8] Halbert White, “Learning in Artificial Neural Networks: A
Statistical Perspective,” Neural Computation, vol. 1, no. 4, pp.
425–464, 1989,

[9] Fabrice Rossi, Brieuc Conan-Guez, and François Fleuret,
“Functional multi layer perceptrons,” Tech. Rep. 0134, CERE-
MADE & INRIA, http://www.ceremade.dauphine.fr/ ,
december 2001, Available at
http://apiacoa.org/publications/2001/Preprint0134.pdf.

[10] Walter Rudin, Real and complex Analysis, Mc Graw Hill, 1974.

http://www.ceremade.dauphine.fr/

	Introduction
	Functional Multi Layer Perceptrons
	Neurons with infinite dimensional input
	Functional MLP
	Practical implementation
	Training

	Theoretical results
	Universal approximation
	Consistency

	Simulation results
	Function discrimination
	Circle counting

	Conclusion
	Proof of corollary 1

