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1 Introduction

Functional Data Analysis (see Ramsay and Silverman (1997)) is a framework
which aims at improving traditional data analysis techniques when individ-
uals are described by functions. This approach, contrary to its multivariate
counterpart, takes advantage of some internal data structures to produce in
general more pertinent results. The most obvious structure, in the functional
context, is of course the regularity of the observed individuals: for example,
in some spectrometric applications from food industry, each individual is de-
scribed by a spectrum (say 100 chanels). The shape of these spectra are very
smooth, and is handled in a natural way by the functional techniques. An-
other example of structure which can not be treated without a functional
prior-knowledge, is the periodicity of the studied functions : for example, in
Ramsay and Silverman (1997), the authors study the evolution of the Cana-
dian temperature over one year. These data present strong sinusoidal patterns,
which are taken into account by the functional framework.

In this paper, we recall the properties of the Functional Multi-Layer Per-
ceptron (FMLP) based on a projection step. This model is in fact a natural
extension of standard MLPs to the functional context, and its properties were
studied from a theoretical point of view in some earlier works (see for example
Conan-Guez and Rossi (2002) and Rossi and Conan-Guez (2004)). In this pa-
per, we focus at comparing our model to standard MLPs on a real application:
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our problem is a discrimination task on phoneme data which is very similar
to the one studied in Hastie et al. (1995).

2 Functional Multi-Layer Perceptrons

2.1 Functional neurons

A n input MLP neuron is characterized by a fixed activation function, T , a
function from R to R, by a vector from R

n (the weight vector, w) and by a
real valued threshold, b. Given a vectorial input x ∈ R

n, the output of the
neuron is N(x) = T (w.x + b).

In the proposed approach, we restrict ourselves to the case where inputs
belong to the Hilbertian space L2(µ) (with µ a finite positive Borel measure).
In this framework, the extension of numerical neurons to functional inputs is
straightforward. Indeed ,we consider two functions f and g, elements of L2(µ).
f is the input function, and g is called ”the weight function” (g has the same
meaning as w for the numerical neuron). The output of the functional neuron
is N(f) = T (

∫

fgdµ + b) (where T is a function from R to R and b is a real
value).

2.2 Functional MLP

The MLP architecture can be decomposed in neuron layers: the output of
each layer (i.e., the vector formed by the output of neurons belonging to this
layer) is the input of the next layer. As a functional neuron gives a numerical
output, we can define a functional MLP by combining numerical neurons with
functional neurons. The first hidden layer of the network consists exclusively in
functional neurons (defined thanks to weight functions gi), whereas subsequent
layers are constructed exclusively with numerical neurons. For instance, an
one hidden layer functional MLP with real output computes the following
function:

H(f) =

k
∑

i=1

aiT

(
∫

gif dµ + bi

)

(1)

where ai, bi are real values, and f , gi are elements of L2(µ).

3 Projection based approach

3.1 Parametric approach

As stated above, the FMLP evaluation relies on the computation of all the
integrals

∫

gif dµ of the first hidden layer. Unfortunately, in practice these
integrals can not be calculated exactly, as gi and f are arbitrary functions of
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L2(µ). One way to deal with this problem is to use a regularized representation
of f and gi in place of the true functions.

Let (φp)p∈N∗ be a topological basis of L2(µ), and let ΠP be the projection
operator on the subspace spanned by the P first elements of the basis (denoted

span(φ1, ..., φP )), i.e. ΠP (f) =
∑P

p=1
(
∫

fφp dµ)φp. Thanks to this projection
step, a first simplification occurs in the FMLP evaluation: it is no more nec-
essary to deal with the real input function f as well as to compute H(f). We
just consider the projection ΠP (f) as the FMLP input, and our only concern
is the evaluation of H(ΠP (f)). A second simplification can be applied to our
model, we restrict the choice of weight functions to span(φ1, ..., φP ). There-

fore, for the weight function g =
∑P

q=1
αqφq , the integral can be rewritten in

the following form:

∫

gΠP (f) dµ =

P
∑

q=1

P
∑

p=1

(

∫

φpf dµ)αq

∫

φpφq dµ = αT Λβ (2)

where Λ = (
∫

φpφqdµ)p,q , and β = (
∫

φpf dµ)p.
In this expression, each

∫

φpf dµ is computed during the projection step
(more precisely, an approximate value as explained in 3.2). The

∫

φpφq dµ are
independant of the αq as well as the input functions, therefore their evaluation
can be done once and for all. Depending on the basis used to represent weight
functions and input functions, this evaluation can be performed either exactly,
or approximately.

Using linear models to represent weight functions allows the FMLP to be
parameterized by a finite number of numerical parameters. Hence, the FMLP
training can be performed with traditional optimization algorithms.

3.2 Approximation of the projection

As explained in 3.1, the proposed method aims at computing H(ΠP (f)).
Unfortunaltely, due to our limited knowledge of f (f is known thanks to a
finite number of input/output pairs), the computation of ΠP (f) is not possible
in practice. To overcome this problem, we substitute in the FMLP evaluation
the real projection ΠP (f) by an empirical one defined as follows.

Each studied function f is described by a list of observations (xj , f(xj) +
εj)0≤j≤m, where εj is the evaluation error on f at the observation point xj

(see Conan-Guez and Rossi (2002) for a detailed probabilistic description). It
should be noted that the number of evaluation points m is free to vary from
one function to another.

We define ΠP (f)m, element of L2(µ), as the unique minimizer
∑P

p=1
βpφp

of
∑m

j=1
(f(xj) + εj −

∑P

p=1
βpφp(xj))

2 defined thanks to the Moore-Penrose
inverse. Thanks to this empirical projection, a second simplification occurs in
the FMLP evaluation: after the substitution of the input function f by its
projection Π(f) in the section 3.1, we now focus on computing H(ΠP (f)m),
rather than H(ΠP (f)).
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3.3 Link with classical MLPs

In section 3.1, we have shown that the evaluation of the integral of a functional
neuron could be reduce to some algebraic computation:

∫

gΠP (f)m dµ =
αT Λβm where βm is the coordinates of ΠP (f)m. In fact, as we shall see now,
the calculation of a functional neuron is equivalent to the one of its numerical
counterpart. Indeed, as (φp)0≤p≤P is a free system, Λ is a full rank matrix.
Therefore if we choose an arbitrary vector of coefficients c, we can define a
function t by:

t =

P
∑

q=1

dqφq

with d = Λ−1c such that

∫

t Πm(f)dµ =

P
∑

q=1

cqβm,q

Therefore, a linear combination of the (approximate) coordinates of f on
span(φ1, ..., φP ) is always equal to the scalar product of Πm(f) with a well
chosen weight function t. From a practical point of view, we can submit the
coordinates of Πm(f) to a standard MLP, and the prediction made by this
model will be totally equivalent to the one of a FMLP. Consequently we see
that our functional approach doesn’t require specific software developement:
an existing neural network library can be easily used to implement FMPs.

3.4 Theoretical properties

We studied from a theoretical point of view the proposed model in some earlier
works (see Conan-Guez and Rossi (2002) and Rossi and Conan-Guez (2004)).
We showed that FMLPs possess two important properties:

• the FMLP based on a projection step is a universal approximator, in the
sense that for any real valued continuous function F defined on a compact
K of L2(µ), it exists P , the size of the truncated basis (the basis is fixed),
and H a FMLP, such that F is approximated by HoΠP to a given precision
(the set of functions HoΠP is dense in C(K, R) for the uniform norm);

• the FMLP based on a projection step is consistent, in the sense that if we
estimate the model parameters on a finite number of input functions, each
one known thanks to a finite list of observations, these estimators converge
to the theoretical parameters, when the number of functions as well as the
number of observation points tend to infinity (more precisely, the number
of observations needed to achieve a given precision depends on the number
of functions).
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4 Experiment

4.1 The data

The problem we are adressing in this paper is a discrimination task of phoneme
data. This dataset can be found in the TIMIT database and was studied by
Hastie et al. (1995) as well as Ferraty and Vieu (2003). The data are log-
periodograms corresponding to recording phonemes of 32 ms duration. The
goal of this experiment is to discriminate 5 different patterns corresponding
to 5 different phonemes (”sh” as in ”she”, ”dcl” as in ”dark”, ”iy” as in ”she”,
”aa”as in ”dark”, and ”ao”as in ”water”). These phonemes are part of the first
sentence of the speach corpus. Each speaker (325 in the training set and 112
in the test set) is recorded at a 16-kHz sampling rate; and we retain only the
first 256 frequencies. Finally, the training set contains 3340 spectra, whereas
the test set contains 1169 spectra.

classes aa ao dcl iy sh

training 519 759 562 852 648

test 176 263 195 311 224

Table 1. number of phonemes in the training/test set

The table 1 describes the distribution of each phoneme in the training set
as well as in the test set. In figure 1, we draw 5 spectra of the phoneme ”sh”.
We can see from this figure that spectra are very noisy.
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Fig. 1. 5 Log-Periodograms for the ”sh” phoneme
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4.2 Multivariate and functional approach

In this experiment, we aim at comparing the projection based FMP to stan-
dard MLPs. As it can be seen in the following part, both models are in many
ways very similar. The main difference lies in the data pre-processing: the
FMLP uses a functional pre-treatement, whereas the standard MLP relies on
a raw pre-processing. It should be noted that apart from this practical differ-
ence, the functional model brings a theoretical framework which doesn’t exist
for the multivariate model (parameters consistency in 3.4).

Each spectrum is a vector of 256 components. In the case of the standard
MLP, we compute the principal component analysis on these spectra and we
retain a fixed number of eigenvectors according to the explained variance cri-
terion. More precisely, each eigenvector wich explains more than 0.5% of the
total variance is retained. The criterion imposes 11 eigenvectors. The projec-
tion components are then centered and scaled to unit variance. We finally
submit these vectors to a standard MLP.

In the case of the FMLP, functions are first smoothed by a standard rough-
ness penalty technique: the estimation of each curve is done by a spline with
a penalty on the second derivative of the estimate (function smooth.spline

in R). After this fitting step, each estimate is then sampled on 256 equally
spaced points. The vector is then submitted to a principal component anal-
ysis, and the number of retained eigenfunctions is done according to the
same explained variance criterion as above: we retain 10 eigenfunctions.
This technique of smoothing the data before the PCA is well described in
Ramsay and Silverman (1997). This functional approach allows to ”let the
data speak” while adding a functional constraint which get rid of the noise of
the observed functions. In figure 2, we can see spline estimates of 5 spectra of
the phoneme ”sh”.

After a centering and scaling stage, we submit the sample of each spline to
a standard MLP (which is equivalent to the functional approach as explained
in 3.3). In figure 3 and 4, we show the PCA for both approaches.

The MLP training is done thanks to a weight decay technique: we add to
the error function a penalty term which constraints model parameters to be
small (the penalty is the L2-norm of parameter vector). In order to find the
best model, we therefore have to choose the best architecture (number of hid-
den neurons in the MLP) as well as the smoothing parameter (which controls
the weight decay). This can be done by a k-fold cross-validation technique. In
our case, we choose k equal to 4, mainly for computational reasons. For the
multivariate approach, 4 neurons is chosen, whereas for the functional one, 5
neurons is chosen (the range of hidden neurons for the k-fold cross-validation
is from 3 to 7). The results obtained are summarized in table 2.

As it can be seen, the functional approach perfoms better than the mul-
tivariate one. This can be explained by the fact that spectra are very noisy,
which penalizes the multivariate approach. The functional approach, thanks
to its smoothing step, is able to eliminate some part of this noise, which leads
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Fig. 2. 5 Log-Periodograms for the smooth ”sh” phoneme
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Fig. 3. the 2 first eigenvectors for the multivariate approach
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Fig. 4. the 2 first eigenfunctions for the functional approach
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set training test

FMLP 7 % 7.7%

MLP 7.1% 8.3%

Table 2. Classification error rates of FMLPs and MLPs

to improved results. Moreover, the time needed by the smoothing phase of the
functional approach is very small compared to the (F)MLP training time.

5 Conclusion

In this paper, we showed that a functional approach can be valuable compare
to the multivariate approach. Indeed, in the proposed example, the FMLP is
able to handle the noisy data in a more robust way than the standard MLP.
Although this result is satisfactory, it should be noticed that the proposed
approach doesn’t use as much functional prior-knowledge as it could. Accord-
ing to this remark, one future way of investigation would be for example to
add some functional penalties on the high frequencies of the eigenfunctions:
indeed human ears are less sensitive to frequencies above 1 kHz. Moreover, as
the k-fold cross-validation associated with neural networks is a very expensive
technique, we were unable to use it in order to choose the number of retained
eigenvectors (we used only a variance criterion). It would be interesting to
assess this problem.
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