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Abstract. In data analysis new forms of complex data have to be considered like for exam-
ple (symbolic data, functional data, web data, trees, SQL query and multimedia data,. . . ).
In this context classical data analysis for knowledge discovery based on calculating the cen-
ter of gravity can not be used because input are not Rp vectors. In this paper, we present
an application on real world symbolic data using the self-organizing map. To this end, we
propose an extension of the self-organizing map that can handle symbolic data.
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1 Introduction

The self-organizing map(SOM) introduced by Kohonen [6] is an unsupervised neural network
method which has both clustering and visualization properties. It can be considered as an algorithm
that maps a high dimensional data space, Rp, to a lower dimension, generally 2, and which is
called a map. This projection enables the input data to be partitioned into ”similar” clusters
while preserving their topology. Its most similar predecessors are the k-means algorithm [7] and
the dynamic clustering method [3], which operate as a SOM without topology preservation and
therefore without easy visualization. In data analysis, new forms of complex data have to be
considered, most notably symbolic data (data with an internal structure such as interval data,
distributions, functional data, etc.) and semi-structured data (trees, XML documents, SQL queries,
etc.). In this context, classical data analysis based on calculating the center of gravity can not
be used because input are not Rp vectors. In order to solve this problem, several methods can be
considered depending on the type of data (for example projection operators for functional data [8]).
However, those methods are not fully general and an adaptation of every data analysis algorithm
to the resulting data is needed.

The Kohonen’s SOM is based on the center of gravity notion and unfortunately, this concept
is not applicable to many kinds of complex data. In this paper we propose an adaptation of the
SOM to dissimilarity data as an alternative solution. Our goal is to modify the SOM algorithm
to allow its implementation on dissimilarity measures rather than on raw data. To this end, we
take one’s inspiration from the work of Kohonen [5]. To apply the method, only the definition of
a dissimilarity for each type of data is necessary and so complex data can be processed.

2 Batch self-organizing map for dissimilarity data

The SOM can be considered as carrying out vector quantization and/or clustering while preserving
the spatial ordering of the prototype vectors (also called referent vectors) in one or two dimensional
output space. The SOM consists of neurons organized on a regular low-dimensional map. More
formally, the map is described by a graph (C,Γ ). C is a set of m interconnected neurons having a
discrete topology defined by Γ .

For each pair of neurons (c, r) on the map, the distance δ(c, r), is defined as the shortest path
between c and r on the graph. This distance imposes a neighborhood relation between neurons.
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The batch training algorithm is an iterative algorithm in which the whole data set (noted Ω) is
presented to the map before any adjustments are made. We note zi an element of Ω and zi the
representation of this element in the space D called representation space of Ω. In our case, the
main difference with the classical batch algorithm is that the representation space is not Rp but an
arbitrary set on which dissimilarity (denoted d) is defined.

Each neuron c is represented by a set Ac = z1, ..., zq of elements of Ω with a fixed cardinality
q, where zi belongs to Ω. Ac is called an individual referent. We denote A the set of all individ-
ual referents, i.e. the list A = A1, ..., Am. In our approach each neuron has a finite number of
representations. We define a new adequacy function dT from Ω × P (Ω) to R+ by:

dT (zi, Ac) =
∑

r∈C

KT (δrc)
∑

zj∈Ar

d2(zi, zj) (1)

dT is based on the kernel positive function K. KT (δ(c, r)) is the neighborhood kernel around the
neuron r. This function is such that lim

|δ|−→∞
K(δ) = 0 and allows us to transform the sharp graph

distance between two neurons on the map (δ(c, r)) into a smooth distance. K is used to define a
family of functions KT parameterized by T, with kT (δ) = K( δ

T ). T is used to control the size of
the neighborhood [1]: when the parameter T is small, there are few neurons in the neighborhood.

A simple example of KT is defined by KT (δ) = e−
δ2

T2 .
During the learning, we minimize a cost function E by alternating an assignment step and a

representation step. During the assignment step, the assignment function f assigns each individual
zi to the nearest neuron, here in terms of the function dT :

f(zi) = arg min
c∈C

dT (zi, Ac) (2)

If there is equality, we assign the individual zi to the neuron with the smallest label.
During the representation step, we have to find the new individual referents A∗ that represent

the set of observations in the best way in terms of the following cost function E:

E(f, A) =
∑

zi∈Ω

dT (zi, Af(zi)) =
∑

zi∈Ω

∑

r∈C

KT (δ(f(zi), r))
∑

zj∈Ar

d2(zi, zj) (3)

This function calculates the adequacy between the induced partition by the assignment function
and the map referents A.

The criterion E is additive so this optimization step can be carried out independently for each
neuron. Indeed, we minimize the m following functions:

Er =
∑

zi∈Ω

KT (δ(f(zi), r))
∑

zj∈Ar

d2(zi, zj) (4)

In the classical batch version, this minimization of E function is immediate because the positions
of the referent vectors are the averages of the data samples weighted by the kernel function.

3 Experiments

To evaluate our method, we consider real world interval data. Our adaptation of the SOM to dis-
similarity data is directly applied to this kind of interval structured data, once we can associate
dissimilarity to these data. This application concerns monthly minimal and maximal temperatures
observed in 265 meteorological stations in China. A natural representation of the monthly temper-
ature recorded by a station is the interval constituted by the mean of the daily minimal and the
mean of the daily maximal temperatures observed at this station over a month. Table 1 depicts
the temperature recorded by the 265 stations over a 10-year period (between 1979 and 1988). Each
interval is the mean of the minimal and the mean of the maximal monthly temperatures for these
10 years.
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Station January February ... November December

Abag Qi [-24.9; -17] [-22.3; -12.8] ... [-16.4; -6.2] [-24.7; -14.8]
...

...
...

...
...

...
Hailaer [-28.6; -22.5] [-25.5; -19.7] ... [-17.4; -9.3] [-25.5; -20.0]

...
...

...
...

...
...

Table 1. Temperatures of the 265 Chinese stations between 1979 and 1988

We will now describe the parameters used for this application (dissimilarity, map dimensions,
number of iterations, ...). The choice of these parameters is important for the algorithm. We will
then describe the obtained results. We use the factorial dissimilarity analysis (for more details [9],
[4]) to visualize the maps.

3.1 Hausdorff distance

First, we choose to work with the Hausdorff-type L2-distance on interval data defined as follows:

d(Q,Q′) =

√√√√
p∑

j=1

(max{|aj − a′j |, |bj , b′j |})2 (5)

with Q = (I1, ..., Ip) and Q′ = (I ′1, ..., I
′
p) a pair of items described by p intervals and Ij = [aj , bj ].

It combines the p one-dimensional, coordinate-wise Hausdorff distances in a way which is similar to
the definition of the Euclidean distance in Rp. The map dimension is m = 30 neurons (10× 3). We
use the elements of Ω in a random order to initialize the map and to choose the initial individual
referents A0. The cardinality of the individual referent q is fixed to 1.

Figure 1 shows the initial map on factorial dissimilarity analysis plans.

Fig. 1. Initial map and the data on factorial dissimilarity analysis plan

Figure 2 shows the projection of the map that was finally obtained on the training data in
factorial plans.

The details of the result, shown in Figure 3, provide a nice representation of all the stations
displayed over 30 clusters. These resulting clusters on the geographical map of China provide the
representation of the stations attached to their referent station. The clusters on the right of Fig-
ure 2 are cold stations and correspond to the north and west of China. The warm stations are
on the left of Figure 2 and correspond to the south and south-east of China and are character-
ized by very large variations in temperature. There is a continuity from cold stations to warm
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Fig. 2. Final map and the data on factorial dissimilarity analysis plans. Each color represents a cluster
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Fig. 3. Distribution of the clusters on the geographical map of China using the same colors of Figure 2

and hot ones. The analysis of the distribution of the clusters on the geographical map of China
made it possible to deduce that the variations in temperature depend on latitude than on longitude.

3.2 Euclidean distance

Secondly, we use the Euclidean distance on interval data defined as follows:

d(Q,Q′) = 1/4‖(a− a′) + (b− b′)‖2 (6)

with Q = (I1, ..., Ip) and Q′ = (I ′1, ..., I
′
p) a pair of items described by p intervals and Ij = [aj , bj ].

We use the same parameters than for the Hausdorff distance.

Figure 4 shows the projection of the final map on factorial dissimilarity analysis plan. Figure 5
provides the details of the result.

The classification is meaningful but different from the one with the Hausdorff distance. We will
now compare the different results.
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Fig. 4. Final map on factorial dissimilarity analysis plan. Each color represent a cluster
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Fig. 5. Distribution of the clusters on the geographical map of China using the same colors of Figure 4

3.3 Discussion

We use some other metrics for this application but we can’t detail the results for lack of space. We
use the vertex-type distance defined as the sum of the squared Euclidean distances between the
2p vertices. We use also the mean temperatures of the stations (it’s a non symbolic representation
of the temperatures). In order to compare the different results obtained by these different metrics,
we calculate longitude and latitude distortions of the different obtained clustering. The distortion
is defined as the quadratic mean error between the referent and their assigned individuals.

The longitudinal distortion is defined as follows:

(Dlong)2 =
∑

c∈C

∑
zi∈c

1
|c| |Lozi − Lof(zi)|2 (7)

with |c| the cardinal of the cluster c, |Lozi −Lof(zi)| the longitude distance between the station zi

and his referent f(zi)
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The latitude distortion is defined as follows:

(Dlati)2 =
∑

c∈C

∑
zi∈c

1
|c| |Lazi − Laf(zi)|2 (8)

with |Lazi
− Laf(zi)|2 the latitude distance between the station zi and his referent f(zi).

In the table 2, we represent the longitude and the latitude distortions of the different obtained
clustering with the different metrics.

Data type Used metric Longitude distortion Latitude distortion

Intervals Euclidean distance 9.250688 1.993213

Intervals Vertex-type distance 8.625175 2.165838

Means(numerics) Euclidean distance 7.656033 1.936692

Intervals Hausdorff distance 7.38314 1.911461

Table 2. The different longitude and latitude distortions for the different metrics

We can deduce that the clustering obtained with the Hausdorff distance induced the smallest
latitude and longitude distortions.

4 Conclusion

In this paper, we proposed an adaptation of the self-organizing map to dissimilarity data. This
adaptation is based on the batch algorithm and can handle both numerical data and complex data.
The experiments showed the usefulness of the method and that it can be applied to symbolic data
or other complex data once we can define dissimilarity for these data.
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