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Abstract. There has been recently a lot of interest for functional
data analysis [!] and extensions of well-known methods to functional
inputs (clustering algorithm [2], non-parametric models [3], MLP [1]).
The main motivation of these methods is to benefit from the enforced
inner structure of the data. This paper presents how functional data can
be used with RBFN, and how the inner structure of the former can help
designing the network.

1 Introduction

In a variety of problems, the data at our disposal are samplings of a functional
entity. Working with functional data instead of vectorial data can be an efficient
way to account for this within-data structure and could help resolving the
modeling problem.

In addition, radial basis function networks (RBFN) have shown to be pow-
erful tools to construct non-linear regression models. In this paper, we shall
see how the RBFN model can be extended to accept functional data on the
input side. Furthermore, we will explain how the functional features can direct
the design of the network.

In section 2, functional data are presented and some examples are given.
Section 3 recalls what the RBFN is and how it can be designed. The extension
to functional data input is shown in section 4. Section 5 applies ideas expressed
in this paper on spectrometric data. Section 6 gives concluding comments.
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2 Functional data

Consider a set of N observations {x;}¥ ;, where the ith observation is itself

composed of p; pairs (tgj),zz(-j))g;l. The tz(-J) € 7 may be considered as the

argument of corresponding value xz(-j ) € R, with 7 an open set in RP. For
simplicity, we will assume 7 C R. Each observation is a functional entity:

xi teT — xi(t) € R, (1)

The idea behind functional data is to compute the underlying function of each
observation and continue to work with the functional expression, instead of the
p;-dimensional vector x;.

The usual way to handle functional data is to use a basis expansion such
that

zi(t) = Zéi(k)hk(t) = ¢ h(t) (2)
=1

where h(t) = [hy(t)... hx(t)]" is a set of basis functions defined over 7, &;
is the vector of coeficients characterizing observation ¢ and Z;(¢) is a good ap-
proximation of the true function z;(t). Well-known basis functions are Fourier
series, B-splines and wavelets.

Figure 1 shows three examples for which functional data should be used.
Original observations are sets of points, but it is obvious that there is a func-
tional entity behind each observation. Using a functional smooth representation
is of particular interest when the data are sampled from a smooth function,
when the sampling is different between two observations, or when a smooth
function is polluted by noise, as illustrated in figures 1(a), 1(b) and 1(c) re-
spectively.
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Figure 1: (a) the observation is obviously a smooth function, (b) two observa-
tions x; and x; having different sampling arguments tE] ) and tl(J ). (¢) a sampled
curve with additional noise.

3 RBFN model

The general problem of modelling is to estimate the relation between an input
variable x € P and an output variable y € R from a set of observed data,



(xi, ;)Y ,. With RBFN, the relation has the following form:

M
g= Z A @i (dim (X, €m)) (3)

where ®,,(-) are radial basis functions, ¢y, are centers belonging to the space of
X, dpm, (-, +) are associated distances and \,,, are weighting coefficients. According
to the universal approximation property of RBFN [5], an adequate choice of
these parameters leads to a good approximation g of y. As such, RBFN may
be applied to functional data instead of vectorial ones. One has just to define a
functional measure of distance d, (-, -), leading to so-called Functional RBFN.

There is too much freedom in such network to tackle directly its design.
A way to proceed can be to start by choosing a family of RBFN and testing
different definitions of the distance d,,(.,.). Next, the other parameters are
computed with a fast algorithm even if it is suboptimal with respect to a
global optimization procedure [6]. It should be mentioned that one of the main
advantages of RBFN is their simplified training, compared to MLP (Multi
Layers Perceptrons) for example. Indeed, centers c,, and scaling factors oy,
may be computed by an unsupervised learning or a deterministic algorithm.
Model learning then becomes a linear problem in coefficients \,,, leading to low
computational cost and avoiding local minima issues. Despite this, the RBFN
performs very efficiently if well designed.

A classical choice for the distance is

(%, €m) = —— (X — €m) "W (x — cm)) 2, (4)
Om

where o, is a scaling factor adjusted with the learning algorithm and W is
a positive semi-definite matrix. The usual Euclidian distance is obtained with
om = 1 and W =1 the identity matrix. It is interesting to note that working
with W = T on linearly preprocessed vectors, x’ = Ax, ¢, = Acm, is the
same as working on original vectors x and ¢y, with W = ATA. This remark
shows that it can be equivalent to think in terms of distance definition or in
terms of preprocessing of the original data.

4 RBFN with functional data

Let us consider now that the input variable x is a function on domain 7. As
mentioned earlier, it is straightforward to extend the RBFN model (3). The
functional extension of (4) is

1 1/2

na(0).en(®) = = ( [ w00 - ) 6
where w(t) is the functional version of W when this matrix is diagonal. The
extension of non-diagonal weighting matrix W to functional case would be a
convolution integral.



In theory, the scaling function w(t) could be almost any function. Neverthe-
less, in order to keep the functional character of data in (5), it seems natural to
constrain w(t) to exhibit about the same complexity! as z(t). Hence, working
with functional data can help reducing the excessive freedom of the parameters
of the RBFN model.

One could also work with a functional semi-metric [3]. For example,

nfa(®)en(®) = ([ DGt —cm<t>>2dt)1/2 (6)

where D(-) is a differential operator.

There is no obvious way to design efficiently this extended network. Once
again, the choice of the distance is crucial. As it is equivalent to think in terms
of distance measure or data preprocessing, the functional approach may help to
find an adequate preprocessing accounting for the inner structure of the data.

An usual way to handle functions is to work with basis expansions. With
z(t) = €Th(t) and ¢, (t) = ym T h(t) and if w(t) = 1, (5) becomes

B (2(8), € () = —— (€ — en) TH(E — 7)) (7)

Om
where H = [ h(¢)Th(t)dt. Hence, handling functional RBFN can be done as
with any vectorial RBFN on coefficients £ and 7y, if the appropriate matrix H
is used.

5 Application on spectrometric data

In this section, we apply on spectrometric data® the ideas developped in this
paper. Each observation is a 100-channel spectrum (A €[850 — 1050] nm) of
a meat sample. Note that we used symbol A for the argument instead of the
generic t. The output to be predicted is the sample level of fat.

Spectra are smooth functions. The original vectorial data are transformed
to be expressed on a B-spline basis expansion with 30 splines. On Figure 2, four
different choices of preprocessing are illustrated and will be used below. These
were selected in an exploratory way. Fig. 2(a) shows five original spectra. It
is assumed that the mean of each observation does not account much for the
output and thus the means of the observations are substracted on Fig. 2(b).
To enhance the correlation between inputs and outputs, spectra preprocessed
in (b) are scaled with function a(\) (Fig. 2(c)). This function a(\) comes from
the mean of the two first components of the partial least square analysis (PLS).
The last preprocessing we present here is simply the use of the first derivative
of the original spectra (Fig. 2(d)).

The RBFN are constructed with the OLS algorithm [7] and with the dis-
tance (7) applied on preprocessed functions. The additional scaling factors

IThe complexity of a function is often characterized by its second derivative.
2Tecator data set: http://lib.stat.cmu.edu/datasets/tecator
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Figure 2: (a) 5 original spectra, (b) the same spectra translated to have a
null mean, (c¢) the translated spectra scaled by function a(\) and (d) the first
derivative of original spectra
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Figure 3: (a) cross-validation scheme to select the number of centers, (b) test
error with the selected number of centers.

om are determined heuristically according to the mean of the distances to the
neighboring centers. The original data set holds 215 spectra. It is partitioned
in two parts: a training set and a test set with respectively 172 and 43 spectra.
A cross-validation scheme is applied on the training set® to select the number
of centers for each network. Finally, the root mean squared error (RMSE)
over the test set is calculated to give an idea of the overall perfomances of the
network. This procedure is illustrated on Figure 3 for preprocessing (d).

Table 1 summaries the results obtained with the four different preprocessing.
We see that:

e Working direcly with the original spectra gives very poor results.

e Applying the scaling function a()) slightly improves the performances.

3each validation set contains 43 of the 172 spectra,



e The best performances are obtained with the first derivative of the spec-
tra.

The corresponding test error is not the smallest found in the literature. For
example in [3], a test error of 0.36 is reported. But the major advantages of our
procedure are its low computational cost and its ability to take the functional
character of observations into account in a natural way.

| Preprocessing | nbr. of centers | mean validation RMSE | test RMSE |

(a) 6 10.2 11.7
(b) 23 2.06 1.64
(c) 18 1.95 1.25
(d) 24 1.07 0.61

Table 1: Results of constructed F-RBFN.

6 Conclusion

This paper shows that there are three levels at which functional data can help
designing a RBFN. Firstly, it is a convenient way to express data having a
functional structure. Secondly, thinking in terms of data preprocessing rather
than distance measures, the functional approach helps designing a RBFN tak-
ing into account the functional nature of data. And finally, it may be a way to
constrain parameters of the general RBFN model.

Further work should try to incorporate these advantages in a more auto-
matic learning algorithm and thus reduce the exploratory part of the current
scheme.
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