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Abstract. In many applications, high dimensional input data can
be considered as sampled functions. We show in this paper how to use
this prior knowledge to implement functional preprocessings that allow
to consistently reduce the dimension of the data even when they have
missing values. Preprocessed functions are then handled by a numerical
MLP which approximates the theoretical functional MLP. A successful
application to spectrometric data is proposed to illustrate the method.

1 Introduction

Many modern measurement devices are able to produce high resolution data
resulting in high dimensional input vectors. An interesting way to handle this
type of data is to make explicit use of their internal structure. Indeed, high
resolution data can frequently be identified as discretized functions: this is the
case for time series (in the time domain as well as in the frequency domain),
spectrometric data, weather data (in which we can have both time and location
dependencies), etc. Functional Data Analysis (FDA, see [4]) is an extension of
traditional data analysis methods to this kind of functional data. In FDA, each
individual is characterized by one or more real valued functions, rather than
by a vector of R

p. Function estimates are constructed from high dimensional
observation vectors and data analysis (in a broad sense) is carried out on those
estimates.

A lot of data analysis methods are completely based on simple operations
on the considered data: distance, scalar product and linear combination cal-
culations. Those operations can be defined in a satisfactory way in arbitrary
Hilbert spaces that include functional spaces (such as L2). This means that
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many data analysis methods can be extended to work directly with functional
inputs. There are of course some theoretical problems induced by the infinite
dimension of the considered spaces, but nevertheless, traditional data analysis
methods have been successfully adapted to functional data, both on theoretical
and practical point of views. We refer to [4] for a comprehensive introduction
to those methods, especially to functional principal component analysis and
functional linear models. For regression and discrimination problems, recent
developments of FDA include non linear models such as multilayer perceptrons
[1, 5] and non parametric models [2, 3].

The most interesting aspect of FDA is the preprocessing phase in which
high dimensional input vectors are used to estimate functions. This phase al-
lows to work for instance with missing data, irregularly sampled curves and/or
noisy observations. Indeed, as it is not possible to directly manipulate func-
tions, we have to rely on a computer friendly representation: this is obtained
thanks to a basis expansion in the functional space, for instance with a B-
spline approximation. The choice of a fixed basis allows both to introduce
prior knowledge (for instance a Fourier basis for periodic functions such daily
temperature observations in a fixed location) and to deal with problems in the
data (irregular sampling and noise). Moreover, a regular representation can be
used to implement functional transformation such as derivation, integration,
etc.

In this paper, we show how a functional preprocessing can become almost
mandatory to model efficiently spectrometric observations with missing data.

2 Functional Multilayer Perceptron

In [1, 5], we have proposed an adaptation of Multilayer Perceptrons (MLP) to
functional data. This adaptation is based on the fact that MLP neurons operate
by computing a scalar product between their input vector and a weight vector.
More precisely, a neuron computes a function from a Hilbert space H to R

defined by N(x) = T (〈w, x〉+ b), where 〈. , .〉 denotes the scalar product on H ,
w denotes the weight vector (which belongs to H like x), b is the real valued
threshold and T is an activation function from R to R.

Numerical MLPs correspond to the particular case where H = R
p for a

given p. Obviously, we can choose H = L2(Z) to obtain a neuron that works
on square integrable functions defined on an input space Z. In this case, 〈w, x〉
is in fact

∫

w(u)x(u)du and w is called a weight function. We can also work
easily with multiple input functions by using an appropriate Hilbert space. As
the output of the proposed neuron is always a real number, the first hidden
layer of the MLP is the only one which has to deal with functional inputs.
Subsequent layers are traditional numerical neurons. The obtained MLP is
called a Functional MLP (FMLP).

We have demonstrated in [5] that the proposed model has the universal ap-
proximation property, as long as we aim at approximating continuous functions
defined on a compact subset of H .



3 A practical implementation

As explained in the introduction, FDA consists in modeling high dimensional
data as functions. We assume therefore that each example is given as a finite set
of input/output pairs, i.e. example i corresponds to mi pairs (xi

j , y
i
j)1≤j≤mi .

FDA main assumption is that there is a regular function gi such that yi
j =

gi(xi
j) + εij , where εij is an observation noise. In this model, both mi, the

number of observations, and the (xi
j)1≤j≤mi can depend on i. This allows to

take into account missing data and more generally irregular sampling.
Of course, the model proposed in the previous section cannot be imple-

mented directly to the considered data as this would mean that we have exact
knowledge of input functions and that we can calculate exactly integrals. In
[1] we proposed an implementation of the FMLP model in which functions are
first represented thanks to a basis expansion and then processed by a functional
MLP (this is the traditional method in FDA). We showed that both universal
approximation and consistent parameter estimation hold for this model.

In [1], we only considered a fixed functional basis. That is, we assume
given a Hilbert basis for the functional space, (φk)k∈N and we approximate gi

thanks to its coordinates on the q first functions of the basis. We have therefore
gi '

∑q

k=1
αk(gi)φk , where α is the projection operator from H to the vectorial

space spanned by the q first basis functions. For each gi, an approximation of
the vector α(gi) is obtained by minimizing the following distortion:

mi

∑

j=1

(

q
∑

k=1

αk(gi)φk(xi
j) − y

j
i

)2

,

which is an approximation of the theoretical distortion
∥

∥

∑q

k=1
αk(gi)φk − gj

∥

∥
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that defines the projection of gj on the q first basis functions.
The FMLP neuron is based on scalar product calculation. As gj is replaced

by its orthogonal projection on the q first basis functions, we can restrict our-
selves to weight functions in the same vectorial space. We want therefore to
calculate 〈f, g〉 where both f and g belong to span(φ1, . . . , φq). Obviously, we
have:

〈f, g〉 =

q
∑

k=1

q
∑

l=1

αk(f)αl(g)〈φk , φl〉 =

q
∑

l=1

βl(f)αl(g),

where βl(f) =
∑q

k=1
αk(f)〈φk , φl〉. This equation shows that with an appropri-

ate choice of numerical coefficients, a scalar product between a weight function
f and another function g is equal to a linear combination of the coordinates
of g. Therefore, the FMLP neuron can be easily implemented as a numerical
neuron working on the coordinates of input functions on the chosen truncated
basis. The important point is that this way of handling functions is consistent:
it is an approximation of the theoretical model which converges to it when the
number of evaluation points increases.



4 Functional preprocessing

In practice, it is quite common to end up with a high number of basis functions.
Indeed, the standard method used to determine the optimal number of basis
functions to retain is to build a cross-validation score for each function for
a given truncated basis, and to choose the truncated basis that minimizes
the mean cross-validation score for all input functions. For regular functions
without noise, we can have almost no reduction in the size of the data. In this
situation, FDA is still interesting as it allows to work with irregularly sampled
data, but at the expense of dealing with high dimensional input vectors.

The standard way to address the dimension problem is to rely on a func-
tional principal component analysis (PCA) [4]. As its multivariate counterpart,
the functional PCA constructs an optimal reduced rank approximation of the
original data. In the functional vision, this corresponds to building an opti-
mal truncated basis for the observed functions, that is to choose q orthogonal
functions ψ1, . . . ψq such that the following distortion is minimal:

n
∑

j=1

∥

∥

∥

∥

∥

gj −

q
∑

k=1

〈gj , ψk〉ψk

∥

∥

∥

∥

∥

2

,

where n denotes the number of functions. When the original functions gj are
regularly sampled and when we have no missing data, the functional PCA can
be conducted as a traditional PCA on the sampled curves. When we have more
complex data (irregular sampling, missing data, noise, etc.), we first estimate gj

thanks to a standard truncated basis, such a B-spline basis, and the we conduct
a functional PCA (which can be in turn obtained thanks to a numerical PCA
on preprocessed coordinates).

The interesting point is that the same argument used in the previous sec-
tion to implement FMLP neuron thanks to coordinates on the truncated basis
can be applied to the functional PCA representations. Indeed, the theoreti-
cal FMLP calculations can be approximated by a numerical MLP working on
the coordinates of the original estimated functions in a basis made of principal
functions.

5 An application to spectrometric data

We study in this section spectrometric data from food industry1. Each ob-
servation is the near infrared absorbance spectrum of a meat sample (finely
chopped), recorded on a Tecator Infratec Food and Feed Analyser (we have
215 spectra). More precisely, an observation consists in a 100 channel spec-
trum of absorbances in the wavelength range 850–1050 nm. The regression
problem is to predict the percentage of fat in the meat sample based on the
spectrum.

1available on statlib: http://lib.stat.cmu.edu/datasets/tecator
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The original contributor of the data reported in [6] very good results: the
root mean square prediction error (RMSE) on the test set was 0.42, with an
ensemble of 10 MLP (with direct connection between the input and output
layer), trained with a weight decay regularization term (three separates weight
decays in fact). Meta-parameters of the model (the number of hidden neurons,
the weight decays and the number of inputs) were determined by a Bayesian
approach. An even more complex procedure with automatic input relevance
determination leads to a RMSE of 0.36. An important point is that data are
reduced from R

100 to R
12 by PCA (the number of principal components to keep

is determined by the Bayesian approach).
In order to investigate the practical interest of functional MLP, we have

set up a simpler model: an ensemble of 10 functional MLP, trained with only
one weight decay parameter and with no direct connection. Meta-parameters
are determined by k-fold cross-validation. We represent functions on a B-
spline basis and we conduct a functional PCA. The cross-validation score for
function estimation leads to a 61 B-spline basis. As this number is still quite
high, the functional PCA is very interesting. The cross-validation selects 14
functional principal components and 3 hidden units. The ensemble functional
MLP obtains a RMS of 0.42. This value is not surprising. Indeed the considered
functions are very smooth and noiseless (that’s why we keep 61 B-splines for
100 evaluation points), and sampling is regular. In this case, the functional
PCA gives nearly identical results as the classical PCA conducted on sampled
curves.

In order to show the full power of the functional approach, we have removed
10% of the original data. More precisely, we have deleted 10 observations
chosen at random out of 100 in each spectrum. The resulting missing data
model is the simplest possible one: data are missing at random. With the
functional preprocessing, this deletion as no real consequence. Indeed we can
still evaluate underlying functions. The cross-validation selects 59 B-splines
for the representation of those functions, which is still quite big. Therefore, we
perform a functional PCA and submit the coordinates of the original spectra on
the functional principal components to the ensemble MLP. The cross-validation
selects 12 principal components and 3 hidden neurons, which leads to a RMSE
of 0.39. The small improvement is not really meaningful and we can conclude
that the deletion of 10 % of the data has no real impact on the prediction
quality.

We have compared the functional approach to traditional approaches in
which missing data are replaced by estimated valued obtained from other ob-
servations. The simplest method consist in replacing missing data by the mean
of the corresponding variable. In the current application, this leads to catas-
trophic performances as the RMSE increases to 8.9.

A more sophisticated method consists in using a k nearest neighbor (k-NN)
algorithm: given an input vector in which the p-th coordinate is missing, we
calculate its k nearest neighbors among vectors that do not miss this coordinate,
and we replace the missing value by the average of the p-th coordinate of the k



nearest neighbors. The number of neighbors is determined by cross-validation.
This method gives much better results than the mean replacement: with k = 4,
we obtain a RMSE of 2.0. Nevertheless, this performances are still very bad
compared to the functional approach.

Method Functional Mean k-NN Mean (cs) k-NN (cs)
RMSE 0.39 8.9 2.0 1.7 0.83

Table 1: RMSE for different missing data reconstruction methods (cs stands
for centered and scaled spectra)

The very bad performances of the reconstruction methods are in fact conse-
quences of the true functional nature of the problem. Indeed, it is well known
(see e.g. [2, 3]) that chemical properties are related to the shape of the spectrum
rather than to its mean value. In order to include this prior knowledge in the
reconstruction process, we have used both methods (replacement by the mean
or by k-NN) on centered and scaled spectra: each spectrum is first centered
with respect to its mean and scaled with respect to its variance. This scaling
improves the performances and we obtain a RMSE of 1.7 for the mean re-
placement and 0.83 for the k-NN replacement (in this case the cross-validation
chooses k = 2). Even if the preprocessing improves a lot the performances,
they are at best twice as bad as the one obtained with the functional approach.

6 Conclusion

The proposed experiment, albeit conducted on real world data, is of course
heavily biased toward a functional approach and it is then not very surprising
that a functional MLP performs very well on it. We will not therefore claim
that the proposed method is a perfect way to handle missing data. Our main
claim is that when we are dealing with data that clearly have a functional
nature, trying a classical multivariate analysis is not a good idea. If the data are
simple, i.e. noise free, regularly sampled and with no missing observations, FDA
approaches give similar results to multivariate methods. But when we have
complicated data, a functional preprocessing allows to use efficiently the prior
knowledge that data are functions and performs therefore much better than
multivariate approaches. Moreover, theoretical results give to the functional
approaches a sound mathematical framework, exactly as for finite dimensional
methods.
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