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Summary. Treatment of complex data (for example symbolic data, semi-structured
data, or functional data) can not be easily done by clustering methods based on
calculating the center of gravity. We present in this paper an extension of self orga-
nizing maps to dissimilarity data. This extension allows to apply this algorithm to
numerous type of data in a convenient way.

1 Introduction

The Kohonen Self Organizing Map (SOM) introduced by Professor Kohonen
(see Kohonen (1997)) is an unsupervised neural network method which has
both clustering and visualization properties. It can be considered as an al-
gorithm that maps a high dimensional data space, R

p, to lattice space which
usually has a lower dimension, generally 2 and is called a Map. This projection
enables a partition of the inputs into ”similar” clusters while preserving their
topology. Its most similar predecessors are the k-means (see MacQueen (1967))
algorithm and the dynamic clustering method (see Diday et al. (1989)), which
operate as a SOM without topology preservation and so without easy visual-
ization.

In data analysis, new forms of complex data have to be considered, most
notably structured data (data with an internal structure such as intervals
data, distributions, functional data, etc) and semi-structured data (trees, XML
documents, SQL queries, etc.). In this context, classical data analysis based
on calculating the center of gravity can not be used because inputs are not
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2 Äıcha El Golli, Brieuc Conan-Guez, and Fabrice Rossi

R
p vectors. In order to solve this problem, several methods can be considered

according to the type of data (for example recoding techniques for symbolic
data (see de Reyniès (2003)) or projection operators for functional data (see
Ramsay and Silverman (1997))). However, those methods are not fully general
and an adaptation of every data analysis algorithm to the resulting data is
needed.

We propose in this article an adaptation of the SOM to dissimilarity data
as an alternative solution. Indeed, Kohonen’s SOM is based on the notion of
center of gravity and unfortunately, this concept is not applicable to many kind
of complex data, especially semi-structured data. Our goal is to modify the
SOM algorithm to allow its implementation on dissimilarity measures rather
than on raw data. With this alternative only the definition of a dissimilarity
for each type of data is necessary to apply the method and so treat complex
data.

The paper is organized as follows: we first recall the SOM algorithm in its
batch version. Then we describe our adaptation. We conclude the paper by
experiments on simulated and real world data.

2 Self-Organizing Map (SOM)

2.1 Introduction

Kohonen’s SOM is used nowadays through numerous domains and has been
successfully applied in numerous applications. It is a very popular tool used
for visualizing high dimensional data spaces. SOM can be considered as doing
vector quantization and/or clustering while preserving the spatial ordering of
the input data reflected by implementing an ordering of the codebook vectors
(also called prototype vectors, cluster centroids or referent vectors) in a
one or two dimensional output space. The SOM consists of neurons organized
on a regular low-dimensional grid, called the map. More formally, the map is
described by a graph (C, Γ ). C is a set of m interconnected neurons having
a discrete topology defined by Γ . For each pair of neurons (c, r) on the map,
the distance δ(c, r) is defined as the shortest path between c and r on the
graph. This distance imposes a neighborhood relation between neurons (see
figure 1 for an example). Each neuron c is represented by a p-dimensional
referent vector wc = {w1

c , ..., wp
c}, where p is equal to the dimension of the

input vectors. The number of neurons may vary from a few dozen to several
thousand depending on the application.

The SOM training algorithm resembles k-means (see MacQueen (1967)).
The important distinction is that in addition to the best matching referent
vector, its neighbors on the map are updated: the region around the best
matching vector is stretched towards the training sample presented. The end
result is that the neurons on the grid become ordered: neighboring neurons
have similar referent vectors.
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The SOM takes as its input a set of labeled sample vectors and gives as
output an array of neurons with the input vectors labels attached to these
neurons. Let n be the number of sample vectors zi ∈ R

p, i = 1, 2, ..., n, where
each sample vector zi is identified by a label.

Fig. 1. Discrete topology of a two dimensional topological map (10*10 neurons),
each point represents a neuron. 1-neighborhood and 2-neighborhood of neuron c

2.2 Batch training algorithm

The batch training algorithm is an iterative algorithm in which the whole
data set (noted Ω) is presented to the map before any adjustments are made.
In each training step, the data set is partitioned according to the Voronoi
regions of the map referent vectors. More formally, we define an affectation
function f from R

p (the input space) to C, that associates each element zi

of R
p to the neuron whose referent vector is “closest” to zi (for the Euclidean

distance). This function induces a partition P = {Pc; c = 1...m} of the set of
individuals where each part Pc is defined by: Pc = {zi ∈ Ω; f(zi) = c}. This
is the affectation step. It is quite clear that this step is rather easy to adapt
to a dissimilarity setting.

After affectation, a representation step is performed. The algorithm
updates the referent vectors by minimizing a cost function, noted E(f, W ).
This function has to take into account the inertia of the partition P , while
insuring the topology preserving property. To achieve these two goals, it is
necessary to generalize the inertia function of P by introducing the neighbor-
hood notion attached to the map. In the case of individuals belonging to R

p,
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this minimization can be done in a straight way. Indeed new referent vectors
are calculated as:

wt+1
r =

∑n

i=1 hrc(t)zi∑n

i=1 hrc(t)

where c = arg min
r

||zi−wr||, is the index of the best matching unit of the data

sample zi, ‖.‖ is the distance mesure, typically the Euclidean distance, and t

denotes the time. hrc(t) the neighborhood kernel around the winner unit c.
This function is a nonincreasing function of time and of the distance of unit
r from the winner unit c. The new referent vector is a weighted average of
the data samples, where the weight of each data sample is the neighborhood
function value hrc(t) at its winner c. In the batch version of the k-means
algorithm, the new referent vectors are simply averages of the Voronoi data
sets. Obviously, the representation step is the one that cannot be directly
adapted to a dissimilarity setting in which weighted average of data cannot
be performed.

3 A batch self organizing map for dissimilarity data

3.1 Principle

The Map for dissimilarity data is described by a graph (C, Γ ) exactly as the
traditional SOM. The main difference we are not working on R

d but on an
arbitrary set on which a dissimilarity (denoted d) is defined.

The representation space Lc of a neuron c is the set of parts of Ω with a
fixed cardinality q: each neuron c is represented by an ”individual referent”
ac = {zj1 , ..., zjq

}, and zji
∈ Ω. We denote a the individuals codebook, i.e. the

list a = {ac; c = 1, ..., m} of the individual referents of the map. In classical
SOM each referent vector evolves in the entire input space R

p. In our approach
each neuron has a finite number of representations.

We define a new dissimilarity dT from Ω × P (Ω) to R
+ by:

dT (zi, ac) =
∑

r∈C

KT (δ(c, r))
∑

zj∈ar

d2(zi, zj)

This dissimilarity is based on a kernel positive function, K. This function
is such that lim

|δ|→∞
K(δ) = 0 and allows to transform the sharp graph distance

between two neurons on the map (δ(c, r)) into a smooth distance. K is used
to define a family of functions KT parameterized by T , with KT (δ) = K( δ

T
).

As for the traditional SOM, T is used to control the size of the neighborhood
(see Thiria and et Al (2002)): When the parameter T is small, there are few
neurons in the neighborhood. A simple example of KT is defined by KT (δ) =

e−
δ2

T2 .
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During the learning, we minimize the following cost function E by alter-
nating the affectation step and the representation step:

E(f, a) =
∑

zi∈Ω

dT (zi, af(zi)) =
∑

zi∈Ω

∑

r∈C

KT (δ(f(zi), r))
∑

zj∈ar

d2(zi, zj) (1)

This function calculates the adequacy between the induced partition by the
affectation function and the map referents a.

During the affectation step, the affectation function f affects each individ-
ual zi to the nearest neuron, here in terms of the dissimilarity dT :

f(zi) = arg min
c∈C

dT (zi, ac) (2)

This affectation step decreases the E criterion.
During the representation step, we have to find the new individuals code-

book a∗ that represents the set of observations in the best way in terms of E.
This optimization step can be realized independently for each neuron. Indeed,
we minimize the m following functions:

Er =
∑

zi∈Ω

KT (δ(f(zi), r))
∑

zj∈ar

d2(zi, zj) (3)

In the classical batch version, this minimization of the E function is immediate
because the positions of the referent vectors are the averages of the data
samples weighted by the kernel function.

3.2 The Algorithm

Initialization: iteration k = 0, choose an initial individuals codebook a0. Fix
T = Tmax and the total number of iterations Niter

Iteration: At iteration k, the set of individual referents of the previous
iteration ak−1 is known. Calculate the new value of T :

T = Tmax ∗ (
Tmin

Tmax

)
k

Niter−1

I affectation step: up date the affectation function fak associated
to the ak−1 codebook. Affecting each individual zi to the referent as defined
in equation (2).

I representation step: determine the new codebook ak∗ that min-
imizes the E(fak , a) function (with respect to a) ak∗

c is defined from equation
(3).

Repeat Iteration until T = Tmin

4 Experiments

In all our experiments the representation space Lc of a neuron c is one indi-
vidual, i.e q = 1.
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4.1 Simulated data

The data are distributed in R
3 and represent a geometric form of a cylinder.

There are 1000 individuals. The input data is a Euclidean distance matrix
and the map contains (20*3) neurons. In the following figures we present
the training data and the evolution of the map during the training with the
proposed algorithm. Figure 2 is the initial random map. In the final map,
shown in figure 5, there is a good quantification while preserving the topology.
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Fig. 2. The initial map (20*3) neurons
(random initialization) and the data
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Fig. 3. The map after 50 iterations
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Fig. 4. The map after 100 iterations
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Fig. 5. The final map

4.2 Real world data

The next example is a classification problem of spectrometric data food in-
dustry. Each observation is the near infrared absorbance spectrum of a meat
sample (finely choped), recorded on a Tecator Infratec Food and Feed Anal-
yser. More precisely, an observation consists in a 100 channel spectrum of
absorbances in the wavelength range 850-1050 nm (figure 6). There are 215
spectra in the database. In order to validate the behaviour of the proposed
algorithm, we make use of another variable, which measures the fat content
of each meat sample (the range of this variable is from 2% to 59%). This
variable is indeed deeply linked to the shape of the spectrum, and so the ob-
tained classification should be consistent with the fat value. In the following
experiments, all the maps contain (8*2) neurons.
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Fig. 6. 40 spectra

In this first experiment, we use the L2-norm as dissimilarity between spec-
tra : ‖ f ‖2=

∫
(f(t))2dt. The exact calculation of the integral is approximated

thanks to numerical integration (trapezoidal rule). In the figure 7, we show the
result obtained by the proposed algorithm. Each square (which is associated
to one class) is drawn with an intensity which is calculated in respect to the
mean of the fat content of spectra belonging to the class (black for low fat
value, and white for high fat value).

Fig. 7. L
2-norm : the mean of the fat content of each class

Although the obtained classification seems to respect quite well the fat
variable (low fat value on the left, and high fat value on the right), the result
is not totally satisfactory : we can see that a class with high fat value is just
located between two classes with lower fat value. As we can see in the next
experiment, this is mainly due to a choice of an inadapted metric. Indeed, in
the next experiment, we use as dissimilarity a semi-metric based on the second
derivative of spectra : ‖ f ‖2

d2=
∫
(f (2)(t))2dt (where f (2) denotes the second

derivative of f). Ferraty and Vieu (2003) point out that the second derivative
of the spectrum is in general more informative than spectrum itself. In order
to apply this functional approach, we differentiate each spectrum thanks to a
numerical formula (this estimation is consistent, as spectra are very smooth).
Each derivative is therefore represented by a vector of 100 components as
the original data (figure 8). The integration is done according to the same
procedure as the first experiment.
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Fig. 8. Second derivatives of the 40 spectra

Fig. 9. Second derivative based metric : the mean of the fat content of each class

This time, we can see in the figure 9 that the obtained classification re-
spects perfectly the fat variable. These both examples show that the proposed
algorithm depends strongly on the metric : with an appropriate metric, the
algorithm behaves in a satisfactory way, as the topology of the map is con-
sistent with the fat variable. Of course, it would have been possible to use
a standard SOM to treat this example. In this case, results are in fact quite
similar. Our goal in presenting this spectrometric application, is to show both
the validity of this approach, and its flexibility.

5 Conclusion

Compare to other clustering methods, self organizing maps allow an easy
visualisation of the obtained classification thanks to the preservation of the
topology. The extension of SOM(s) to dissimilarity data is straightforward,
and gives a very general tool which can be applied to various type of data
without any adaptation. The results obtained on both simulated and real
world data are satisfactory.

References

de Reyniès, A., 2003. Classification et discrimination en analyse de données symbol-
iques. Ph.D. thesis, Université Paris Dauphine.
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