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Abstract. Information visualization and visual data mining leverage the
human visual system to provide insight and understanding of unorganized
data. In order to scale to massive sets of high dimensional data, simplifica-
tion methods are needed, so as to select important dimensions and objects.
Some machine learning algorithms try to solve those problems. We give
in this paper an overview of information visualization and survey the links
between this field and machine learning.

1 Introduction

The rational of Information Visualization (infovis [14]) and of Visual Data Min-
ing (VDM [44, 19]) is to leverage the very high processing capabilities of the
human visual system to allow interactive exploration and analysis of massive
data sets. It has been demonstrated that the low level visual system has preat-
tentive processing capabilities (see e.g. [32]) that enables humans to detect and
recognize some features without effort and extremely rapidly, generally in less
than 200 ms, even in a large image. As shown in [24], relying on this type of
features (e.g. the color of items, their orientation, etc.) enables to display up to
one million of items without overloading the human visual system.

Information visualization faces however two major limitations of human vi-
sion. Its main limitation is its physical restriction to three dimensional (3D)
displays. Moreover, while stereovision hardware (for instance based on shutter
glasses) is now affordable, it is still quite uncommon: for the vast majority of
users, visualization methods must rely on two dimensional displays (2D). 3D is
also intrinsically limited by many problems such as occlusions, disorientation,
two dimensional interaction devices, etc.

The second major limitation of human vision is pointed out in [32]: preat-
tentive features cannot be combined freely. If more than two or three such
features are used in the same image, they can interfere and reduce greatly the
processing rate of the visual system. Therefore, if objects of a data set are de-
scribed by more than a few attributes, their visualization becomes difficult: a
trade-off between completeness of the representation and processing rate has to
be made. Complete representations have therefore two drawbacks: they must
rely on complex layout methods to transform high dimensional objects into 2D
images and they imply a tedious browsing of the full image to obtain a complete
understanding of the data set. Simplification methods are therefore needed for
visual mining of massive data sets.

Machine learning (in a broad sense) and visual data mining are therefore
strongly connected. Machine learning algorithms benefit from expert knowledge:



clustering is easier when the number of clusters is known a priori, recognition
rates are higher if the training set is free of outliers and if useless variables have
been removed, etc. Many of these tasks (outlier detection, number of cluster
evaluation, etc.) can be performed by users via a visual inspection of the con-
sidered data set: this is exactly the purpose of visual data mining. However,
as explained before, information visualization is efficient for simplified data sets:
images are easier to read if they represent a small number of objects described
by a small number of attributes. Machine learning algorithms can provide the
simplifying methods that make visual data mining efficient: dimension reduction
can be used to select important attributes, clustering allows one to replace ho-
mogeneous groups of objects by some representative examples, etc. Interactive
methods can mix visualization and model construction: the user guide the mod-
eling process via the display of results obtained so far (see e.g. [12, 35, 63, 76]).

We survey in this paper the links between visual data mining and machine
learning. In section 2 we give a short introduction to information visualization
and to its limits. In section 3 we survey dimension reduction techniques that
can provide dimension scalability to 2D displays. In section 4 we briefly outline
the links between clustering and infovis. We conclude in section 5 with a short
overview of two major models coming from machine learning and extremely
useful for infovis: the Self Organizing Map and the Generative Topographic
Mapping.

2 Information visualization

According to [14] information visualization is “the use of computer-supported
interactive, visual representation of abstract data to amplify cognition”. In this
survey, we focus on a special type of abstract data: each object is a vector from
R

p, described by p real values. The descriptors are called variables, features
or attributes. This model is frequently named the “table data model” in the
information visualization community [19, 36].

2.1 Taxonomy of information visualization methods

Several attempts have been made to classify infovis methods in order to get a
clear overview of the field (see e.g. [19]). Daniel Keim proposes in [43, 44] to
analyze visualization methods according to three “orthogonal” axes: the visu-

alization technique itself, the interaction technique and the data type.
Keim’s analysis is based on the fact that interaction methods (such as zoom-
ing [7], linking and brushing [6], dynamic distortion [54], etc.) can be freely
combined with visualization techniques (see section 2.3) and applied to different
types of data (vectors, trees, graphs [33], text [30], etc.).

Card et al. propose in [14] a different taxonomy based on the nature of the
information to be visualized. The part of this taxonomy that gathers visual data
mining methods is further subdivided according to the data type, in a way quite
similar to Keim’s approach.



Unfortunately, those taxonomies don’t help in identifying how machine learn-
ing methods can be used to improve visualization. For instance, dimension re-
duction methods are buried in the class of “Geometrically-transformed displays”
in [44] or considered as preprocessing steps in [19].

2.2 A formal model

Further high level understanding of visualization methods can be obtained with
the help of the formal model of Chi and Riedl [18]. In this model, raw data
go through four stages via three processing steps. Each step is implemented by
an operator that map the representation of the data in one stage to another
representation in the next stage (the structure of the data representation is
modified). A variation of this model appears in [14].

In the data transformation step, raw data are mapped to a mathematical
representation (for instance texts are parsed into a vector model of word occur-
rences); this representation is called the “analytical abstraction”. In the visu-

alization transformation step, the analytical abstraction is transformed into
another representation adapted to visualization (for instance a graph is trans-
formed into a tree by a traversal algorithm in order to use a tree visualization
method); this new representation is called the “visualization abstraction”. The
visual mapping step translates the visualization abstraction into a view/image
(for instance a tree is visualized with the TreeMap method [71]). Additionally,
operators can be used to modify the data representation within one stage: for
instance, interaction methods can be considered as operators that modify the
view or that have impact on the visual mapping step.

Keim’s visualization technique axis corresponds roughly to the visualization
transformation step, whereas his data axis gathers the early steps (data trans-
formation and visualization transformation steps). The formal model gives a
better understanding of the reasons why Keim’s axes are more or less inde-
pendent (“orthogonal”). In [17], Chi leverages his formal model to produce a
taxonomy of 36 visualization methods. He shows how methods are constructed
based on standard operators (data extraction, clustering, projection, etc.).

Machine learning methods fit nicely in this formal model and correspond
to some operators. For instance, dimension reduction methods are generally
operators from the visualization abstraction step: they produce new coordinates
from the original mathematical representation.

2.3 Some visualization methods for high dimensional data

Keim’s visualization technique axis is further subdivided into broad classes of
methods. We briefly survey methods adapted to high dimensional data, using
Keim’s taxonomy. We refer to [44, 19, 14] for comprehensive presentation. Keim
identifies four classes of methods described in the following sections.



2.3.1 Geometrically-transformed displays

Some methods use a layout algorithm to transform some high dimensional data
into low (2 or 3) dimensional data that are displayed by standard methods.

The main standard tool is the scatter plot, i.e. the standard 2D image in
which each object described by two attributes is represented by a point whose
coordinates are given by the values of the attributes. For p-dimensional data, a
p × p scatter plot matrix is obtained by arranging in a matrix all the possible
scatter plots. Each attribute appears both as a line and as a column: the
image at position (i, j) is the scatter plot for attribute i and attribute j. The
diagonal can be used to display some standard graphical representation of each
attribute, for instance a histogram. Scatter plot matrices don’t scale to a large
number of attributes, because the number of scatter plots grows quadratically
with the number of variables. Moreover, scatter plots themselves suffer from the
superpositions of objects with similar (or close) attribute values. Linking and
brushing techniques [6] help nevertheless the user to understand large scatter
plot matrices: the user can select a region in one scatter plot and observe the
results of this selection in all the plots. Dimension reduction methods (see section
3) can be used to avoid displaying the full scatter plot matrix.

Another standard 2D display is the functional plot in which y = f(x) is
represented by a smooth line obtained by a high frequency sampling of the
x-axis. Data in R

p can be transformed into functions, for instance with the
method proposed by Andrews in [2]: the coordinates of each object are used as
the coefficients of a Fourier series to define a function. The display is obtained
by plotting together all the functions on the [−π, π] interval (see [29] for a recent
application of Andrews’ curves).

Another use of functional like plot is the parallel coordinates technique [38,
39]. It consists simply in using as many vertical axes as there are attributes to
represent. An object is then displayed as a polygonal line that links the values
of its attributes on the corresponding axis. Parallel coordinates don’t scale to a
large number of objects mainly because of overlapping (see [3] for an example
of a rendering method that limits this overlapping problem).

2.3.2 Iconic displays

Iconic methods represent each object with a complex icon or glyph [86]. Famous
examples of such glyph are Chernoff’s faces [16]: each object is represented
by a small face where different data dimensions are mapped to different facial
characteristics (face width, radius of the eyes, etc.). Other examples include
the star glyph [72] and the stick-figure icon [59]. Those methods have scaling
issues because representing many characteristics implies to use complex icons
that use a lot of space on the screen and limit strongly the number of objects
that can be visualized at once. Moreover, comparison of two objects is difficult is
the corresponding glyphs are far away from each other: the problem of optimal
glyph positioning is therefore quite accurate [86].



2.3.3 Dense pixel displays

In pixel oriented methods [45, 43], each attribute of each object is represented by
an unique pixel, via its color. This family of methods scales to large number of
objects and/or attributes. It has however ordering problems, as the insights on
the data it provides depend strongly on the quality of pixel arrangements: pixels
corresponding to related objects and/or related attributes should be close in the
image. As pointed out in [43], dimension/attribute ordering is in fact an NP-
complete problem and only sub-optimal solutions can be obtained in reasonable
time.

2.3.4 Stacked displays

Stacked displays correspond to methods in which the image is partitioned re-
cursively in such a way that each level of the hierarchy represent one or several
attributes of the data (see [51] and [23] for instance). As for many other layout
methods, the quality of the visualization strongly depends on the ordering of the
dimensions.

2.4 Visual data mining tasks

The main goal of VDM is to enable users to explore massive data sets and to
search for interesting information. As pointed out in [34], visualization allows
to find patterns in the data by proximity and similarity reasoning: plots of the
characteristics of objects might reveal dependency between variables as well as
clusters of objects. More generally, as shown by P. Hoffman in [36], visual data
mining is efficient for many classical tasks, such as: cluster detection, outlier
detection, feature importance assessment, feature correlation, prior classification
analysis, etc.

Another goal of VDM is to display the results of mining algorithms [47],
for instance association rules or frequent patterns extracted from a database,
clusters (either extracted by the algorithm or pre-specified in case of supervised
learning), etc.

While the bulk of VDM methods is dedicated to unsupervised problems,
there is also an important need of visual methods for supervised problems such
as classification. Due to size constraints, we won’t however cover this important
field in this paper (an example of the visualization of classification is given in
this volume by [40]).

2.5 Links with machine learning

While integrating machine learning and information visualization appears clearly
as potentially rewarding (see e.g. the paper [15] by Chen, editor-in-chief of
Information Visualization), such integration is still rare, with some remarkable
exceptions such as multidimensional scaling (MDS, see section 3.1) which is
a standard method in VDM and the Self-Organizing Map (SOM, see section



5.1) whose visualization capabilities have been widely recognized by the infovis
community.

It is obvious that most of the methods designed to display high dimensional
data have scaling problems. In order to display voluminous data sets in which
objects are described by numerous variables, they must rely on simplification
methods that reduce either the number of variables or the number of objects (or
both). Numerous machine learning methods have been designed to tackle those
problems. However, infovis methods tend to favor user intervention over auto-
matic methods. For instance, in order to avoid saturation of the human vision
system, information visualization uses frequently the concept of “focus+context”
(see chapter 4 of [14]): the general idea is to provide a detailed view of a part
of the data while retaining as much context information as possible. Distortion
techniques have been used to implement this idea (see [54] for a survey). User
intervention consists in choosing the interesting part of the data by browsing the
summarized version (see [62, 50] for well known examples).

A possible way for building more links between machine learning methods
and visualization methods would be to favor user intervention and control. Ward
describes for instance in [87] how visual clues allow user to monitor dimension
reduction and clustering techniques in order to check whether important in-
formation might have been removed. Visual representations of the quality of
dimension reduction methods have been produced (see e.g. [4, 5, 9, 76]). Their
generalization to e.g. manifold learning methods (see section 3.2), might be a
first step toward the integration of those methods in infovis algorithms.

3 Dimensionality reduction

While dimension reduction [25, 13, 68] is generally considered as an important
pre-processing task in infovis (see e.g. [19]), it seems that only standard meth-
ods, such as principal component analysis (PCA) and multidimensional scaling
(MDS), are commonly used in visual data mining.

Among classical methods, and apart from PCA, projection pursuit [26] is
quite popular in infovis. As Independent Component Analysis (ICA) [41, 37]
(but for different reasons), projection pursuit is looking for linear combination
of the original features that are non Gaussian. Generalization of PCA such as
Hastie’s principal curves and surfaces [31], neural network based non linear PCA
[21] or Kernel Principal Component Analysis [69], are not widely used in VDM.

3.1 Multidimensional scaling

In fact, the most popular non linear projection method in infovis is multidi-
mensional scaling (MDS) framework. The main idea of MDS is to compare
distances between the objects in the low dimensional space to the corresponding
dissimilarities in the original space. Different stress functions (i.e. measure of
the distortion of the distances) lead to different algorithms. Torgerson’s original
MDS (classical metric MDS [79]) works for original data in an Euclidean space
and tries to preserve inner products. It also corresponds to finding the linear



projection of the data that preserves best the square euclidean distances between
the original observations. It can be shown to be equivalent to PCA.

Commonly used MDS are based on Kruskal’s version [48, 49]. Let us de-
note δi,j the dissimilarity between objects i and j in the original space and di,j

the Euclidean distance between the low dimensional representations of i and j.

A generic stress function is given by
P

i,j
wi,j(f(δi,j)−di,j)

2

P

i,j
(di,j)2

, where f is a trans-

formation of the original dissimilarities and the wi,j are weighting coefficients.
Variations on the normalization method, the coefficients and on the transforma-
tion lead to Sammon’s non linear mapping (NLM [66], see also [55] for a smooth
version based on a MLP), to Curvilinear Component Analysis (CCA [20]) and
to other variants such as the non metric scaling (in which f is monotone) that
tries to preserve ranking between dissimilarities rather than their actual values.

It should be noted that MDS methods are quite computationally intensive.
As a consequence a lot of work has been done in order to reduce their actual cost
(see [73] in this volume). Fast Map for instance [22], a well known dimension
reduction algorithm in the visualization community, is in fact an approximate
realization of MDS, as shown in [60].

3.2 Manifold learning

While MDS methods overcome some limitations of PCA and related methods,
they still have an important shortcoming: if the data happen to belong to a
subspace of the original space, MDS methods might fail to discover this fact
when the shape of the subspace is complex. The class of manifold learning
techniques try to overcome this limitation for instance by feeding a MDS like
method with “smart” dissimilarities. One popular idea of those methods it to
work at the local level: the structure of the manifold around a data point is
described by the k nearest neighbors (k-nn) of this point in the original space.

The field of manifold learning is evolving very quickly and numerous meth-
ods have been proposed to address the problem. Two recent surveys [13, 68]
present current tendencies of the field. Among popular methods, we can men-
tion Isomap [75], Curvilinear Distances Analysis (CDA [52]), Locally Linear
Embedding (LLE [65, 67]) and Laplacian Eigenmaps [8].

3.3 Latent variable models

In latent variable models, the high dimensional observed data t1, . . . , tn in R
p

are supposed to be generated from corresponding low dimensional unobserved
(or latent) data x1, . . . , xn in R

q with q < p via the general formulation t =
y(x;W )+ǫ, where y is a function of the latent variables x and of some parameters
W , and where ǫ represents some noise.

The simplest and oldest latent variable model is the one of factor analysis
(see e.g. [13]). In this model, y is a linear function of both x and W : t =
Wx + µ + ǫ (where µ is the expectation of t). Moreover, we assume that x has
Gaussian distribution (with identity covariance matrix) and ǫ is also Gaussian
with covariance matrix Ψ. The parameters of the model can be estimated via an



EM algorithm. In practice however, additional constraints are used to simplify
the estimation, for instance by assuming that Ψ is known. Additional (strong)
assumptions allows one to show that PCA is a special case of factor analysis.

Factor analysis is revisited in [78] to produce a probabilistic PCA (PPCA)
model for which a closed-form solution is given. The main advantage of this
model over PCA is its tolerance to missing data, but it can also be extended to
a mixture of PPCA models [77]: data are assumed to be generated by a mixture
of local factor models. This provides multiple local linear projections of the
same data set. A related hierarchical latent model has also been proposed [12].
Further development of similar models can be found in [85] (see also section
5.1.1).

3.4 Limitations of dimension reduction for infovis

An important limitation of advanced dimension reduction methods, apart from
their computational cost, is that many of them don’t always produce interesting
visualization. As pointed out in e.g. [13], Kernel PCA for instance, is more
adapted to feature extraction than to dimension reduction as PCA is conducted
in the high dimensional kernel induced feature space. Manifold learning is also
intrinsically limited by the fact that low dimensional manifolds cannot in general
be projected to two dimensions without introducing distortions. Earth maps are
well known examples of this problem. A possible solution can be found in a
recent tearing method proposed in [53].

Finally, the main problem is to evaluate the impact of the dimension reduc-
tion on the ability to conduct data mining tasks: if the neighborhood relation-
ship between objects are not correctly preserved by the reduction methods, for
instance, the corresponding visualization can lead to false conclusion because
close objects can be mapped to distant points and vice versa and can therefore
produce visualizations that lead to false conclusion. Linear projection meth-
ods always reduce distances between points and can therefore project outliers
close to the bulk of the other data, for instance. Non linear methods introduce
more complex distortions which mix compression and stretching. Moreover, as
pointed out in [70], some manifold learning methods, such as LLE, don’t even
explicitly preserve distances.

The global distortion of a projection method can be assessed with neighbor-
hood preservation measures [82, 42]. These measures allow the user to decide
whether she should trust the projection or not. Detailed and local analysis of
the distortion can be done with the visualization methods proposed in [4, 5].

4 Reducing the number of objects

Limiting the number of objects to display is extremely important for most of
the visualization methods. Clustering algorithms have been used for this task
in order to provide scalability to some visualization methods, especially those,
such as parallel coordinates, that are impaired by superposition. Objects are



then replaced by a representative object (a prototype) chosen in the cluster to
which they belong (see [87]).

It should be noted that this type of automatic data reduction techniques have
been used in infovis only quite recently, e.g. in [63, 27]. However, rather than
simply relying on prototypes produced by clustering algorithms, summarized
displays include visual representation of the clusters themselves. The method
proposed in [27] (and latter generalized in [28]) displays both prototypes and the
variability in clusters, using some color coding. Moreover, as the simplification
is based on hierarchical clustering, the user can interactively choose the amount
of simplification.

5 Specialized models

5.1 Self-Organizing Map

The great success of the Self-Organizing Map (SOM [46]) as a visualization
tool might be a consequence of the simultaneous simplifications of a data set
that it operates: it acts both as a clustering algorithm and as a non linear
projection method. Moreover, the grid structure solves nicely the superposition
problems associated to algorithms surveyed in section 3: complex representation
of the prototypes can be used without superposition. The basic SOM has been
completed by many visualization enhancements ranging from component planes
to the U-matrix [81]. Surveys of visualization methods based on SOM can be
found in [83, 84, 34].

Extensions to the SOM have been designed based on some important dis-
coveries of the infovis community (see in particular [34]). The “focus+context”
concept for instance has motivated the introduction of hyperbolic SOM [64] and
more recently of hierarchically growing hyperbolic SOM [57] (see also [1] for a
combination of neural gas [56] with the “focus+context” principle).

Other recent works on visualization methods for the SOM include graph
based approaches [61], P-Matrix [80], connectivity matrix [74], etc.

5.1.1 Generative Topographic Mapping

In addition to the latent models surveyed in 3.3, which operate only a (local)
dimension reduction, a very interesting non linear model, the Generative To-
pographic Mapping (GTM) has been proposed [11]. As the SOM, this model
can be seen as doing both a dimension reduction and some form of clustering.
The model is based as the SOM on a grid of points (xi)1≤i≤k chosen in the low
dimensional latent space. A set of m non linear functions (φj)1≤j≤m is used to
map the latent space to R

m (the mapping is denoted Φ). The observed data
t are assumed to be distributed as a mixture of k Gaussians with a common
covariance matrix β−11 and with centers given by (WΦ(xi))1≤i≤k, where W is
a p×m parameter matrix. An EM algorithm is used to fit W and β to the data.

The application of GTM to visualization is based on the fact that each obser-
vation ti induces a posterior distribution in the latent space. This distribution



can be summarized by its mean or by its mode, and provides this way a non lin-
ear projection of each observation to the latent space. An important difference
with the SOM is that when the mean is used to represent an observation, its
position is not constrained in the grid of points and the projection is therefore
smooth. If the mode is considered, then the visualization is quite similar to what
can be obtained with the SOM.

The initial GTM model has been modified and adapted in many ways (see
[10]). For the visualization aspect, interesting developments include the visu-
alization of the distortion (magnification factors) [9] and a hierarchical GTM
model proposed in [76], which is an extension of the hierarchical local linear
projection developed in [12]. Variations of the GTM can be used to identify
outliers [58].

6 Conclusion

Integrating machine learning and information visualization is potentially reward-
ing, as demonstrated by successful visual data mining tools such as the Self-
Organizing Map and the Generative Topographic Mapping. A lot of integration
work remains however to be done in order to benefit from advanced results
of both domains. User control and interaction, aesthetic layout, linking-and-
brushing remain for instance quite rare in machine learning oriented programs,
whereas advanced dimension reduction and clustering methods are seldom use in
infovis. As pointed out in [15], tightening the bounds between machine learning
and information visualization is one of the challenge in which both community
might find very rewarding results.
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