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Abstract. In spectrometric problems, objects are characterized by high-
resolution spectra that correspond to hundreds to thousands of variables.
In this context, even fast variable selection methods lead to high compu-
tational load. However, spectra are generally smooth and can therefore
be accurately approximated by splines. In this paper, we propose to use
a B-spline expansion as a pre-processing step before variable selection,
in which original variables are replaced by coefficients of the B-spline
expansions. Using a simple leave-one-out procedure, the optimal number
of B-spline coefficients can be found efficiently. As there is generally an
order of magnitude less coefficients than original spectral variables, se-
lecting optimal coefficients is faster than selecting variables. Moreover, a
B-spline coefficient depends only on a limited range of original variables:
this preserves interpretability of the selected variables. We demonstrate
the interest of the proposed method on real-world data.

1 Introduction

In many real-world problems, objects are described by sampled functions rather
than by vectors. In the simplest case, an object is given by a function f , from
IR to IR, specified by a list of m input/output pairs, ((xj , f(xj)))1≤j≤m

(m and

(xj)1≤j≤m depend on the object). Examples of such situation include applica-
tions in which temporal evolution of objects is monitored (and therefore where
each object is described by one or several time series) and others in which objects
are characterized by spectra (near infrared transmittance for instance).

One of the main problems in spectrometry is regression: one wants to predict
physical or chemical properties of a sample via its spectrum. Because chemi-
cal and physical analyses are long, difficult and expensive, we have generally
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a low number of examples, typically a few hundreds. On the contrary, spectra
are generally sampled at a high resolution, up to thousands of wavelengths per
spectrum. It is therefore quite common to have more sampling points (spectral
variables) than spectra.

As the sampling is generally fixed (i.e. m and (xj)1≤j≤m are fixed for the
whole data set), each spectrum can be considered as a high-dimensional vec-
tor. However, because of the low number of spectra, even simple linear methods
are difficult to apply directly to many spectrometric problems. In practice, the
standard solution is to rely on dimension reduction methods coupled with linear
regression, mainly Principal Component Regression (PCR) and Partial Least
Squares Regression (PLSR). PCR for instance consists in a simple linear model
constructed on a few Principal Components of the original data. PLSR consists
in finding linear projections that have maximum correlation with the target vari-
able; a linear regression is then built on the projected coordinates. While those
methods give generally satisfactory results, they are unfortunately difficult to
interpret: the linear model is constructed on projected features whose depen-
dency to the original spectral variables, albeit linear, can be quite complex. In
general, one cannot determine from the model which spectral range is useful for
the regression problem under focus. Moreover, PCR and PLSR are intrinsically
limited by their linear nature.

Another solution consists in using variable selection methods to keep only
a small number of the original spectral variables and then to build a nonlinear
model on those data [1–3]. When a small number of spectral variables are se-
lected, this approach both avoids overfitting and eases interpretation. Even if the
processing of the selected variables is nonlinear, the model emphasizes generally
the dependency of the target variable to a small number of original spectral
variables. However, those methods suffer from two problems. They are generally
quite slow, even when filter selection methods are used (i.e., when the relevance of
a group of variables is estimated via a simpler model than the nonlinear model).
Moreover, while filter methods tend to be less sensitive to overfitting than the
nonlinear models used for the second part of the analysis, they nevertheless face
the difficulty of dealing with high-dimensional data and can select redundant or
useless variables.

This paper proposes to use a functional representation approach as a prepro-
cessing step before variable selection for regression problems. The main idea is to
leverage the functional nature of spectra to replace high-resolution representa-
tions by a low number of variables that keep almost all the original information
and still allow one to assess the importance of some wavelength ranges in the re-
gression task. This prior reduction of the data dimensionality eases the variable
selection both in terms of computational requirement and in terms of statistical
significance.



2 Functional Data Analysis

The idea is this paper is based on the concepts of Functional Data Analysis
(FDA [4]). The main idea of FDA is to adapt standard data analysis methods
such that they make explicit use of the functional aspect of their inputs. There
are two standard approaches in FDA: regularization and filtering.

The regularization approach addresses the overfitting problem via complexity
control. Let us consider for example the problem of linear regression on functional
data. In a theoretical and perfect setting, we have a random variable X with
values in L2 (the Hilbert space of square integrable functions from IR to IR) and
a target random variable Y with values in IR. The functional linear model is
given by Y = 〈h,X〉, where 〈·, ·〉 denotes the inner product in L2, i.e.

Y =

∫

hXdλ.

Finding h via observations, i.e. via realizations of the pair (X,Y ), is difficult:
because of the infinite dimension of L2, the problem is ill-posed. It has generally
an infinite number of solutions and they are difficult to estimate. The prob-
lem is solved by looking for smooth candidates for the function h, for instance
twice differentiable functions with minimal curvature, see e.g. [5, 6]. This can
be considered as a functional version of the standard ridge regression [7]. The
regularization approach has been applied to other data analysis problems, such
as Principal Component Analysis [8]. As shown in [9] in the case of discrimi-
nant analysis, when the data are sampled functions, ridge regularization leads
to worse solutions than a functional regularization.

In the filtering approach, each list of input/output pairs is considered as a
function approximation problem for which a simple truncated basis solution is
chosen: the list ((xj , f(xj)))1≤j≤m

is replaced by the vector (u1, . . . , up) obtained
as the minimizer of

m
∑

j=1

(

f(xj) −

p
∑

k=1

ukφk(xj)

)2

,

i.e., the square reconstruction error of f by the basis functions (φk)1≤k≤p. Filter-
ing can therefore be considered as a preprocessing step in which functional data
are consistently transformed into vector data. It has been used as a simple way
to adapt many data analysis methods to functional data, see for instance [10] for
linear regression, [11, 12] for Multi-Layer Perceptrons and Radial Basis Function
Networks, [13] for k-nearest neighbors and [14] for Support Vector Machines.

3 B-spline representation

3.1 B-splines

Obviously, the filtering approach of FDA can be used to reduce the dimension-
ality of spectra: one can freely choose p (the number of basis functions) and



therefore greatly reduce the number of spectral variables. In fact, this idea of
using function representation for spectra has been used in the field of chemomet-
rics since [15]. The idea of this early work was to compress the spectra in order
to speed up linear methods (PCR and PLSR for instance). We use the same
idea to speed up variable selection. As in [16, 17] we use B-splines, however,
our additional motivation is the locality of B-splines, that allows us to maintain
interpretability.

Let us consider an interval [a, b] and p sub-intervals, defined by the p + 1
values, t0, . . . , tp, called knots, such that tj < tj+1, t0 = a and tp = b. We
recall that splines of order d are Cd−2 piecewise polynomial functions given
by a polynomial of degree d − 1 on each interval [tj , tj+1[ (the last interval is
[tp−1, tp]). The vector space of such functions has a basis of p− 1 + d B-splines,
Bd

1 , . . . , Bd
p−1+d (see [18] for details).

We consider n spectra, (si)1≤i≤n which are functions from IR to IR, observed
at m wavelengths, (wj)1≤j≤m. We denote a the smallest wavelength and b the
largest. Given p+1 knots as above, we associate to a spectrum si the coordinates
c(si) of its best approximation by a spline of order d on the associated B-spline
basis. The proposed method consists in replacing the m original variables by the
p − d + 1 B-spline coordinates.

Those coordinates are the solution of the standard least square optimization
problem:

c(si) = arg min
c∈IRp−1+d

m
∑

j=1

(

si(wj) −

p−1+d
∑

k=1

ckBd
k(wj)

)2

. (1)

This quadratic problem leads to a linear solution, i.e. there is a (p− 1 + d)×m

matrix R, that depends only on d, p and (wj)1≤j≤m, such that

c(si) = Rsi, (2)

where si denotes the vector representation of si, i.e. si = (si(w1), . . . , si(wm)).

3.2 Interpretability

Of course, this type of linear relationship applies to any filtering approach that
consists in projecting the considered functions on the sub-vector space spanned
by some well-chosen basis functions. An interesting and quite specific aspect of
B-splines however it that R is approximately localized. Let us consider more
precisely the case of a single spectrum s. The coordinates of its projection are
given by:

c(si)l =

m
∑

j=1

Rljsi(wj).

A remarkable property of B-splines is that most coefficients in R have a very
small magnitude. In practice, this means that the value of a new variable depends
only on some of the original variables. Moreover, dependencies are localized: the
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Fig. 1. Graphical representation of R65,k for splines of order 5 with 155 B-splines
calculated for 1050 original spectral variables

coordinate of si on the B-spline Bd
k depends only on a sub-interval of the original

wavelength interval [a, b], as shown on an example in Figure 1.
In theory, values in R are nonzero because when we construct an orthogonal

basis of the space of splines of order d, the functions of this basis do not have
a smaller support than interval [a, b]. Compactly supported wavelet bases [19]
provide alternative solutions in which some lines of R have actual zero entries.
However, in this case, the low-resolution wavelet spans the full original interval
and therefore some lines of R do not have any negligible coefficient. Up to a
small approximation, B-splines offer on the contrary a localized basis.

In practice, a wavelength range can be associated to each new variable c(s)l.
If we assume the list of wavelengths (wj)1≤j≤m to be in increasing order, and
given a precision ratio ǫ > 0, the indexes of the bounds of the interval are

li = max

{

1 ≤ j ≤ m

∣

∣

∣

∣

∣

max
1≤k<j

|Rik| < ǫ max
1≤k≤m

|Rik|

}

, (3)

ui = min

{

1 ≤ j ≤ m

∣

∣

∣

∣

∣

max
j<k≤m

|Rik| < ǫ max
1≤k≤m

|Rik|

}

, (4)

with the convention that max1≤k<1 |Rik| = maxm<k≤m |Rik| = 0. The lower
bound wli corresponds to the largest index j such that all coefficients Rik for
k < j are smaller than ǫ times the maximal coefficient. The upper bound wui



is defined in a symmetric way. Figure 1 displays two wavelength intervals: the
vertical solid lines give the bounds of the interval calculated for ǫ = 0.05 and the
dashed lines correspond to ǫ = 0.01.

3.3 Optimal B-splines basis

Obviously, the quality of the new variables depends both on d and on p. For
instance d = 1 corresponds to a piecewise constant approximation that has
generally a low quality. In order to compare possible choices for d and p, we use
the leave-one-out error estimate described in [11]. This estimate is based only on
the spectra themselves and does not take into account the regression task. It can
be implemented very efficiently : for a single spectrum, the cost is O(p2 + pm).
Moreover, because most of the calculation does not depend on the spectrum,
the cost for n spectra is O(p2 + pmn). It should be noted that in spectrometric
applications, spectra do not exhibit very strong differences and it is therefore
possible to select the optimal basis by using only a small subset of the original
data set.

4 Experimental results

4.1 Methodology

In this section we apply the general idea of using a B-spline representation to a
spectrometric regression problem. The actual method consists in the following
steps:

1. Extraction of the B-spline coefficients for each spectrum. The number and
the order of the B-splines is chosen by the leave-one-out error estimate.

2. Selection of the B-spline coefficients through mutual information (MI) max-
imization with a forward-backward search (as in [3]). Any other variable
selection method could be used.

3. Calculation of the wavelength ranges associated to the selected variables, as
explained in Section 3.2, with ǫ = 0.01.

4. Construction of a nonlinear model (Radial Basis Function Network, RBFN)
on the coefficient selected by the previous step. The meta-parameters of the
RBFN are chosen by a 3-fold cross validation technique.

In order to assess the performances of the proposed method, its results are
compared to the performances of linear models namely a principal component
regression (PCR) and a partial least square regression (PLSR). The numbers of
components in the PLSR and in the PCR model are chosen with the same 3-fold
cross-validation method used to choose the meta-parameters of the nonlinear
model. To motivate the use of a nonlinear model, we also include the results of
a standard linear regression (LR) built on the selected variables.

The comparison of the models is done according to the Normalized Mean
Square Error (NMSE) they reach on an independent test set.



Finally, we use for comparison a simple method to extract the wavelengths
that play a significant role in the prediction of the target variable by the best
linear model obtained with PCR or PLSR. The output of such a model can be
written

y = α0 +
m
∑

j=1

αiX(wj), (5)

where X(wj) is a scaled version of the original input variable s(wj) (i.e., X(wj)
has zero mean and unit variance). As in section 3.2, we consider that wavelength
wj is important if |αj | > ǫmax1≤l≤m |αl|.

4.2 Results

We use the data set from the software contest organized at the International
Display Research Conference held in 1998. It consists of scans and chemistry
gathered from fescue grass (Festuca elatior). The grass was bred on soil medium
with several nitrogen fertilization levels. The aim of the experiments was to try
to find the optimum fertilization level to maximize production and to minimize
the consequences on the environment. In this context, the problem to address is
the following: can NIR spectrometry measure the nitrogen content of the plants?

Although the scans were performed on both wet and dry grass samples, we
only consider wet samples here (i.e., the scans were performed directly after
harvesting). The dataset contains 141 spectra discretized to 1050 different wave-
lengths, from 400nm to 2498nm. The nitrogen level goes from 0.8 to 1.7 approx-
imately. The data can be obtained from the Analytical Spectroscopy Research
Group of the University of Kentucky4.

We have split randomly the dataset into a test set containing 36 spectra and
a training set with the remaining 105 spectra. The random split has been done in
a way that preserve roughly the distribution of the target variable (the nitrogen
level).

The leave-one-out error calculation leads to the selection of an optimal basis
of 155 B-splines of order 5 (the optimal number of B-splines is chosen in [50, 500])
and achieves therefore a good compression ratio. The forward-backward mutual
information procedure selects ten coordinates. Both phases take a few minutes
on a personal computer, whereas the same variable selection procedure would
have taken several hours on the original variables.

The results on the test set (NMSE) for the studied methods are given in Table
1. The 10 variables selected by maximizing the mutual information cannot be
used to construct a linear model with performances comparable to the ones of
the optimal linear models. The nonlinear model constructed on those variables
has clearly the best performances.

While the mutual information maximization leads to the selection of 10 vari-
ables, they are calculated using only three intervals of the original wavelength
range: [400, 816], [874, 1118] and [2002, 2478]. Figure 2 represents the normalized

4 http://kerouac.pharm.uky.edu/asrg/cnirs/shoot out 1998/



Table 1. Normalized mean square error on the test set for the nitrogen content pre-
diction problem

Method Variables NMSE (test)

PCR 10 1.57 10−1

PLSR 9 1.51 10−1

MI + RBFN 10 1.21 10−1

MI + LR 10 2.59 10−1

coefficients used to compute the new variables. It appears clearly that only some
original wavelengths are used.
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Fig. 2. Normalized absolute value of the coefficients used to compute the selected
variables from the original spectral variables

It is not possible to select a few wavelength ranges from the linear model
induced by the PLSR: only 17 weights out of 1050 are smaller than ǫ = 0.01
times the higher one in this linear model. As illustrated by Figure 3, the PLSR
uses almost the full wavelength range.
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Fig. 3. Normalized absolute values of the coefficients of the linear model induced by
PLSR

5 Conclusion

This paper proposes a simple and generic approach for variable selection in spec-
trometric regression problems. The method is based on the standard filtering ap-
proach of Functional Data Analysis: the original spectral variables are replaced
by coordinates of the corresponding functions on a B-spline basis. The new vari-
ables are still interpretable as each of them depends only on a limited sub-range
of the original wavelength interval. The optimal basis is selected by a fast leave-
one-out procedure. The prior reduction of the number of variables allows one
to use time consuming variable selection methods such as the forward-backward
mutual information maximization used in the present paper. The performances
obtained on a real-world benchmark are very good. Constructing the full regres-
sion model takes a few minutes, compared to several hours that would be needed
to run the chosen variable selection procedure on the original spectral variables.
On the chosen benchmark, the obtained model outperforms linear models. While
these linear techniques are faster, they induce complex dependencies between the
target variable and almost all considered wavelengths, and provide therefore no
insight on the data. On the contrary, the selected variables are based on only 3
interpretable sub-intervals of the initial wavelength range.
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