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Abstract. This paper proposes to apply the branch and bound princi-
ple from combinatorial optimization to the Dissimilarity Self-Organizing
Map (DSOM), a variant of the SOM that can handle dissimilarity data. A
new reference model optimization method is derived from this principle.
Its results are strictly identical to those of the original DSOM algorithm
by Kohonen and Somervuo, while its running time is reduced by a fac-
tor up to 2.5 compared to the one of the previously proposed optimized
implementation.

1 Introduction

The Dissimilarity Self Organizing Map (DSOM, also referred to as the Median
SOM) is one of the adaptation of Kohonen’s SOM [1] to dissimilarity data [2],
i.e., to data that are only described by the results of pairwise comparisons of all
observations via a dissimilarity measure.

Previous optimization works [3] have showed that the complexity of this al-
gorithm can be greatly reduced by factorizing some calculations. The actual
running time of the implementation was also reduced with the help of some
heuristics (that don’t modify the final result). The present paper proposes to
replace and complement those ad hoc heuristics by simpler solutions based on
the branch and bound principle [4]. The new implementation gives exactly the
same results as the original algorithm. Moreover, as shown in the proposed ex-
periments, this new approach leads to very short running times.

Sections 2 and 3 recall the DSOM algorithm based on partial sum precalcula-
tion proposed in our previous works. Section 4 presents the new algorithm based
on the branch and bound principle. Sections 5 and 6 show how to complement
this principle with previously proposed heuristics. The final section 7 is devoted
to experiments on artificial and real world data.

2 Self-Organizing Maps for dissimilarity data

The DSOM algorithm is based on the batch version of the SOM. Let us consider
N input data, D = (xi)1≤i≤N , from an arbitrary input space X . We assume



given all pairwise dissimilarities between the data, denoted d(xi,xk)i,k. The
dissimilarity is symmetric and positive (with d(xi,xi) = 0).

As in the standard SOM, the DSOM maps input data from an input space
to a low dimensional organized set of M units (or neurons) arranged via a prior
structure (generally a graph or a grid structure). However, as we make no as-
sumption on the structure of the data, we can no longer associate an arbitrary
vector model to each unit. The main difference between the DSOM and the
standard SOM lies in this limitation of the former. There are two main solutions
to overcome this problem. One possibility is to completely avoid using reference
models, as proposed in [5]. In this paper we focus on a simpler solution, proposed
in [6, 2], in which the reference model for each unit is chosen among the input
data: for each unit j, it exists i such that the model associated to unit j, denoted
mj , is located on xi.

As in a standard DSOM, the prior structure of the units leads to the definition
of a neighborhood function, hl, such that hl(u, v) measures the influence of unit
u on unit v (and vice versa). One usual requirement in Kohonen algorithms is
that hl(u, v) is a decreasing function of the distance between u and v in the
prior structure. The DSOM is based on the batch paradigm: the superscript l
used in the neighborhood function corresponds to the epoch number in the batch
training, and as in the standard batch SOM, the influence on u over v tends to
decrease over time.

For each epoch, the DSOM performs two operations. The first operation is
the affectation of each input data to its best matching unit (BMU). The second
operation is the model update. An elementary solution for the affectation is to
minimize the dissimilarity between an input data and the models, i.e., to define
the affectation function cl (which maps, at epoch l, an input data index to a
unit index) as follows

cl(i) = arg min
j∈{1,...,M}

d(xi,m
l−1

j ), (1)

However, this criterion has a major drawback when used for the DSOM. As
models are chosen among the input data, different units can share the same
models [7] and there is no more a unique BMU for each input data. In order two
avoid such map folding, our implementation relies on a tie breaking rule from [8]:
if there are several candidate for the BMU of an input data, the comparison is
extended to the models of neighbor units. While this approach gives satisfactory
results, it also induces an increased running time (see section 7).

The cluster associated to unit j is denoted Cl
j = {1 ≤ i ≤ N |cl(i) = j}. We

denote P l the partition induced by the affectation phase at epoch l.

Model update is done through the principle of the generalized median exposed
in [2], which is summarized in the following equation

ml
j = arg min

m∈D

N∑

i=1

hl(cl(i), j)d(xi,m). (2)



The new model for unit j, ml
j is chosen such as to minimize the weighted sum

of its dissimilarity to all the input data. Weight values reflect the prior structure
of the map. In [2], variants of Equation 2 are considered: for instance, the search
for the model ml

j can be restricted to observations affected to units close to unit
j in the map. We restrict ourselves to the presented version, but our analysis
applies also to its variants.

3 Partial sum precalculation

As show in [3], the cost of the model update is O(N2M) when it is implemented
with an exhaustive search over the input data. The affectation phase cost is
O(NM) for the criterion of Equation 1 and O(NM2) in the worst case with the
solution proposed in [8]. This is smaller than O(N2M) as M is assumed to be
smaller than N .

As show in [3], equation 2 can be rewritten in order to reduce the cost of
the exhaustive search. We denote Dl(u, k) =

∑
i∈Cl

u

d(xi,xk). We call these
quantities ”partial sums”. The function which appears in the right hand side of
equation 2 can now be re-expressed as follows:

Sl(j, k) = arg min
m∈D

N∑

i=1

hl(cl(i), j)d(xi,xk) =

M∑

u=1

hl(u, j)Dl(u, k) (3)

As all partial sums can be computed once and for all before the computation
of Sl(j, k), the cost associated to the model update reduces to O(N2 + NM2).
It should be noted that this new algorithm leads to strictly identical results as
those obtained by the original algorithm.

4 DSOM implementation based on the branch and bound

principle

4.1 Branch and bound principle

The branch and bound principle [4] reduces the expected cost of the resolution
of a minimization problem by avoiding an exhaustive search, with the help of
two procedures the first one is a partition method for the solution space. This
corresponds to the branching part. The second is an approximation method
capable that can give quickly a lower bound for the function to be minimized
on a cluster obtained by the first procedure. This corresponds to the bounding
part. The algorithm proceeds by first optimizing the function on an initial cluster
with an exhaustive search, obtaining this way an upper bound for the minimum.
For each of the other clusters, it starts by calculating its lower bound via the
approximation method and carries an exhaustive search in the cluster only if
the lower bound is lower than the current upper bound. The efficiency of this
approach depends on the partition, on the quality of lower bounds and on the
access order of clusters.



In the DSOM context, the goal is to optimize Sl(j, .), and the solution space
D is split according to the partition P l produced during the affectation phase.
Because of the organization induced by the DSOM algorithm, this partition tend
to have homogeneous and separated clusters after a few epoch. Therefore, lower
bounds tend to be relatively high for numerous clusters and relatively low for
few clusters. Exhaustive searches should therefore be avoided quite frequently.

Moreover, the prior structure of the DSOM helps to define an efficient cluster
order. Indeed, good models for unit j are likely to belong to the corresponding
cluster Cl

j or to clusters associated to units close to j in the prior structure. By
browsing the clusters in increasing distance order from unit j, the algorithm will
obtain quickly a good estimate of the minimum and will avoid exhaustive search
in the farthest clusters (this intuition is confirmed by the experiments).

The potential impact on computation time is quite interesting, as the model
update cost can be reduced from O(NM2) to O(NM + M2) in the best case
(without taking into account the partial sum computation and the cost of the
approximation method). Let us assume indeed an equi-distribution of observa-
tions in clusters (N/M observations per cluster) and a perfect behavior: the
exhaustive search is conducted only in the first cluster and avoided in all the
other (because the minimum belongs to the first cluster and the lower bound
for the remaining clusters is always higher than the minimal value). Under such
assumption, the update cost for unit j is O(M(N/M)) for the exhaustive search
in the first cluster and O(M − 1) for the comparison with the lower bounds of
the other clusters. This leads to a total model update cost of O(MN + M2).

4.2 Lower bound computation

As explained in the previous section, we need to compute a lower bound of Sl(j, .)
on each clusters. A very efficient strategy relies on the structure of equation 3:

ηl(j, u) =

M∑

v=1

hl(v, j) min
k∈Cl

u

Dl(v, k) ≤ min
k∈Cl

u

Sl(j, k) (4)

Computing all quantities λl(v, u) = mink∈Cl
u

Dl(v, k) costs O(NM) (O(|Cl
u|)

for one of them). This is compatible with the ideal running time of the model
update phase with branch and bound (O(MN + M2) see previous section).

However the computation cost associated to lower bounds ηl is O(M3). This
is a quite high overhead compared to ideal running time (O(MN +M2)). There-
fore we propose the following generalization:

ηl(j, u,Θ) =
∑

v∈Θ

hl(v, j)λl(v, u) (5)

where Θ is a subset of {1, . . . ,M}. If Θ is maximal we get back to equation 4.
When Θ is reduced to a singleton, the cost reduces to O(M2), which is compatible
with the ideal running time of the model update phase. In practice, we focused
on the particular case of ηl(j, u, {j}). This heuristic is motivated by the following



remark: hl(v, j) gets smaller as the distance between units v and j increases in
the prior structure. Furthermore, functions used to compute hl(v, j) decrease
very quickly. Therefore, λl(j, u) has a large influence on ηl(j, u).

5 Early stopping

An early stopping approach was already used in our previous works [3]. In this
paper, it is combined to the branch and bound principle. The lower bound com-
putation proposed in the previous section can be described by the following
recurrent scheme:

ηl(j, u,Θ)1 = hl(θ1, j)λ
l(v1, u),

ηl(j, u,Θ)t = ηl(j, u,Θ)t−1 + hl(θt, j)λ
l(θt, u),

where Θ = {θ1, . . . , θ|Θ|}. Each ηl(j, u,Θ)t is a lower bound of Sl(j, .). As the

complete computation of ηl(j, u,Θ) is quite expensive (and sometimes useless),
it can be replaced by a lazy strategy: at each step of the iteration calculation
ηl(j, u,Θ)t is compared to the upper bound find so far. If the upper bound is
lower than ηl(j, u,Θ)t, the loop is stopped before termination (early stopping)
and no exhaustive search is performed in the current cluster.

As in the previous section, the computation order has a major impact on
the algorithm efficiency. Indeed ηl(j, u,Θ)t must increase as quickly as possi-
ble in order to avoid useless comparisons. A naive approach would be to sort
hl(θt, j)λ

l(θt, u) in decreasing order, and to sum them accordingly. However the
overhead induced by the sorting algorithm renders this optimal order useless,
and a sub-optimal order must therefore be used. We propose to sum the terms
according to the decreasing order of hl(θt, j). After some epoch the neighborhood
function dominates the product (the neighborhood function decreases quickly)
and this order is a reasonable approximation of the optimal order. Moreover,
as the neighborhood function is a decreasing function of the distance in the
prior structure, such order is independent of the current epoch, and can be com-
puted during the algorithm initialization: the overhead associated to this order
is therefore negligible.

6 Memorization

The last optimization presented in this paper was already applied in our previous
works [3]. It applies to the computation of Dl(u, k) and λl(v, u), and is based on
the fact that when the DSOM algorithm proceeds, clusters tend to stabilize: it
is quite common for one (or more) cluster to remain identical from one epoch to
the next one. In such cases, the N partial sums Dl(u, k) associated to this clus-
ter remain unchanged. In a similar way, the quantity λl(v, u) = mink∈Cl

u
Dl(v, k)

changes only if cluster Cl
u or cluster Cl

v are modified. Therefore, a lazy computa-
tion strategy can be used: we just have to monitor cluster modifications in the
affectation phase, and recompute corresponding quantities accordingly.



7 Experiments

The proposed optimized algorithms have been evaluated on two data sets. The
first one is a simple benchmark: it consists in a set of N vectors in R

2 chosen
randomly and uniformly in the unit square. The square euclidean distance was
used to construct the dissimilarity matrix. Five values for N the number of
observations, 500, 1 000, 1 500, 2 000 and 3 000 where tested.

The second data set is a real world one: it consists in a small English word
list, extracted from the SCOWL [9]. The smallest list in this collection contains
4 946 very common English words. After removing plural forms and possessive
forms, the word list reduces to 3 200 words. This is the first set. From this first
set, a second one is constructed by applying Porter’s stemming algorithm [10].
This reduces the word list to 2 277 words. In both cases a normalized version of
the Levenshtein distance is used to compare the words [11] (string edit distance).

A DSOM with a hexagonal grid of size M = m × m models is applied to
those data. We always used L = 100 iterations and a Gaussian kernel for the
neighborhood function.

We report first in Table 1 some reference performances3 obtained with the
DSOM algorithm based on partial sum computation. We tested three different
sizes for the grid, M = 49 = 7× 7, M = 100 = 10× 10, M = 225 = 15× 15 and
M = 400 = 20 × 20. To avoid too small clusters, high values of M were used
only with high values of N .

Artificial data SCOWL

N (observations)
M (clusters)

500 1 000 1 500 2 000 3 000 2 277 3 200

49 = 7 × 7 0.7 1.5 2.5 3.7 6.6 4.6 8.6

100 = 10 × 10 2.6 4.5 7.3 10.0 16.9 12.6 19.4

225 = 15 × 15 26.6 40.9 54.4 83.2 62.5 86.4

400 = 20 × 20 133.2 174.2 242.8 185.9 318.0
Table 1. Running times in seconds of partial sum algorithm

We notice first an important difference between results on artificial data
and those on SCOWL data: running times on SCOWL data are slower than
those on artificial data with comparable size. Such behavior can be explained
by the fact that SCOWL data are much more sensitive to model collisions.
As explained in Section 2, model collisions increase the cost associated to the
affectation phase, which impacts overall running times. Such behavior will be
identical for subsequent experiments.

Table 2 reports running time ratio between algorithms proposed in this work
and the reference algorithm (the partial sum algorithm without branch and

3 algorithms have been implemented in Java (JRE 5.0 of Sun) and tested on a work-
station equipped with a 3.00 GHz Pentium IV under a Linux operating system



bound or other heuristics). The results of our previous algorithm [3] is also
reported. The first part of the table focuses on the branch and bound algorithm.
Lower bound computations are done according to strategies described in section
4.2: the first result in each cell corresponds to lower bounds calculated with only
one term ηl(j, u, {j}) (see Equation 5), while the second result corresponds to
lower bounds calculated according to Equation 4 (all terms are used).

Artificial data SCOWL

NM 500 1 000 1 500 2 000 3 000 2 277 3 200

Branch and bound 49 1.2 | 1.5 1.1 | 1.4 1.1 | 1.4 1.1 | 1.3 1.0 | 1.3 1.0 | 1.2 0.9 | 1.1
algorithm. 100 1.4 | 1.7 1.4 | 2.1 1.3 | 2.2 1.2 | 2.2 1.2 | 2.1 1.0 | 1.5 1.0 | 1.3
left: one term 225 2.0 | 2.7 2.0 | 3.4 2.0 | 4.0 2.0 | 4.3 1.2 | 1.8 1.2 | 2.0
right: all the terms 400 2.5 | 2.8 2.5 | 3.4 2.4 | 4.2 1.3 | 2.0 1.2 | 1.7

Early stopping 49 1.4 | 1.5 1.4 | 1.4 1.3 | 1.4 1.3 | 1.4 1.2 | 1.2 1.2 | 1.2 1.1 | 1.1
algorithm. 100 1.7 | 1.9 2.1 | 2.3 2.2 | 2.3 2.1 | 2.3 2.0 | 2.1 1.5 | 1.5 1.4 | 1.3
left: no order 225 3.1 | 4.4 3.8 | 5.0 4.2 | 5.3 4.5 | 5.3 2.0 | 2.0 2.1 | 2.2
right: order 400 3.6 | 6.2 4.1 | 6.5 5.0 | 7.1 2.4 | 2.6 1.8 | 1.9

left: memorization 49 1.9 | 1.4 1.9 | 1.4 1.9 | 1.4 1.8 | 0.9 1.8 | 1.3 1.4 | 1.2 1.3 | 1.1
algorithm. 100 2.2 | 1.7 2.9 | 1.9 2.9 | 1.7 2.9 | 1.6 2.8 | 1.5 1.6 | 1.2 1.5 | 1.1
right: previous 225 5.1 | 2.7 5.8 | 2.8 6.3 | 2.7 6.4 | 2.5 2.1 | 1.6 2.3 | 1.5
algorithm. 400 6.8 | 3.6 7.3 | 3.5 8.2 | 3.2 2.6 | 1.9 1.9 | 1.5

Table 2. Speed up of proposed algorithms (reference: partial sum algorithm)

The running times obtained with the simplest lower bound estimator (only
one term) are almost always lower than those of the partial sum algorithm.
This shows that even with a very optimistic lower bound, the branch and bound
principle reduces a lot the search burden. However a closer analysis of the results
shows that the speed up decreases as N increases. This a consequence of the
domination of the O(N2) term in the total cost of the algorithm: a reduction
of the actual cost of the other term O(NM2) has only a marginal effect in this
situation. For the very same reasons, results get better when M increases.

Results based on a more accurate estimation of the lower bound (based on
Equation 4) show a greater improvement. Despite the higher calculation cost for
those bounds (O(M3) compared to O(M2)), its improved accuracy is sufficient
to reduce even further the need of exhaustive search and therefore the running
times.

The second part of Table 2 reports running time ratio between the early stop-
ping algorithm (when early stopping is included in the lower bound calculation)
and the reference algorithm (partial sum algorithm). Left results correspond
to the algorithm where summations are done according to the natural order,
whereas right results correspond to the order induced by the prior structure.
Both series of results show that early stopping has always a positive impact on
the running time. Moreover, the ordering strategy proposed in section 5 appears
to lead to significant improvements.



The last part of Table 2 reports results obtained with memorization added
to the other heuristics (on the left) and results obtained by our previous algo-
rithm (see [3]). It appears clearly that memorization reduces the running time
in all cases. Benefits of memorization are also more noticeable as N increases.
This can be explained by the fact that memorization reduces the precalculation
phase, which is very dependent of the N term. On the other hand, memorization
efficiency decreases with M . This can be explained by two reasons: firstly the
representation phase is not improved by the memorization strategy, which gets
more and more important in the global cost. Secondly, as the number of clus-
ters M increases, cluster modifications increase which impair the memorization
strategy. It is also clear that the newly proposed algorithm is always faster than
our previous attempt.

8 Conclusion

Overall, the proposed algorithm, which combines the branch and bound princi-
ple with heuristics proposed earlier (early stopping and memorization), reduces
the running time of the DSOM by a factor up to 2.5 compared to our previous
solution [3], under favorable circumstances. Even on more demanding data (the
SCOWL data), the gain is significant (1.5). The implementation of both algo-
rithms are quite similar in term of code complexity and there is therefore no
reason to retain the previous version. Moreover, results obtained with this new
version are strictly identical to the one obtained with the original algorithm.
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