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Abstract. Clustering constitutes an ubiquitous problem when dealing
with huge data sets for data compression, visualization, or preprocessing.
Prototype-based neural methods such as neural gas or the self-organizing
map offer an intuitive and fast variant which represents data by means of
typical representatives, thereby running in linear time. Recently, an ex-
tension of these methods towards relational clustering has been proposed
which can handle general non-vectorial data characterized by dissimilar-
ities only, such as alignment or general kernels. This extension, relational
neural gas, is directly applicable in important domains such as bioinfor-
matics or text clustering. However, it is quadratic in m both in memory
and in time (m being the number of data points). Hence, it is infeasi-
ble for huge data sets. In this contribution we introduce an approximate
patch version of relational neural gas which relies on the same cost func-
tion but it dramatically reduces time and memory requirements. It offers
a single pass clustering algorithm for huge data sets, running in constant
space and linear time only.

1 Introduction

The presence of huge data sets, often several GB or even TB, poses particular
challenges towards standard data clustering and visualization such as neural gas
or the self-organizing map [10,12]. At most a single pass over the data is still
affordable such that online adaptation which requires several runs over the data
is not applicable. At the same time, alternative fast batch optimization cannot
be applied due to memory constraints. In recent years, researchers have worked
on so-called single pass clustering algorithms which run in a single or few passes
over the data and which require only a priorly fixed amount of allocated memory.
Popular methods include heuristics such as CURE, STING, and BIRCH [5, 16,
18] and approximations of k-means clustering as proposed in [4,9]. In addition,
dynamic methods such as growing neural gas have been adapted to cope with
the scenario of life-long adaptivity, see e.g. [15].

The situation becomes even more complicated if data are non-vectorial and
distance-based clustering methods have to be applied, which often display a
quadratic time complexity [8]. Although a variety of methods which can directly
work with relational data based on general principles such as extensions of the



self-organizing map and neural gas have been proposed [11, 3, 7], these methods
are not suited for huge data sets. For complex metrics such as alignment of DNA
strings or complex kernels for text data, it is infeasable to compute all pairs of
the distance matrix and at most a small fraction can effectively be addressed. A
common challenge today, arising especially in Computational Biology, are huge
datasets whose pairwise dissimilarities cannot be hold at once within random-
access memory during computation, due to the sheer amount of data.

In this work, we present a new technique based on the Relational Neural Gas
approach [7] that is able to handle this situation by a single pass technique based
on patches that can be chosen in accordance to the size of the available random-
access memory. This results in a linear time and finite memory algorithm for
general dissimilarity data which shares the intuitivity and robustness of NG.

2 Neural Gas

Neural Gas (NG), introduced by Martinetz et al. [12], is a vector quantization
technique aiming for representing given data v € V' C R¢ faithfully by prototypes
w; € RY i =1,...,n. For a continuous input distribution given by a probability
density function P(v), the cost function minimized by NG is

B~ ;;/hx(k}(wi,v)) v = w;||* P(v)do,

where k(w;,v) = |[{w; : ||[v —wj|]| < ||[v — w;||}| denotes the rank of neuron w;
arranged according to the distance from data point v. The parameter A > 0
controls the neighbourhood range through the exponential function hy(t) =

exp(—t/)).
Typically, NG is optimized in an online mode using a stochastic gradient
descent method. However, for a given discrete training set {vy,va,..., vy} the

cost function of NG becomes
1 n m
E(W) ~ §-Zzhx(k(wi»v))~llvj — w;? (1)
i=1 j=1

For this case, an alternative batch optimization technique has been introduced
[3]. It, in turn, determines the ranks k;; = k(w;, v;) for fixed prototype locations
w; and then determines new prototype locations via the update formula

w; = ZhA(k’ij) ' Uj/z h(kij)

for the fixed ranks k;;. Batch NG shows the same accuracy and behaviour as
NG, whereby its convergence is quadratic instead of linear as for NG.

3 Relational Neural Gas

Relational data do not necessarily originate from an Fuclidean vector space,
instead only a pairwise dissimilarity measure d;; is given for the underlying



datapoints v;,v; € V. The only demands made on dissimilarity measures are
non-negativity d;; > 0 and reflexivity d;; = 0, so they are not necessarily metric
or even symmetric by nature. Obviously, NG cannot directly deal with such data
and its original formulation is restricted to vectorial updates.

One way to deal with relational data is Median clustering [3]. This technique
restricts prototype locations to given data points, such that distances are well
defined in the cost function of NG. Batch optimization can be directly tranferred
to this case. However, median clustering has the inherent drawback that only
discrete adaptation steps can be performed which can dramatically reduce the
representation quality of the clustering.

Relational Neural Gas (RNG) [7] overcomes the problem of discrete adap-
tation steps by using convex combinations of Euclidean embedded data points
as prototypes. For that purpose, we assume that there exists a set of (in gen-
eral unknown and presumably high dimensional) Euclidean points V' such that
di; = ||v; — vl for all v;,v; € V holds, i.e. we assume there exists an (unknown)
isometric embedding into an Euclidean space. The key observation is based on
the fact that, under the assumptions made, the squared distances ||w; — v;]|?
between (unknown) embedded data points and optimum prototypes can be ex-
pressed merely in terms of known distances d;;.

In detail, we express the prototypes as w; = Ej ;v with Zj a;; = 1. With
optimal prototypes, this assumption is necessarily fulfilled. Given a coefficient
matrix (a;;) € R™™ and a matrix A = (d?j) € R™*™ of squared distances, it
then holds

2 1 T
lwi = v;lI" = (@i - A); = 5 - qin Aoy, (2)
where * indicates vector indices. Because of this fact, we are able to substitute all
terms |lw; —v;]|? in Batch NG by (2) and derive new update rules. For optimum
prototype locations given fixed ranks we find

aij = ha(ki(v3))/ Y ha(ks(wr). ®3)

This allows to reformulate the batch optimization schemes in terms of relational
data as done in [7].

Note that, if an isometric embedding into Euclidean space exists, this scheme
is equivalent to Batch NG and it yields identical results. Otherwise, the consec-
utive optimization scheme can still be applied. It has been shown in [7] that
Relational NG converges for every nonsingular symmetric matrix A and it opti-
mizes the relational dual cost function of NG which can be defined solely based
on distances A.

Relational neural gas displays very robust results in several applications as
shown in [7]. Compared to original NG, however, it has the severe drawback
that the computation time is O(m?), m being the number of data points, and
the required space is also quadratic (because of A). Thus, this method becomes
infeasible for huge data sets. Recently, an intuitive and powerful method has
been proposed to extend batch neural gas towards a single pass optimization
scheme which can be applied even if the training points do not fit into the main
memory [1]. The key idea is to process data in patches, whereby prototypes serve



as a sufficient statistics of the already processed data. Here we transfer this idea
to relational clustering.

4 Patch Relational Neural Gas

Assume as before that data are given as a dissimilarity matrix D = (dij)i,jzl,.uﬂn
with entries d;; = d(v;,v;) representing the dissimilarity of the datapoints v;
and v;. During processing of Patch Relational NG, n, patches of fixed size p =
|m/ny] are cutted consecutively from the dissimilarity matrix D3, where every

patch
Py = (dst) s j—(i—1)pt1,...ip € RO

is a submatrix of D centered around the matrix diagonal.

The idea of the original patch scheme is to add the prototypes from the pro-
cessing of the former patch P;_; as additional datapoints to the current patch P;,
forming an extended patch P which includes the previous points in the form of
a compressed statistics. The additional datapoints — the former prototypes — are
weighted according to the size of their receptive fields, i.e. how many datapoints
do they represent in the former patch. To implement this fact, every datapoint
v; is equipped with a multiplicity m;, which is initialized with m; = 1 for data
points from the training set and it is set to the size of the receptive fields for
data points stemming from prototypes. This way, all data are processed without
loss of previous information which is represented by the sufficient statistics. So
far, the method has only been tested for stationary distributions. However, it
can expected that the method works equally well for nonstationary distributions
due to the weighting of already processed information according to the number
of already seen data points. In contrast to dynamic approaches such as [15] the
number of prototypes can be fixed a priori.

Unlike the situation of original Patch NG [1], where prototypes can simply be
converted to datapoints and the inter-patch distances can always be recalculated
using the Euclidean metric, the situation becomes more difficult for relational
clustering. In Relational NG prototypes are expressed as convex combinations of
unknown Fuclidean datapoints, only the distances can be calculated. Moreover,
the relational prototypes gained from processing of a patch cannot be simply
converted to datapoints for the next patch. They are defined only on the data-
points of the former patch. To calculate the necessary distances between these
prototypes and the datapoints of the next patch, the distances between former
and next patch must be taken into account, as shown in [7]. But that means
touching all elements of the upper half of the distance matrix at least once dur-
ing processing of all patches, what foils the idea of the patch scheme to reduce
computation and memory-access costs.

In this contribution, another way is proposed. In between patches not the
relational prototypes itselves but representative datapoints obtained from a so

3 The remainder is no further considered here for simplicity. In the practical imple-
mentation the remaining datapoints are simply distributed over the first (M —p-np)
patches.



called k-approximation are used to extend the next patch. As for standard patch
clustering, the points are equipped with multiplicities. On each extended patch
a modified Relational NG is applied taking into account the multiplicities.

k-Approximation Assume there are given n relational prototypes by their
coefficient matrix (c;;) € R"*™ defined on Euclidean datapoints V. These pro-
totypes are taken after convergence of the Relational NG method, i.e. these
prototypes are situated at optimal locations.

As can be seen from the update rule (3), after convergence in the limit A — 0
it holds

{l/Ri| . v €R;

hk(kﬁij) =1forv; € R;
0 . @R because { ,

i 7 ha(kij) — 0 for v; & R,

where R; = {v; € V : ||lw; — vj|| < ||lwg — v for all k} denotes the receptive
field of prototype w;. That means, in the limit only datapoints from the receptive
fields have positive coefficients and equally contribute to the winning prototype
that is located in the center of gravity of its receptive field.

A k-approzimation of an optimal relational prototype w; is a subset R’ C
R; with |R'| = min{k,|R;|} such that >, . p lwi — #/||* is minimized. That
means, we choose the k nearest points from the receptive field of a prototype as
representatives. If there are less than k points in the receptive field, the whole
field is taken. This computation can be done in time O(|R;| - k). For a set W of
relational prototypes, we refer to the set containing a k-approximation for each
relational prototype w; € W a k-approximation of W.

These k-approximations in combination with their corresponding coefficients
can be interpreted as a convex-combined point in the relational model, defined
just over the points of the k-approximation. Therefore, if merged into the next
patch, the number of the prototype coefficients remains limited, and the distances
of these approximated prototypes to points of the next patch can be calculated
using the original equations. This way, only a fraction of the inter-patch distances
needs to be considered.

Construction of Extended Patches Let W, be a set of optimal relational
prototypes gained in a step t. Assume N; denotes the index set of all points
included in the union of a k-approximation of W; pointing onto elements of
the dissimilarity matrix D. The extended patch P} is then characterized by the
distance matrix

d(N¢-1) d(N¢-1, Py)

P =
d(Ni—1, P)" Py




where
d(N¢—1) = (duv)u,v en, , € Ruxm
A(Ni—1, Py) = (duv)y € N, 1 om(t—1)pt1,....t0p € R"FP
denote the inter-distances of points from the k-approximation and the distances

between points from the k-approximation and current patch points, respectively.
The size n; is bounded by |W| - k.

Integrating Multiplicities The original Relational Neural Gas method has to
be modified to handle datapoints v; equipped with multiplicities m; which are
given by the size of the receptive fields divided by k. Incorporating multiplicities
into the cost function yields the update rule

m; - ha(ki(v;))
Yo mi - ha(ki(ve))

for prototype coefficients. The computation of distances is not changed.

dij =

Patch Relational Neural Gas Assembling the pieces, we obtain:

Algorithm

Cut the first Patch P;

Apply Relational NG on P, — Relational prototypes W3
Use k-Approximation on W; — Index set Ny

Update Multiplicities m; according to the receptive fields

Repeat for t =2,...,n,
Cut patch P,
Construct Extended Patch P} using P; and index set N;_;
Apply modified RNG with Multiplicities — Relational prototypes W;
Use k-Approximation on W; — Index set IVy
Update Multiplicities m; according to the receptive fields

Return k-approximation of final prototypes Ny,

Complexity Obviously, the size of extended patches is bounded by the size of
the new patch read from the distance matrix and the distances of the at most k-n
points representing the n prototypes of the last run by their k£ approximation.
Assume a bounded extended patch size p independent of the number of data-
points, as it would be the case when the patch size is chosen according to memory
limitations. The algorithm then works only on O(*} -p?) = O(m - p) = O(m)
entries of the dissimilarity matrix, compared to O(m?) in the original Median
NG method. Moreover, the algorithm uses at most O(p?) = const entries at a
specific point in time.

In case of fixed patch size, also the time complexity is linear, because the
Median NG step is O(p?) what results in O(p? - ) = O(p-m) = O(m), an



advantage compared to the O(m?) time complexity of the original Median NG.
Further, the algorithm can be run in a single pass over the data.

These advantages in space and time complexity are obtained by an approx-
imation of the prototypes. As we will see in experiments, this leads only to a
small loss in accuracy.

5 Experiments

Practioners often handle huge datasets whose dissimilarities cannot be hold at
once within random-access memory due to the sheer amount of data (O(m?)).
At that point, Patch Relational NG comes into play providing a single pass tech-
nique based on patches that can be chosen in accordance to the available random-
access memory. To show the overall performance of the proposed method, we
have chosen some representative dissimilarity datasets. Due to limited comput-
ing power and hardware available, the chosen datasets do not represent real-life
huge datasets, they should be understood as a proof-of-concept that nevertheless
can instantly be transfered to the real problems.

We evaluate the clustering results by means of the classification error for
supervised settings, whereby class labels are obtained by posterior labeling of
prototypes. Note, however, that the goal of the algorithms is meaningful clus-
tering of data based on a chosen similarity measure and cost function. Hence,
the classification error gives only a hint about the quality of the clustering, de-
pending on whether the class labels are compatible to the data clusters and
chosen metric or not. We accompany this supervised evaluation be the standard
quantization error of the clustering.

For all experiments the initial neighborhood range A\ is chosen as n/2 with
n the number of neurons used. The neighborhood range A(t) is decreased ex-
ponentially with the number of adaptation steps t according to A(t) = Ag -
(0.01/Xg)t/tmax (cf. [12]). The value tyax is chosen as the number of epochs.

Synthetic Dataset

To analyze the relation between the number of patches and the quantization
error on one hand, and the effect of k-approximation of relational prototypes
on the other hand, an artificial dataset from [3] was taken. It consists of 1250
datapoints in the Euclidean plane gained from three Gaussian clusters.

Effect of k-Approximation For an empirical study of the effect of k-approxi-
mation on the quantization error, we trained 50 neurons with the original Rela-
tional NG for 100 epochs, i.e. on average every neuron represents 25 datapoints.
On the outcoming relational neurons, k-Approximation for k£ = 1,...,20 were
applied. Figure 1 shows a comparison of the quantization errors yielded with
the different approximations to the quantization error gained by the original
relational neurons. For each step the average over 10 runs is reported.

As expected, the quantization error decreases with higher numbers k of dat-
apoints used to approximate each relational neuron. Concerning the patch ap-
proach, applying a k-approximation to the relational neurons of each patch
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Fig. 1. Quantization error (i.e. E(W) for A — o0) of original relational neurons com-
pared to different k-approximations on a synthetic dataset

clearly results in a loss of accuracy depending on the choice of parameter k.
But as can be seen later on, even with k-approximation the quality of the results
is still convincing.

Effect of Patch Sizes Analyzing the relation between the number of patches
chosen and the quantization error, we trained median and relational NG with 20
neurons for 50 epochs. The results presented in figure 2 show the quantization
error averaged over 10 runs for each number of patches. As expected, the quan-
tization error increases with the number of patches used. But compared to the
Median Patch NG approach the presented Patch Relational NG performs very
well with only a small loss even for a larger number of patches used.

Chicken Pieces Silhouettes Dataset

The task is to classify 446 silhouettes of chicken pieces into the categories wing,
back, drumstick, thigh and back, breast. Data silhouettes are represented as a
string of the angles of consecutive tangential pieces of length 20, including appro-
priate scaling. Strings are compared using a (rotation invariant) edit distance,
where insertions/deletions cost 60, and the angle difference is taken otherwise.

For training we used 30 neurons. For Patch Median NG the dataset was
divided into 4 patches, i.e. a patch size of around 111 datapoints. The results
reported in Table 1 are gained from a repeated 10-fold stratified crossvalidation
averaged over 100 repetitions and 100 epochs per run. The k-approximation for
Patch Relational NG was done with k = 3.
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Fig. 2. Quantization error for different patch sizes on a synthetic dataset

Protein Classification

The evolutionary distance of 226 globin proteins is determined by alignment
as described in [13]. These samples originate from different protein families:
hemoglobin-a, hemoglobin-3, myoglobin, etc. Here, we distinguish five classes
as proposed in [6]: HA, HB, MY, GG/GP, and others. Table 2 shows the class
distribution of the dataset.

For training we used 20 neurons. For Patch Median NG the dataset was
divided into 4 patches, i.e. a patch size of around 57 datapoints. The results
reported in Table 3 are gained from a repeated 10-fold stratified crossvalidation
averaged over 100 repetitions and 100 epochs per run.

Despite the small size of this dataset — acting more as a proof-of-concept
example — the results clearly show a good performance of Patch Median NG.
Nevertheless, the price of reduced accuracy is obvious, but faster computation

Accuracy on Chicken Pieces Dataset

Relational Patch Median Patch Median

NG Relational NG Batch NG Median NG k-Means
Mean 84.7 85.4 66.4 68.8 72.9
StdDev 1.0 1.1 1.9 2.3 1.7

Table 1. Classification accuracy on Chicken Pieces Dataset gained from repeated 10-
fold stratified crossvalidation over 100 repetitions, four patches were used.



Class No. Count Percentage

HA 72 31.86%
HB 72 31.86%
MY 39 17.26%

GG/GP 30  13.27%
Others 13 5.75%

Table 2. Class Statistics of the Protein Dataset

and less space requirements are gained in return. The k-approximation for Patch
Relational NG was done with k = 3.

Wisconsin breast cancer

The Wisconsin breast cancer diagnostic database is a standard benchmark set

from clinical proteomics [17]. It consists of 569 data points described by 30 real-

valued input features: digitized images of a fine needle aspirate of breast mass are

described by characteristics such as form and texture of the cell nuclei present

in the image. Data are labeled by two classes, benign and malignant.
Dissimilarities were derived by applying the Cosine Measure

vi-vj

d Vi V) = 1 TR TR
cos( (24 J) H’U1||2 : ij”Q

We trained 40 neurons for 100 epochs. As result the accuracy on the test
set for a repeated 10-fold stratified crossvalidation averaged over 100 runs is
reported. The number of patches chosen for Patch Median NG and Patch Rela-
tional NG was 5, i.e. around 114 datapoints per patch. The k-approximation for
Patch Relational NG was done with k& = 2.

Also on this dataset, Patch Relational NG acts merely worse than the original
Relational NG. Though, the reduction in accuracy is clearly observable.

Chromosome Images Dataset

The Copenhagen chromosomes database is a benchmark from cytogenetics. A
set of 4200 human chromosomes from 22 classes (the autosomal chromosomes)

Accuracy on Protein Dataset

Relational Patch Median Patch Median

NG Relational NG Batch NG Median NG k-Means
Mean 92.62 92.61 79.9 7.7 80.6
StdDev 0.92 0.88 1.5 2.4 1.3

Table 3. Classification accuracy on Protein Dataset gained from repeated 10-fold
stratified crossvalidation over 100 repetitions, four patches were used.



Accuracy on Wisconsin Breast Cancer Dataset

Relational Patch Median Patch Median

NG Relational NG Batch NG Median NG k-Means
Mean 95.0 94.8 94.7 94.4 94.6
StdDev 0.6 0.7 0.7 0.7 0.7

Table 4. Classification accuracy on Wisconsin Breast Cancer Dataset with Cosine
Measure gained from repeated 10-fold stratified crossvalidation over 100 repetitions,
five patches and a 2-approximation were used.

are represented by the grey levels of their images. These images were transferred
to strings representing the profile of the chromosome by the thickness of their
silhouettes. Strings were compared using edit distance with substitution costs
given by the signed difference of the entries and insertion/deletion costs given
by 4.5 [14]. The methods have been trained using 60 neurons for 100 epochs. As
result the accuracy on the test set for a repeated 2-fold stratified crossvalidation
averaged over 10 runs is reported. The number of patches chosen for Patch
Median NG and Patch Relational NG was 10, i.e. around 420 datapoints per
patch. The k-approximation for Patch Relational NG was done with k = 3.

Also on this dataset, Patch Relational NG acts well. Though, the reduction
in accuracy is clearly observable.

6 Summary

In this paper, we proposed a special computation scheme, based on Relational
Neural Gas, that allows to process huge dissimilarity datasets by a single pass
technique of fixed sized patches. The patch size can be chosen to match the
given memory constraints. As explained throughout the paper, the proposed
patch version reduces the computation and space complexity with a small loss
in accuracy, depending on the patch sizes. We further demonstrated the ability
of the proposed method on several representative clustering and classification
problems. In all experiments, relational adaptation increased the accuracy of
Median clustering.

Accuracy on Copenhagen Chromosome Image Dataset

Relational Patch Median Patch Median

NG Relational NG Batch NG Median NG k-Means
Mean 89.6 87.0 80.0 67.9 77.1
StdDev 0.6 0.8 1.4 3.1 2.2

Table 5. Classification accuracy on Copenhagen Chromosome Image Dataset gained
from repeated 2-fold stratified crossvalidation over 10 repetitions, 10 patches and a
3-approximation were used.



Note that relational and patch optimization are based on a cost function
related to NG such that extensions including semisupervised learning and met-
ric adaptation can directly be transferred to this settings. In future work, the
method will be applied to more real-world datasets. The patch scheme also opens
a way towards parallelizing the method as demonstrated in [2].
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