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Abstract Functional data analysis involves data described by redulactions
rather by a finite number of real valued variables. While sooirist data analy-
sis methods can be applied directly to the very high dimewadivgectors obtained
via a fine grid sampling of functional data, all the methodsdfi¢ from a prior sim-
plification of the functions that reduces the redundancyded by the regularity. In
this paper we propose to use a variable clustering appraadbgign a piecewise
constant representation of a set of functions. The coniguinstraint induced by
the functional nature of the variables leads to an optingdréthm.

1 Introduction

Functional data [8] appear in applications in which objdotanalyse have some
form of variability. In spectrometry, for instance, sangpére described by spectra:
each spectrum is a mapping from wavelengths to e.g., tréiasmoe. Time varying
objects offer a more general example: when the charadtsrist objects evolve
through time, a loss free representation consists in désgrihese characteristics
as functions that map time to values.

In practice, functional data are given as high dimensioe&tars (e.g., more
than 100 variables) obtained by sampling the functions oneadiid. For smooth
functions (for instance in near infrared spectroscopyiy scheme leads to highly
correlated variables. While many data analysis methods eandule robust to this
type of problem (see, e.g., [3] for discriminant analysid)methods benefit from a
compression of the data [7] in which relevant and yet easpterpret features are
extracted from the raw functional data.

There are well known standard ways of extracting optimaiuieaaccording to
a given criterion. For instance in unsupervised problets fitstk principal com-
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ponents of a dataset give the best linear approximationeotiginal data irRX for
the quadratic norm (see [8] for functional principal comgohanalysis (PCA)). In
regression problems, the partial least square approachcexfeatures with maxi-
mal correlation with a target variable (see also Slicedrsiom Regression methods
[2]). The main drawback of those approaches is that thepetdeatures that are not
easy to interpret: while the link between the original featuand the new ones are
linear, it is seldom sparse; an extracted feature genatefends on many original
features.

A different line of thought is followed in the present paptie goal is to extract
features that are easy to interpret in terms of the origiaghbles.

2 Best basisfor functional data

Let us considen functional data{s )i<i<n. Eachs is a function from[a,b] to R,
wherela, b] is a fixed interval common to all functions (more precisglyjpelongs

to L?([a, b)), the set of square integrable functions|arb]). In terms of functional
data, linear feature extraction consists in choosing fehdaature a linear opera-
tor from L?([a, b]) to R. Equivalently, one can choose a functigrirom L?([a, b))
and computes, @), 2 = f;) @(x)s(x)dx. In an unsupervised context, using e.g., a
quadratic error measure, choosing khgest features consists in findikgrthonor-
mal functions(@)1<i<k that minimise the following quantity:
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If the ¢ are unconstrained, the optimal basis is given by functi®@A [8]. How-
ever, in order for the corresponding feature to be easy trpnet, theg should
have compact supports, the simple caseof I, ,, being the easiest to analyse
(Ijuy (x) = L whenx € [u,v] and O elsewhere).

The problem of choosing an optimal basis among a set of basdsden studied
for some time in the wavelet community [1, 10]. In unsupegdisontext, the best
basis is obtained by minimizing the entropy of the features, (of the coordinates
of the functions on the basis) in order to enable compredsyatiscarding the less
important features. Following [7], [9] proposes a differapproach, based on B-
splines: a leave-one-out version of Equation (1) is use@lMecsthe best B-splines
basis. While the orthonormal basis induced by the B-splilnes ehot correspond to
compactly supported functions, the dependency betweew éea¢ure and the orig-
inal ones is still localized enough to allow easy interpieta Nevertheless both
approaches have some drawbacks. Wavelet based methods le@mtpactly sup-
ported basis functions but the basis has to be chosen in stttextured set of bases.
As a consequence, the support of a basis function cannotybsuminterval of
[a,b]. The B-spline approach suffers from a similar problem: thereximate sup-
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ports have all the same lengths leading either to a poorseptation of some local
details or to a large number of basis functions.

3 Best basisvia constrained clustering

The goal of the present paper is to select an optimal basig wsily basis func-
tions of formI;, without restriction on the possible intervals among sutesval

of [a,b[%. Let us considetg; = 11 JH[ujyvj[)]_Sjgk such an orthonormal basis. Or-
thogonality impIies that the[u;,vj[)1<j<k form a partition of [a,b[. Moreover,
(@.s) = 7UJ f s(x)dx, i.e., the feature corresponding ¢p is the mean value

of s on|uj,vj|. In other words{'j‘:ﬂs, @) 24k is a piecewise constant approxima-
tion of s (which is optimal according to the? norm).

In practice, functional data are sampled on a fine grid,ria¢her than observing
the functions(s)1<i<n, One gets the vector(t))1<i<n1<i<m from R™ (with the
t <t11). Then(¢;,s) can be approximated % Slel s (t) wherel; is the subset
of {1,...,m} such that, € [uj,vj[< | € Ij. Any partition of ([uj, Vj[)1<j<k Of [a,b]
corresponds to a partition ¢f, ..., m} in k subsetg|)1<j<x that satisfies an order-
ing constraint: ifr ands belongs tdlj then any integet < [r,s] belongs also td;.
Finding the best basis means for instance minimizing ther eneasure given by
Equation (1) which can be approximated as follows

ié.zs' mZS" ZQ @

The second version of the error shows that it corresponds tadditive quality
measure of the partition dfl, ..., m} induced by thgl;)1<j<k. Therefore, finding
the best basis for the sampled functions is equivalent tanfinen optimal parti-
tion of {1,...,m} with some ordering constraints and according to an addiibss
function. A suboptimal solution to this problem, based omscending hierarchical
clustering, is proposed in [4].

However, an optimal solution can be reached in a reason@adeint of time,
as pointed out in [5]: when the quality criterion of a paditiis additive and when
a total ordering constraint is enforced, a dynamic programgrapproach leads to
the optimal solution. The algorithm is simple and procegsistively by computing
F(j,k) as the value of the quality measure (from Equation (2)) obbst partition
inkclasses of j,...,m}:

1. find the best partition in two classes by evalua@igl,..., j})andF(j+1,1) =
Q{j+1,....mHforall1<j<m-1;
2. iterate fromp=2tok:

1 the exclusion of the right end side of the interval is just a tézinrick that prevents cumbersome
notations in the rest of the paper.
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a. forall 1< j < m— p+1 evaluate-(j, p) by minimizing overl the value of

b. the best partition witlp clusters is the one that realiz€$1, p)

The internal loop run®©(kn?) times. It uses the valueg({j,...,1}) for all j <1I.
Those quantities can be computed prior the search for thmalppartition, using
for instance a recursive variance computation formulaliteato a cost irO(nn?).
This algorithm was used to find an optimal basis for a singhetion in [6].

4 Possible extensions

The previous scheme can be used for any additive quality unealt is therefore
possible to use e.g., a piecewise linear approximation efftinctions on a sub-
interval rather than a constant approximation. In the cdiseregression applica-
tion, a more interesting solution consists in using as ameasure one minus the
absolute value of correlation between the feature (the noé#me function on the
sub-interval) and the target variable.

In the general case of an arbitrary quality measyrthere might be no recursive
formula for evaluatingQ. In this case, the cost of computing the needed quantity
might exceedD(nn?) and reactO(nm?®) or more, depending on the exact definition

of Q.
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