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Abstract Functional data analysis involves data described by regular functions
rather by a finite number of real valued variables. While some robust data analy-
sis methods can be applied directly to the very high dimensional vectors obtained
via a fine grid sampling of functional data, all the methods benefit from a prior sim-
plification of the functions that reduces the redundancy induced by the regularity. In
this paper we propose to use a variable clustering approach to design a piecewise
constant representation of a set of functions. The contiguity constraint induced by
the functional nature of the variables leads to an optimal algorithm.

1 Introduction

Functional data [8] appear in applications in which objectsto analyse have some
form of variability. In spectrometry, for instance, samples are described by spectra:
each spectrum is a mapping from wavelengths to e.g., transmittance. Time varying
objects offer a more general example: when the characteristics of objects evolve
through time, a loss free representation consists in describing these characteristics
as functions that map time to values.

In practice, functional data are given as high dimensional vectors (e.g., more
than 100 variables) obtained by sampling the functions on a fine grid. For smooth
functions (for instance in near infrared spectroscopy), this scheme leads to highly
correlated variables. While many data analysis methods can be made robust to this
type of problem (see, e.g., [3] for discriminant analysis),all methods benefit from a
compression of the data [7] in which relevant and yet easy to interpret features are
extracted from the raw functional data.

There are well known standard ways of extracting optimal feature according to
a given criterion. For instance in unsupervised problems, the firstk principal com-
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ponents of a dataset give the best linear approximation of the original data inRk for
the quadratic norm (see [8] for functional principal component analysis (PCA)). In
regression problems, the partial least square approach extracts features with maxi-
mal correlation with a target variable (see also Sliced Inversion Regression methods
[2]). The main drawback of those approaches is that they extract features that are not
easy to interpret: while the link between the original features and the new ones are
linear, it is seldom sparse; an extracted feature generallydepends on many original
features.

A different line of thought is followed in the present paper:the goal is to extract
features that are easy to interpret in terms of the original variables.

2 Best basis for functional data

Let us considern functional data,(si)1≤i≤n. Eachsi is a function from[a,b] to R,
where[a,b] is a fixed interval common to all functions (more precisely,si belongs
to L2([a,b]), the set of square integrable functions on[a,b]). In terms of functional
data, linear feature extraction consists in choosing for each feature a linear opera-
tor from L2([a,b]) to R. Equivalently, one can choose a functionφ from L2([a,b])

and compute〈si,φ〉L2 =
∫ b

a φ(x)si(x)dx. In an unsupervised context, using e.g., a
quadratic error measure, choosing thek best features consists in findingk orthonor-
mal functions(φ)1≤i≤k that minimise the following quantity:
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If the φk are unconstrained, the optimal basis is given by functionalPCA [8]. How-
ever, in order for the corresponding feature to be easy to interpret, theφk should
have compact supports, the simple case ofφk = I[uk,vk] being the easiest to analyse
(I[u,v](x) = 1 whenx ∈ [u,v] and 0 elsewhere).

The problem of choosing an optimal basis among a set of bases has been studied
for some time in the wavelet community [1, 10]. In unsupervised context, the best
basis is obtained by minimizing the entropy of the features (i.e., of the coordinates
of the functions on the basis) in order to enable compressionby discarding the less
important features. Following [7], [9] proposes a different approach, based on B-
splines: a leave-one-out version of Equation (1) is used to select the best B-splines
basis. While the orthonormal basis induced by the B-splines does not correspond to
compactly supported functions, the dependency between a new feature and the orig-
inal ones is still localized enough to allow easy interpretation. Nevertheless both
approaches have some drawbacks. Wavelet based methods leadto compactly sup-
ported basis functions but the basis has to be chosen in a treestructured set of bases.
As a consequence, the support of a basis function cannot be any sub-interval of
[a,b]. The B-spline approach suffers from a similar problem: the approximate sup-
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ports have all the same lengths leading either to a poor representation of some local
details or to a large number of basis functions.

3 Best basis via constrained clustering

The goal of the present paper is to select an optimal basis using only basis func-
tions of formI[u,v[, without restriction on the possible intervals among sub-interval
of [a,b[1. Let us consider(φ j = 1

v j−u j
I[u j ,v j [)1≤ j≤k such an orthonormal basis. Or-

thogonality implies that the([u j,v j[)1≤ j≤k form a partition of [a,b[. Moreover,
〈φ j,si〉 = 1

v j−u j

∫ v j
u j

si(x)dx, i.e., the feature corresponding toφ j is the mean value

of si on [u j,v j[. In other words,∑k
j=1〈si,φk〉L2φk is a piecewise constant approxima-

tion of si (which is optimal according to theL2 norm).
In practice, functional data are sampled on a fine grid, i.e.,rather than observing

the functions(si)1≤i≤n, one gets the vectors(si(tl))1≤i≤n,1≤l≤m from R
m (with the

tl < tl+1). Then〈φ j,si〉 can be approximated by1|I j |
∑l∈I j

si(tl) whereI j is the subset

of {1, ...,m} such thattl ∈ [u j,v j[⇔ l ∈ I j. Any partition of([u j,v j[)1≤ j≤k of [a,b[
corresponds to a partition of{1, ...,m} in k subsets(I j)1≤ j≤k that satisfies an order-
ing constraint: ifr ands belongs toI j then any integert ∈ [r,s] belongs also toI j.
Finding the best basis means for instance minimizing the error measure given by
Equation (1) which can be approximated as follows

n

∑
i=1

k

∑
j=1

∑
l∈I j

(si(tl)−
1
|I j|

∑
l∈I j

si(tl))
2 =

k

∑
j=1

Q(I j). (2)

The second version of the error shows that it corresponds to an additive quality
measure of the partition of{1, ...,m} induced by the(I j)1≤ j≤k. Therefore, finding
the best basis for the sampled functions is equivalent to finding an optimal parti-
tion of {1, ...,m} with some ordering constraints and according to an additivecost
function. A suboptimal solution to this problem, based on anascending hierarchical
clustering, is proposed in [4].

However, an optimal solution can be reached in a reasonnableamount of time,
as pointed out in [5]: when the quality criterion of a partition is additive and when
a total ordering constraint is enforced, a dynamic programming approach leads to
the optimal solution. The algorithm is simple and proceeds iteratively by computing
F( j,k) as the value of the quality measure (from Equation (2)) of thebest partition
in k classes of{ j, ...,m}:

1. find the best partition in two classes by evaluatingQ({1, . . . , j}) andF( j+1,1) =
Q({ j +1, . . . ,m}) for all 1≤ j ≤ m−1 ;

2. iterate fromp = 2 to k:

1 the exclusion of the right end side of the interval is just a technical trick that prevents cumbersome
notations in the rest of the paper.
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a. for all 1≤ j ≤ m− p + 1 evaluateF( j, p) by minimizing overl the value of
Q({ j, . . . , l})+F(l +1, p−1)

b. the best partition withp clusters is the one that realizesF(1, p)

The internal loop runsO(km2) times. It uses the valuesQ({ j, . . . , l}) for all j ≤ l.
Those quantities can be computed prior the search for the optimal partition, using
for instance a recursive variance computation formula, leading to a cost inO(nm2).
This algorithm was used to find an optimal basis for a single function in [6].

4 Possible extensions

The previous scheme can be used for any additive quality measure. It is therefore
possible to use e.g., a piecewise linear approximation of the functions on a sub-
interval rather than a constant approximation. In the case of a regression applica-
tion, a more interesting solution consists in using as errormeasure one minus the
absolute value of correlation between the feature (the meanof the function on the
sub-interval) and the target variable.

In the general case of an arbitrary quality measureQ, there might be no recursive
formula for evaluatingQ. In this case, the cost of computing the needed quantity
might exceedO(nm2) and reachO(nm3) or more, depending on the exact definition
of Q.
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