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Abstract

In the past years, several works were dealing with the use of Support Vector Machine
(SVM) for classifying functional data. Here, we propose to give an overview of these works
and to introduce a new result based on the use of smoothing conditions on the observed
functions. The originality of this approach both lies in the fact that the consistency
result allows to work with the derivatives of the function instead of the function itself
but also that it is relative to the observed discretization and not to the entire knowledge
of the functions.

Introduction

As the number of data coming from continuous recording has increased, the analysis of
data taking the form of curves has also been developed. After the pioneering work of
[6, 3, 14] in the framework of linear models, various statistical methods have been adapted
to what is now called functional data analysis (FDA): this is the case of nonparametric
estimation [8, 7], of neural networks [9, 15] or of k-nearest neighbors [2], to name a few.

SVM were introduced in the past years and they appear to be a competitive tool for
solving binary classifications. One of their main interest is that they are less sensitive to



the dimensionality of the predictor than other methods. Then, they are potentially an
interesting approach in FDA. In his PhD thesis [11], Lee first uses the SVM for classifying
curves: his approach was based on PCA pre-processing and was illustrated by several
examples. Unfortunately, no consistency result was given. In [17] and [23], the authors
present various ways for dealing with binary classification of curves by the way of SVM:
the first article presents a projection approach that is valid for any Hilbert space and the
second one uses smoothness constraints by the way of a spline interpolation.

This article intends to summarize the past theoretical results obtained for classifica-
tion of curves with SVM and to introduce a new consistency result with respect to the
discretization of the observations. This approach is original as it allows to work on the
derivatives of the observations which can be a relevant task for many kind of problems
[7, 16, 5]. In section 1, we recall the SVM algorithm and the existing consistency re-
sults in the multi-dimensional context. Then, section 2 presents the adaptation of this
algorithm to the FDA context. To that aim, section 2.2 develops a consistency result
by a projection method and section 2.3 a consistent method on derivatives which uses
smoothing splines approximation of the predictors.

The proof of the results given in this paper as long as several applications on real
data sets can be found in [17, 18].

1 SVM classifiers

1.1 Definition

Vapnik [22] introduces a theoretical context to model statistical learning and popularized
Support Vector Machines (SVM), particularly in the framework of binary classification.
To recall what is the principle of SVM, suppose that a training set of size n, (z;,v;):,
of i.i.d. observations is given: (z;) take their values in a space X’ and (y;) in {—1,1}.
SVM are classifiers that belong to a family of semi-linear classifiers of the form ¢, (z) =
Sign {{w, ¥(z)) # + b} where ¢ : X — F is a given nonlinear function from X to a Hilbert
space JF, called feature space. Then, w and b are parameters that have to be learnt from
the data set: they are chosen by an optimization problem that aims at maximizing the
margin between the observations (¢(z;)) from both classes and the decision frontier.
More precisely, they are the solution of:

(Pe,7) mingpe llwllF+C X0, &
such that y;((w,¥(2))r+b) >1-¢, 1 <i<n,
>0, 1<i<n.

The problem (Pc r) has a dual formulation that doesn’t directly use the transformed
data v(z;) but the inner product (¥(z;),%(2;))#. Thus, the nonlinear transformation
and the feature space, F don’t have to be explicitly known: they are implicitly used by
defining the scalar product, (¥(z;),%(2;))# by the way of a kernel trick. A symmetric
and positive definite kernel K : X x X — R is chosen: according to Moore-Aronszajn
theorem [1], this ensures that there is a Hilbert space F and an application ¢ : X — F

such that (Y (z;), ¥(x;))r = K(z;, x;).



1.2 Universal consistency of SVM

SVM are known to have good generalization properties when X is a finite dimensional
space. More precisely, [19, 20] show that d-dimensional SVM are universally consistent,
under some hypothesis i.e., that lim, . L$, = L* where L¢,, is the probability of
misclassification of the classifier ¢,, Lo, = P(¢,(Z) # Y), and L* is the Bayes error,
the optimal misclassification rate for the random pair (Z,Y") having same distribution as
(2i,9i), L* = inf¢:xa{f1,1} P(op(Z2) #Y).

This result is obtained with particular kernels: if X is a compact subset of R?, the
kernel K used has to be universal i.e., the set {z € X — (w,¥(2))r, w € F} has
to be dense in the set of continuous functions on X. Secondly, for € > 0, N(¢, K) is
the covering number of the space F i.e., the minimum number of balls of radius e that
are needed to cover F; consistency of SVM also requires that NV (e, K) = O(e "?) for a
vg > 0. Among others, Gaussian kernels, K%(u,v) = exp (—7||u — v||3), satisfy both
assumptions with v4 = 1/d (see [20]) but this can’t be extended to the case where X has
infinite dimension both because the covering number assumption is not fullfilled for usual
kernels (as Gaussian kernel) and because assuming that the variable takes its values in
a compact set is too much restrictive in infinite dimensional spaces.

In the following, K‘j € (Acv) will denote any kernel on R? that satisfy these two
conditions and that possibly can depend on a parameter . Moreover, if the calculation
of K%(u,v) is only based on the inner product of v and v in R, such a kernel can be
generalized into KJ° which is a kernel on L? that has the same form as Kﬁ except that
the R%inner product is replaced by the L?-inner product.

2 Using SVM to classify functional data

As was explained above, the consistency result obtained for d-dimensional SVM can’t
be applied directly to the infinite dimensional case. Moreover, in FDA, the observations
are not direct realizations of a random pair having a functional predictor: if (X,Y) is a
random couple taking its values in L? x {—1,1}, then i.i.d. realizations of (X,Y), (2:,v:),
are not directly observed as (x;) are only known through a discretization, x; = (x;(t))ter
where 7 is a finite subset of [0, 1].

2.1 Kernels for functional data

To obtain consistency result for functional SVM, a pre-processing is required that takes
into account the functional nature of X. Depending on the problem, two kinds of pre-
processing are investigated in this paper:

e A projection approach (developed in [17]) where the pre-processing step is P : x €
H — Zj:1<x7€j>’}—(€j where (e;);>1 is a Hilbert basis of any Hilbert space, H
which is the space where X is taking its values (e.g., a Fourier basis if H = L2,
as stated above). In this approach, P(X) is a random variable taking its values in
a d-dimensional space; then, as it is usual in FDA, a d-dimensional SVM can be
computed on the d coordinates of the projection.



o A differential approach where a prior assumption on X is used: X is supposed
to be “smooth” and, more formally, it is supposed to belong to the Sobolev
space H™ = {x € L([0,1]) : D™z exists (in a weak sense) and D™z € L?}. This
Sobolev space is a Hilbert space with respect to the inner product (u,v)pm =
fol u(™ (£)v ™) (t)dt + Py BiuB’v where (B?) denotes m boundary conditions
that defines an infinite dimensional subspace of H™, H*, such that H"™ = Hj'&HT"
with H§* = KerD™ (see [10]). Thus, in this approach, the pre-processing consists
in using the derivatives of the original function: P*(X) = (D™X, (B’ X);).

The following sections are dedicated to the presentation of consistency results associ-
ated to these two approaches and to the description of their advantages and weaknesses.

2.2 Projection approach

The consistency of the projection approach depends on a validation procedure that aims
at choosing optimal parameters of the model. Indeed, three parameters have to be chosen
for using the SVM on the pre-processed data (Px;);: the best dimension of projection,
d, the best regularization parameter, C, in (P #) and the best kernel among a finite
set of kernels, ICy. If A denotes a set of lists of parameters to explore, the choice of the
optimal parameters, a* in A has to be done by the validation procedure described in
Algorithm 1.

Algorithm 1 Functional SVM by projection: a validation approach

1: foralla=de N*7K§i € Kq,C €[0;C4] in A do

2:  Split the data set into B1 = (i, ¥i)i=1,.... and B2 = (s, Ys )i=i... n-

3:  Solve (Pc,7) with z; = Px; for the chosen parameters a; the corresponding classifier will
be denoted by ¢;'.

end for

: Choose a* = arg minge 4 ﬁn_lqﬁf + J% with L,,_; = ﬁ Z?:H_l H{d)?(zi)#yi} and \g € R.

oo

. Finally, keep the classifier ¢,, = ¢ .

=]

A consistency result can be deduced from this procedure:
Theorem 1. [17] Suppose that:
Assumption on X: X takes its value in a bounded subset of X;

Assumptions on A: foralld > 1, K4 is a finite set that contains a kernel K‘j € (Acv)
at least, Cq > 1 and ) ;o4 |lCd|e_2)‘3 < 4005

Assumptions on the training and the validation sets: lim, [ = +00,
litm, oo 1 — I = +00 and lim,, 4 o 22B0ZD — 4o,

Then, ¢, is universally consistent: lim, oo Lo, = L* where Lo, = P(¢,(X) #Y)
and L* = infyp ¢ 113 P(0(X) #Y).

Two applications of this approach in the context of voice recognition are given in [17].
Moreover, [12] also uses this approach to classify gene expression data into functional
groups but with a linear kernel.



2.3 Differentiation approach

The projection pre-processing shows interesting results on real data but is somehow
restrictive: the form of the representation of X is constrained by an Hilbert basis and
the derivatives of X, that are known to be relevant in some practical applications (such
as spectrometric data), don’t lead to a consistent result with this approach. Moreover,
the problem of using a discretization of the observations isn’t addressed.

1 Representing X

In the differential approach, z; is expressed directly in function of its discretization: that
allows to obtain its derivatives directly from x;. In [23], we investigated a method that
is close to this one by relying on interpolating splines. But, as the observations of X can
be noisy, smoothing splines can be usefull to provide more relevant representations of x;.

Suppose that (74)q4 is a series of distinct discretization points such that 74 C 7441,
then representing z; by a smoothing spline, from its discretization x¢ = (z;(t))ier,,
consists in solving the optimization problem xf"d = arg minjepm 5 > ter, (@i(t) = h(t)) +
/\fol(h(m) (t))%dt (see [10, 4, 13, 21] for several consistency results of this approximation
to the real ;). The most interesting point of this approach is that it links the derivatives
of the smoothing spline estimate with the discretization of the observation: it exists a
matrix My, symmetric and positive definite, such that

Ad Ad .
(#8779, 27 Y pm = x| Max;. (1)

2 Differentiation kernel for consistent functional SVM

Therefore, using equation (1), a kernel on the derivatives of (x;) can be defined that
is directly computed from the discretizations x¢. The following theorem links SVM

-

computed on the derivatives of (x;) with a more usual kernel affected by the matrix My:
Theorem 2 (Consistency of differentiation SVM). The SVM classifier on (z); =
(Dm:vf"d7 (Bjxf"d)j)i obtained with kernel K35° @ KI' is equivalent to the SVM classi-
fier on (x;); obtained with kernel K¢ o M(;l/Q.
If this classifier is denoted by ¢y, q4, and if
Assumptions on the discretization points: for alld, (Bj)j are linearly independant
from {h — h(t)}tcr, and, if F is the limit of F4(¢) = ﬁ > ter, Lic=ty for the norm
lu—vlloc =240, lult) —v(t)], then F is C*°,

Assumption on X: X|[0,1] is a bounded subset of R,
Assumptions on the kernel: K¢ € (Acv),

Assumptions on the parameters: if Sq = ||Fy — F|lo then limg— oo Ag = 0 and
limg— 400 Sd/\(f/(zlm) = 0 and the regularization parameter C' of the optimization
problem (Pc x) is such that Cy, g = O (nl’ﬁd) where 0 < By < vy,

then, img_, oo limy,_,y o Ly g = L* for Loy, g and L* defined as in theorem 1.

Remark. Assumptions on (74) are fullfilled by 74 = {2%}].:0 for example (see [13]).
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