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Abstract

This paper studies how parallel machine learning algorithms can be implemented
on top of Microsoft Windows Azure cloud computing platform. The storage com-
ponent of the platform is used to provide synchronization and communication
between processing units. We report the speedups of a parallel k-means algorithm
obtained on up to 200 processing units.

1 Parallel K-means

This paper uses the k-means clustering algorithm as a typical example of machine learning methods.
This choice is motivated by several reasons. Firstly, while better clustering methods are available, k-
means remains a useful tool, especially in the context of vector quantization. For instance, k-means
can be used to summarize a very large dataset via a reduced set of prototypes. As such, k-means is
at least a standard pre-processing tool. Secondly, k-means has a low processing cost, proportional to
the data size multiply by K, the number of clusters. Thus, it is a good candidate for processing very
large datasets, even with a sequential implementation on a single processing unit. Thirdly, apart for
the number of iterations to convergence, the processing time of k-means depends only on the data
dimensions and on K, rather than on the actual data values: timing results obtained on simulated data
apply to any dataset with the same dimensions. (This is also true for the communication requirement
in classical parallel versions.) Finally, k-means is easy to parallelize on shared memory computers
and on local clusters of workstations: numerous publications (see e.g., [1]) report linear speedup up
to at least 16 processing units (PU, which can be CPU cores or workstations).

Let us recall the principles of Dhillon and Modha’s parallel k-means [1]. K-means consists in
alternating two phases (after proper initialization). In the assignment phase, the algorithm computes
the Euclidean distance between each of the N data point Xi ∈ RD and each of the K cluster
prototypes mj ∈ RD. Each Xi is assigned to its closest prototype, denoted mki

. In the recalculation
phase, each prototype is recomputed as the average of the data points assigned to it in the previous
phase.

The assignment phase costs roughly 3NKD floating point operations, while the recalculation of the
prototypes costs only approximately (N + K)D operations. In addition, distance calculations are
intrinsically parallel, both over the data points and the prototypes. It is therefore natural to split the
computational load by allocating disjoint subsets of N/P data points to P PU. Each PU, called a
mapper following [2] terminology, computes a full assignment phase for its N/P points, including
the computation of the sum of the data points assigned to each cluster for a total cost of 3NKD/P+
ND/P . Then the PU synchronize and compute the new value of the prototypes by merging the
partial results. In [1] this is done via a dedicated “reducing” function of the MPI library [3] which
uses logP parallel rounds of communications between the PU. Each PU to PU communication has
to transmit the partial results of one PU to the other one, inducing a communication cost proportional
to KD. The final result, i.e., the new values of the prototypes, is broadcasted to all the PU, which
starts a new iteration on reception.
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The cloud implementation studied in this paper is based on the parallel k-means described above.
The main difficulty consists in implementing synchronization and communication between the PU,
using the facilities provided by Windows Azure cloud operating system.

2 Microsoft Windows Azure

Windows Azure Platform is Microsoft’s cloud computing solution, in the form of Platform as a
Service (PaaS). The underlying cloud operating system (Windows Azure) provides services hosting
and scalability. It is composed of a storage system (that includes Blob Storage and Queue Storage)
and of a processing system (that includes web roles and worker roles). The Azure components we
used are described below.

The architecture of an Azure hosted application is based on two components: web roles and worker
roles. Web roles are designed for web application programming and do not concern the present
article. Worker roles are designed to run general background processing. Each worker role typically
gathers several cloud services and uses many workers (Azure’s processing units) to execute them.
Our prototype uses only one worker role, several services and tens of PU. The computing power
is provided by the workers, while Azure storage system is used to implement synchronization and
communication between workers. It must be noted indeed that Azure does not offer currently any
standard API for distributed computation, neither a low level one such as MPI [3], nor a more high
level one such as Map Reduce [2] or Dryad [4]. Map reduce could be implemented using Azure
components (following the strategy of [5]), yet, as pointed out in e.g. [6], those high level API
might be inappropriate for iterative machine learning algorithms such as the k-means. We rely
therefore directly on Azure queues and blob storage.

Azure Queues provide a message delivery mechanism through distributed queues. Queues are
designed to store a large amount of small messages (with maximal individual size of 8 KB). Using
queues to communicate helps building loosely coupled components and mitigates the impact of
individual component failure. Here, queues are used to store job messages. Messages stored in a
queue are guaranteed to be returned at least once, but possibly several times: this requires one to
design idempotent jobs. When a message is unqueued by a worker, this message is not deleted but
it becomes invisible for other workers. If a worker fails to complete the corresponding job (because
it throws some exception or because the worker dies), the message becomes available after a certain
period of time. Through this process, one can make sure no job is lost because of e.g., a hardware
failure.

Azure Blob Storage enables applications to store large objects, up to 50 GB each. It supports a
massively scalable blob system, where hot blobs will be served from many servers to scale read
access. Blobs are composed of a string (that is used as a key to store the value), a value composed of
a binary object, and a timestamp (etag) (that indicates the last write on this blob). In addition of Get
and Put methods, blobs whose key shares a given prefix can be listed. Optimistic non locking atomic
read-modify-write operations can be implemented using a timestamp matching condition: a write
succeed if and only if the timestamp of the storage matches the one provided by the write operation.

Our prototype uses Lokad-Cloud1, an open-source framework that adds a small abstraction layer to
ease Azure workers startup and life cycle management, and storage access.

3 Proposed implementation

Our prototype consists in three cloud services (setup, map and reduce services), each one matching
a specific need. A queue is associated to each service: it contains messages specifying the storage
location of the data needed for the jobs. Workers are stored in a pool and regularly ping the queues
to acquire a message. Once it has acquired a message, a worker starts running the service related to
the queue where the message was stored, and the message becomes invisible till the job is completed
or timeouts. Overall, we use P +

√
P + 1 processing units in the services described below.

The SetUp Service generates P split datasets of N/P points in each and put them into the BlobStor-
age. It is also generating the original shared prototypes which are also stored in the BlobStorage.

1http://code.google.com/p/lokad-cloud/

2



Once completed, it pushes P messages in the queue corresponding to the ”Map Service”. Each mes-
sage contains a jobId related to a split dataset to be processed and a groupId used in the ”Reduce
Service”. It also pushes

√
P messages in the queue corresponding to the ”Reduce Service”. In the

current implementation, the SetUp service is executed by P workers (PU) as the dataset is randomly
generated. For a real application, the SetUp service could be executed by one worker or by several
workers, depending on the availability and storage format of the data in the BlobStorage.

When executing a Map Service job, a worker first downloads the dataset it is in charged of (once for
all). Then the worker loads the initial shared prototypes and starts the computation step of attributing
each point in the dataset to the closest prototype. New local prototypes version are build on the fly
as the points are being processed. When all the map jobs have been completed, reducers must be
notified to aggregate the results. We considered two designs for this synchronization process.

A first solution consists in using the atomic read-modify-write operation to store a shared counter
in the BlobStorage. Each worker increases the counter once it has completed its iteration. When
the counter reaches P, reduction is started. A second possibility uses directly the reduce service.
It queries on a regular basis the BlobStorage for the results of the Map Service. When it finds the
required results, the reduction is started.

We chose to use the second solution for several reasons. Firstly, this solution is compatible with
multiple execution of the same map service job: if a map job is run twice, then the result is written
twice at the same place and it does not affect synchronization. Secondly, it could help reducing
straggler issues by overlapping latest computations with retrieval of first available results. Thirdly, it
handles both synchronization and communication between mappers and reducers. Finally, it proved
to be much faster when the number of workers reaches between 50 and 100. Indeed, optimistic non
locking read-modify-write schemes are not adapted to high contention situations: for instance, we
observed counter updating times up to 20 seconds with 70 workers.

In practice, when all the points of a map service job have been processed once, the local prototypes
version and their weights are pushed into the storage according to the following addressing rule:
iteration/groupId/jobId. The worker then starts waiting, pinging the shared prototypes of the current
iteration until it becomes available.

Each Reduce Service job has a groupID, obtained from one of the
√
P messages pushed into the re-

duce queue. As explained above, each reducer is listing blobnames with prefix: iteration/groupId in
the BlobStorage until it gets all the results expected within this groupId. Map results are downloaded
as soon as available. Once all the map results expected have been retrieved and loaded locally, the
reducer merges the results into a partial merged result, and pushed this in a partial reduce results
directory. One last reducer runs the same process on the partial reduce results directory. Once the√
P partial reduce results are retrieved, the last reducer builds a new shared version out of the partial

reduce results and pushes the shared prototypes into the storage. After several seconds, every map
worker has been pinging the now available shared result blob, and the map step can be run again.

4 Expected performances

The assignment phase of the k-means is perfectly parallelized in [1] and in our implementation; its
speedup is P , the maximal value. Global performances are only hindered by the reduction phase.
On the high performance distributed memory system used in [1], MPI’s reduce is in O(log(P )).
Neglecting this cost leads to a linear speedup confirmed in the large dataset case by [1].

In the proposed algorithm, the two phases reduce has not a O(log(P )) cost but rather a 2
√
PKDB

cost (per iteration), where B is the time needed to read a double from the BlobStorage (this cost
neglects both the latency of the synchronization process and the issue of aggregated bandwidth,
see details below). This adds to the time needed to perform the P parallel map jobs, given by
3NKDF/P (per iteration), where F is the time needed to perform one floating point operation. As
in [1], increasing N brings the speedup closer to its P limit. However, the main advantage of cloud
computing over traditional clusters is the possibility to adapt the processing power to the data. In
our case, given a dataset with fixed values of N , D and K, the optimal number of mapper PU is
given by P ∗ = (3NF/B)2/3. For this value of P ∗, which depends neither on K nor on D, the total
processing time consists in one third of mapping and two third of reducing.

3



5 Experimental results

We tested the performances of the proposed implementation, as well as the limits of the theoreti-
cal cost model on synthetic data generated uniformly in the unit hypercube (as pointed out above,
timings are independent of the actual data values). We report the results of one out of several bench-
marks that show the same general trends. The dataset consists of N = 500000 observations in
dimension D = 1000 (4 GB). We look for K = 1000 clusters. The algorithm is run for 10 iterations
to get stable timing estimates. The observed floating point performances of our code on a small
instance worker in Azure is 669 Mflop/s. The bandwidth of a single threaded worker is about 8
MB/s. Neglecting loading time and memory issues (a small instance has only 1 GB of memory), a
sequential implementation would use approximately 6 hours and 13 minutes to run the 10 iterations.

The following table reports the total running time in seconds (including data loading) of the pro-
posed implementation for different numbers of mapping PU (P ). We report the speedup over the
theoretical total running time, the efficiency (speedup divided by P +

√
P + 1, the total number of

PU) and the theoretical efficiency predicted by the model.

P 10 50 60 70 80 90 95 100 110 120 130 140 150 160
Time 2223 657 574 551 560 525 521 539 544 544 574 603 605 674

SpeedUp 10.0 34.1 39.0 40.6 40.0 42.6 43.0 41.5 41.2 41.2 39.0 37.1 37.0 33.2
Efficiency 0.67 0.58 0.57 0.51 0.44 0.42 0.41 0.37 0.34 0.31 0.27 0.24 0.23 0.19
Theo. Eff. 0.63 0.61 0.60 0.55 0.53 0.49 0.48 0.47 0.43 0.41 0.37 0.36 0.33 0.32

As expected, the total processing time is minimal for a specific value of P (here 95), for which one
third of the total time is spent in the map phase (as predicted by the model). This is lower than
the predicted value (170 for the chosen constants) as a consequence of the overestimation of the
storage efficiency by the theoretical model. Further investigations are needed to get a more accurate
cost model for large P . In particular, we need both to take into account latency and bandwidth
aggregation issues. Indeed, Microsoft reports that the total aggregated bandwidth of a PU group
tops at 800 MB/s: in our model, B is independent of P , which underestimates the reduce cost for
large values of P . In addition, we have observed a large latency between a write completion to the
BlobStorage by a worker and the availability of the blob to other workers (up to two minutes in some
cases). This latency should be modeled and taken into account to predict the optimal P ∗.

Nevertheless, the obtained performances are very satisfactory for a reasonable number of mapping
processing units (around 60 for this data size). While there is room for improving our implemen-
tation, the latency issues might prevent resorting on a tree like O(log(P )) reducer as available in
MPI. Without native high performances API, communication aspects will probably remain a major
concern in cloud implementations.
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1 Azure base performances

One can find some Azure performance benchmarks on AzureScope1. Azure performance largely
depends on our algorithm, our implementation and the framework (Lokad-cloud) we use. In order to
use our model as a predictive tool to determine the optimal number of workers P ∗ and the expected
speedup, we estimated Azure performances by running some isolated jobs and recording time.

1.1 Read bandwidth

We pushed 8 blobs of 8 MB into the storage (this is the size of map results we are going to load
back in reducers), and we measured the time spent to retrieve them. For a single worker using a
single thread, we retrieved the blobs in 7.79 seconds, implying a 8.21 MB/sec read bandwidth. We
tried to use multiple threads on a single worker as advised by AzureScope to speedup the download
process, and we found the best read bandwidth was obtained using 5 threads: we retrieved the 8
blobs in 6,13 seconds, implying a 10.44 MB/sec read bandwidth. The multithreads read bandwidth
we observed differs from what is achieved in AzureScope. This may be explained by two potential
factors: we observed average bandwidth whereas AzureScope observed peak performances and we
did not have the same experiment environment. Especially, all the parallel read requests were run
on a single container instead of being distributed on several BlobStorage containers.

This benchmark is very optimistic as opposed to our clustering experiments: the bandwidth we esti-
mated was recorded while no other workers were reading or writing into the storage. Other parallel
reads and writes can have two effects on the read bandwidth performance. Firstly, they can limit
the bandwidth because of aggregated bandwidth boundaries (AzureScope is reporting 800 MB/sec
bandwidth for reading operations). Secondly, they can increase the latency between a write comple-
tion in the blob storage and the availability of the blob to other workers. When running experiments
with a large number of workers reading and writing in parallel, we sometimes experienced blobs
already pushed into the storage becoming available only after 1 or 2 minutes. To use our model as a
predictive tool to determine P ∗, we used a value of bandwidth equals to 8 MB/sec, which is a very
conservative assumption that leads us to underestimate communication costs.

1.2 Workers Flops performances

All our experiments were run on Azure small VM that are guaranteed to run on 1.6 GHz CPU.
Yet because of virtualization we do not have any warranty in term of floating point operations
speed. Therefore, to fit our predictive speedup model, we ran some map jobs (where the number
of floating point operations is known) to determine how fast could our algorithm be run on these
VM. The code was first run on an Intel Core 2 Duo T7250 2*2GHz using only one core. We
estimated our map jobs to be run at approximatively 750 MFlops on average. We then ran some

1http://azurescope.cloudapp.net/
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of our map jobs in Azure and we get for the same code performance of 669 MFlops on the small VM.

It is worth mentioning that with the number of workers we used (at max 160 mappers), we observed
very little differences in processing time between workers. Flops performance may slightly move
with time, but at a given time, workers performed at very similar speed.

2 Benchmarks

2.1 Speedup

The next table shows speedups with varying values of P. All the runs listed below were using N =
500000, K = 1000, D = 1000 and I = 10. Theoretically, K and D should have the same impact on
map and reduce phases since map and reduce costs are supposed to be proportional of KD. Yet, since
our model does not take into account latency, having very small values of K and D would lead to
underestimate communication cost by neglecting latency. We have set K and D to be much smaller
than N, but also big enough to neglect latency.

The following table reports the total running time in seconds (including data loading) of the proposed
implementation for different numbers of mapping PU (P). We report the speedup over the theoretical
total running time, the efficiency (speedup divided by the total number of PU : P mappers and√
P + 1 reducers) and the theoretical efficiency predicted by the model.

P 10 50 60 70 80 90 95 100 110 120 130 140 150 160
Wall Time 2223 657 574 551 560 525 521 539 544 544 574 603 605 674
SpeedUp 10.0 34.1 39.0 40.6 40.0 42.6 43.0 41.5 41.2 41.2 39.0 37.1 37.0 33.2
Efficiency 0.67 0.58 0.57 0.51 0.44 0.42 0.41 0.37 0.34 0.31 0.27 0.24 0.23 0.19

Theo Efficiency 0.63 0.61 0.60 0.55 0.53 0.49 0.48 0.47 0.43 0.41 0.37 0.36 0.33 0.32

As expected, the total processing time is minimal for a specific value of P (here 95), for which one
third of the total time is spent in the map phase (as predicted by the model). One can notice that the
speedup curve is relatively flat in a neighborhood of P ∗. This value of P ∗ is lower than the predicted
value (170 for the chosen constants) as a consequence of the overestimation of the storage efficiency
by the theoretical model. As explained above, our model made the assumption that bandwidth is
scalable with the number of workers, and this is no more true when the number of workers is too
high. For example, when running 160 workers, some workers spend one minute to load the dataset
from the storage, and for 2 experiments we ran with more than 100 workers, one blob took more
than 2 minutes to be retrieved by a reducer after being pushed by a mapper.

2.2 Scaleup

Since in our model P ∗ is not proportional to N anymore (as this was the case using MPI’s broad-
cast), we cannot hope to achieve linear scaleup. Therefore, the scaleup challenge turns into min-
imizing growth of wall time as N grows, using P ∗(N) mappers. Theoretically, as our model
gives a processing cost proportional to N

P and a communication cost proportional to
√
P , for

P = P ∗ = (3NF/B)2/3 (where B is the time needed to read a double from the BlobStorage and F
is the time needed to perform one floating point operation), we should get a global cost proportional
to N

1
3 . Therefore, if N is expected to be multiplied by 8, wall time of the algorithm running P ∗(N)

mappers should be multiplied by 2. We estimated by running experiments for some given values of
N the best value P ∗(N) and we observed the corresponding amount of wall time. Values of K and
D (K=1000 and D=1000) were kept constant for all the experiments to ease comparisons.

N P∗ Wall Time Sequential theoretic time Effective Speedup Estimated Speedup (= P∗
3 )

Run 1 62500 27 264 2798 10.6 9
Run 2 125000 45 306 5597 18.29 15
Run 3 250000 78 384 11194 29.15 26
Run 4 500000 95 521 22388 43.0 31.6

One can see that P ∗(N) does not grow as fast as N . For all the experiments, speedup achieved with
P ∗ is approximatively P∗

3 , and reducing step took about twice the time spent in map step for this
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number of mappers, as predicted by our cost model. While the size of the dataset is multiplied by 8,
wall time is exactly multiplied by 2, as predicted by the model.

2.3 Price

Without any commitment and package, 1 hour of CPU on small VM is charged 0.1 dollar and
1000000 transactions between workers and storage (QueueStorage or BlobStorage) are charged 1
dollar. Therefore, one clustering experiment with 10 workers (decreasing wall time from 6 hours
to 37 minutes) is charged less than 2 dollars, and our biggest experiment running 175 workers is
charged less than 20 dollars. Since our experiments are not one hour long but 10 minutes long
at worst, if one can recycle the 50 other minutes running other computations, then the cost of our
biggest experiment drops to 4 dollars on average. For bigger uses, some packages are available to
decrease charges.
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