
Communication Challenges in Cloud K-means

Matthieu Durut1 and Fabrice Rossi2

1- Lokad, 70, rue Lemercier, 75018 Paris – France

2- BILab, Télécom ParisTech, LTCI - UMR CNRS 5141
46, rue Barrault, 75013 Paris – France

Abstract. This paper studies how parallel machine learning algorithms
can be implemented on top of Microsoft Windows Azure cloud computing
platform. More specifically, we design efficient storage based communication
mechanisms that lead to a scalable implementation of the K-means.

1 Introduction

Large scale datasets are becoming increasingly common [4] and as a consequence,
parallel data mining and machine learning algorithms are needed. Even with
such algorithms, massive computing resources are needed to handle the largest
datasets. Unfortunately, the cost of ownership of such resources is as large as
they are, while the computing paradigms of supercomputer is difficult to master.
As a consequence a new class of services has appeared under the umbrella name
of Cloud computing [1]: they allow customers to rent very large computing
resources (generally up to 1000 CPU cores) on demand on a hourly basis, while
providing rather simple computing API. We study in this paper how the machine
learning computing can leverage one of those cloud solutions, Microsoft Windows
Azure, to implement large scale data analysis.

2 Parallel K-means

We use the k-means clustering algorithm as a typical example of machine learning
methods. This choice is mainly motivated by the fact that apart for the number
of iterations to convergence, the processing time of k-means is known before
running, and only depends on the data dimensions and on K, rather than on
the actual data values: timing results obtained on simulated data then apply to
any data set with the same dimensions. k-means has already been successfully
parallelized on shared memory computers and on local clusters of workstations:
numerous publications (see e.g., [3]) report linear speedup up to at least 16
processing units (PU, which can be CPU cores or workstations).

Let us recall the principles of Dhillon and Modha’s parallel k-means [3]. k-
means consists in alternating two phases (after proper initialization). In the
assignment phase, the algorithm computes the Euclidean distance between each
of the N data points Xi ∈ RD and each of the K cluster prototypes mj ∈ RD.
Each Xi is assigned to its closest prototype, denoted mki

. In the recalculation
phase, each prototype is recomputed as the average of the data points assigned to
it in the previous phase. Since distance calculations are intrinsically parallel, it



is therefore natural to split the computational load by allocating disjoint subsets
of N/P data points to P PU. First, all the PU - called mappers following [2]
terminology - complete their assignment phase and compute their local prototypes
version. Second, reducers merge the local prototypes versions into a new shared
version, which is broadcasted back to all the mappers. In [3] this is done through
a dedicated efficient “reducing” function of the MPI library which uses logP
parallel rounds of communications between the PU. This results in a cost of
O(KDlog(P )).

The cloud implementation studied in this paper is based on the parallel
k-means described above. The main difficulty consists in implementing synchro-
nization and communication between the PU that will not affect performances
significantly, using the facilities provided by Windows Azure cloud operating
system.

3 Microsoft Windows Azure

Windows Azure Platform is Microsoft’s cloud computing solution, in the form of
Platform as a Service (PaaS). The underlying cloud operating system (Windows
Azure) provides services hosting and scalability. It is composed of a storage
system (that includes Blob Storage and Queue Storage) and of a processing
system (that includes web roles and worker roles).

Web roles are designed for web application programming and do not concern
the present article, while worker roles are designed to run general background
processing. Each worker role typically gathers several cloud services and uses
many workers (Azure’s processing units) to execute them. Our implementation
uses only one worker role, several services and tens of PU.

Azure storage system is used to implement synchronization and communica-
tion between workers. It must be noted indeed that Azure does not offer currently
any standard API for distributed computation, neither a low level one such as
MPI, nor a more high level one such as Map Reduce [2] or Dryad [5]. Map reduce
could be implemented using Azure components (following the strategy of [6]),
yet, as pointed out in e.g. [7], those high level API might be inappropriate for
iterative machine learning algorithms such as the k-means. We rely therefore
directly on Azure queues and blob storage.

Azure Queues provide a message delivery mechanism through distributed
queues. Queues are designed to store a large amount of small job messages. Using
queues to communicate helps building loosely coupled components and mitigates
the impact of individual component failure. Messages stored in a queue are
guaranteed to be returned at least once, but possibly several times: this requires
one to design idempotent jobs. If a worker fails to complete a job (because it
throws some exception or because the worker dies), the message is requeued after
a certain period of time. Through this process, one can make sure no job is lost
because of e.g., a hardware failure.

Azure Blob Storage enables applications to store large objects, up to 50 GB
each. Blobs are composed of a string (that is used as a key to store the value), of



Mapper 1

Mapper 2

Mapper 4

Mapper 5

Mapper 6

Mapper 3

Partial 
Reducer

Final 
Reducer

Partial 
Reducer

blobstorage

Final reduce result 

(prototypes)

Partial reduce 

result (prototypes)

Map result 

(prototypes)

worker

push blob into

pings the storage 

untill it finds the 

given blob, then 

downloads it

Fig. 1: Workers communication architecture.

a value storing a binary object, and of a timestamp (etag) that indicates the last
write on this blob. In addition of Get and Put methods, blobs whose key shares
a given prefix can be listed. Optimistic non locking atomic read-modify-write
operations can be implemented using a timestamp matching condition: a write
succeed if and only if the timestamp of the storage matches the one provided by
the write operation.

Our implementation uses Lokad-Cloud1, an open-source framework providing
a small abstraction layer to ease Azure workers startup and life cycle management,
and storage access.

4 Proposed implementation

Our implementation consists in three cloud services: setup, map and reduce
services (the last two are shown on Figure 1). A queue is associated to each
service: it contains messages specifying the storage location of the data needed
for the jobs. Workers regularly ping the queues to acquire a message. Once it
has acquired a message, a worker starts running the service related to the queue
where the message was stored, and the message becomes invisible until the job
is completed or timeouts. Overall, we use P +

√
P + 1 processing units in the

services described below.
The Setup Service first generates the original shared prototypes and pushes

them on d
√
P e different places in the BlobStorage (this way, we avoid contention

while all mappers are trying to read on these shared prototypes). Setup Service
also generates P split data sets of N/P points each and also put them into the
BlobStorage. Once completed, it launches Map Service.

1http://code.google.com/p/lokad-cloud/



When executing a Map Service job, a worker first downloads the data set
it is in charged of (once for all). Then the mapper loads one of the copy of
the initial shared prototypes and starts the computation step that consists in
attributing each point in the data set to the closest prototype. As the points
are being processed, the worker build on the fly its new local prototypes version.
When completed, the mapper pushes its local prototypes version into the storage
in accordance with the following addressing rule: iteration/groupId/jobId.

Each Reduce Service worker is in charged of listing and loading as soon as
they become available the map results within a given iteration/groupId directory
until it gets all the expected results within this directory. The reducer then
merges the different prototypes versions, and pushes the merged result into the
storage in the partial reduce directory. One last reducer runs the same process
on the partial reduce results directory. Once the d

√
P e partial reduce results

are retrieved, the last reducer builds a new shared version out of the partial
reduce results and pushes a copy of it into each of the d

√
P e places in the shared

prototypes directory. After several seconds, every mapper has been pinging and
loading one copy of the now available shared result blobs, and the map step can
be run again.

5 Performance analysis

We designed several experiments to analysis the performances of the proposed im-
plementation. We first study straggler issues, then communication performances,
then the actual performances of the algorithm.

5.1 Straggler issues and impact on performances

We first set an experiment with 85 mappers, each mapper performing 10 times a
7 minutes task. No communications were used between workers here, we only
recorded the empirical distribution of the computation time of the 850 tasks run,
as reported in Figure 2(a).

(a) Empirical computation time distribu-
tion

(b) Single worker empirical computation
time distribution.

Fig. 2: Empirical distributions.

Results contain outliers that correspond to temporary slow processing: the
three slowest runs (823 seconds, 632 s, 778 s) have been performed by a virtual



machine (VM), which has also performed very well on other iterations (e.g.,
360 s). This could be explained by the fact the physical machine hosting our VM
had been hosting temporarily another VM.

Additionally, Figure 2(a) shows a 3 empirical modes in the main interval
(from 390 s to 500 s, covering 90 % of the runs). Except for the single (virtual)
machine with the longest runs, each machine performed the 10 runs in only one
of the 3 modes: for instance, Figure 2(b) reports 100 iterations of 7 minutes on a
single machine. Therefore, the 3 modes may be due to hardware heterogeneity
or multiple VM hosted on the same physical machine.

Those so-called straggler issues have already been observed, for example in
the original MapReduce article [2] by Google, but only while running thousands
of machines. We show that straggler issues are also observed on a small pool
of workers such as 100 VM. Authors of [2] describe a monitoring framework to
detect tasks taking too much time, and use backup workers to relaunch tasks
that has been detected to be too long. But, this approach implies to wait for
the standard duration of the task before detecting straggler tasks and launching
again the corresponding jobs. Therefore, for a given number of PU P, using [2]
approach on straggler issues leads to speedups of no more than P

2 . In the context
of high performance machine learning, this maximal speedup seems low (see [7]
for other examples of limitations of MapReduce for machine learning).

5.2 Communication benchmark

We fixed K=1000, D=1000 (each prototypes version size is therefore 8MB) and
I=10. In order to record communication time without being affected by straggler
issues (as reported above), we run our clustering implementation for different
values of P, replacing the processing part by waiting a fixed period of time (15
seconds). The following table displays wall time (WT) of the fake clustering for
10 iterations, and the amount of time spent in communication (WT - 10 times
15 seconds).

P 5 10 20 30 40 50 60 70 80 90 100 110 120

WT (in s) 287 300 335 359 392 421 434 468 479 509 533 697 591

Comm. (in s) 137 150 185 209 242 271 284 318 329 359 383 547 441

As one can see, communication is not free, especially for small values of P.
Yet, communication costs does not move much as the number of worker grows.
This is because we design our communication algorithm to limit this. Most of
communication costs are due to aggregated read bandwidth boundaries while all
workers are trying to read one copy of the shared prototypes at the same time,
the final reducer write bandwidth boundary (this worker has to push into the
storage

√
P copies of the shared prototypes in parallel), queues latencies, and

some blob temporary unavailability: while the storage is stressed, a given blob
already pushed can take as much as 1 minute before being available to download.

5.3 Scaleup results

Instead of trying to optimize P for a given value of (N, D, K) we set the number
of mappers to P, and try to provide the best speedup possible, namely P. In the



following experiments, we set K=1000, D=1000, and set N to 5 104 P. Thus,
each worker will be working on 50,000 points, which represent an important part
of the RAM of the VM (around 400 MB), helping to achieve the best speedups
possible by giving heavy computation loads on each worker. The algorithm is run
for 10 iterations to get stable timing estimates (more iterations would be run on
a real k-means on such a heavy data set). Sequential time refers to the time that
would be spent to run the clustering on a unique worker with infinite RAM and
computation speed equals to the median computation speed recorded in 2(a).

P 10 20 40 60 80 100 120
N 5 105 10 105 20 105 30 105 40 105 50 105 60 105

Wall Time (in s) 2160 2478 2385 2642 2728 2803 2906
Sequential Time 22,300 44,600 89,200 133,800 178,400 223,000 267,000

Speedup 10.32 17.99 37.40 50.64 65.40 79.56 91.88

6 Conclusion

As reported in [6], cloud storage abstractions are helpful for the design of cloud
machine learning applications. Provided that contention is prevented on each
storage element and that each worker is granted enough workload, communication
becomes small compared to computation, and satisfactory speedups and scaleups
can be reached.

References

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. A.
Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the clouds: A berkeley view of
cloud computing. Technical Report UCB/EECS-2009-28, EECS Department, University of
California, Berkeley, Feb 2009.

[2] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. In
OSDI’04: Proceedings of the 6th conference on Symposium on Opearting Systems Design
& Implementation, pages 10–10, Berkeley, CA, USA, 2004. USENIX Association.

[3] I. S. Dhillon and D. S. Modha. A data-clustering algorithm on distributed memory
multiprocessors. In Revised Papers from Large-Scale Parallel Data Mining, Workshop on
Large-Scale Parallel KDD Systems, SIGKDD, pages 245–260, London, UK, 2000. Springer-
Verlag.

[4] T. Hey and A. Trefethen. The Data Deluge: An e-Science Perspective, pages 809–824.
John Wiley & Sons, Ltd, 2003.

[5] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-parallel
programs from sequential building blocks. In EuroSys ’07: Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007, pages 59–72, New
York, USA, 2007. ACM.

[6] H. Liu and D. Orban. Cloud mapreduce: a mapreduce implementation on top of a cloud
operating system. Technical report, Accenture Technology Labs, 2009. http://code.google.
com/p/cloudmapreduce/.

[7] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein. Graphlab:
A new parallel framework for machine learning. In Conference on Uncertainty in Artificial
Intelligence (UAI), Catalina Island, California, July 2010.


