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Télécom ParisTech, F-75634, Paris - France

4- Department of Mathematics and Statistics
Liverpool John Moores University, Byrom Street, L3 3AF, Liverpool - UK

Abstract. The increasing availability of data sets with a huge amount of
information, coded in many different features, justifies the research on new
methods of knowledge extraction: the great challenge is the translation of
the raw data into useful information that can be used to improve decision-
making processes, detect relevant profiles, find out relationships among
features, etc. It is undoubtedly true that a picture is worth a thousand
words, what makes visualization methods be likely the most appealing
and one of the most relevant kinds of knowledge extration methods. At
ESANN 2011, the special session “Seeing is believing: The importance of
visualization in real-world machine learning applications” reflects some of
the main emerging topics in the field. This tutorial prefaces the session,
summarizing some of its contributions, while also providing some clues to
the current state and the near future of visualization methods within the
framework of Machine Learning.

1 Introduction

Data exploration is one of the basic building blocks, or constituting stages, of
most standard Data Mining (DM) [1, 2] and Knowledge Discovery in Databases
(KDD) [3] methodologies, either on its own or as part of a more generic phase
of data understanding. It could be defined as the use of techniques, from data
querying and basic statistics to advanced visualization, to discover the main
characteristics of usually complex multivariate data sets, helping bring important
aspects of the data into focus for study in subsequent phases of the analysis.

The task of data visualization is central to data exploration. So central, in
fact, that there would be arguments in favor of considering it a DM phase on
its own. Note though that even the consideration of data exploration as an
independent DM phase has been found to be controversial1.
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The problem of knowledge generation through information visualization [4],
as a generalization of that of data visualization, is not circumscribed to the fields
of DM and KDD. It has in fact been a matter of study in other areas [5] and it
could be argued that it is a type of problem to be addressed from the viewpoints
of both artificial pattern recognition (APR) and natural pattern recognition
(NPR): the former through the definition of visualization-oriented techniques
stemming from the fields of artificial intelligence and statistics; the latter through
the understanding of visualization as the cognitive processing of visual stimuli
conducted by the human brain (which can indeed be investigated using machine
learning techniques [6, 7] in the context of Computational Neuroscience [8]).

Humans are equipped with visual NPR as a tool to understand the patterns
of their natural environment and operate upon it. As Lehrer [9] nicely puts it
while arguing on the influence of imaging techniques in the current development
of neuroscience, adequate data visualizations can help us to gain insights into a
problem “without the frame of a conjecture”. They do so by letting us, even if
temporarily, slip out of a deductive model of research to reap the benefits of a
more inductive one. This may be crucial when modeling the complex multivariate
and heterogeneous data that are increasingly common in many areas of research.
Importantly for us, as data analysts, APR and NPR can enhance each other
in order to make data exploration a more fruitful process. As stated in [10],
integrated processes that unify DM algorithms and visual user interfaces should
allow us to explore data using graphical metaphors, in a way that helps to
circumvent some of the inherent limitations of human vision [11, 12].

In order to explain the success of visualization as a data exploration tool,
we should not brush aside the aesthetic aspects involved. Put simply, pretty
pictures are useful because they appeal to us at a very basic, non-discursive
level. Usefulness and beauty can certainly be indistinguishable concepts in this
context: as argued in [13], for a data visualization to qualify as beautiful, it must
ultimately comply with requirements of novelty, informativeness, and efficiency.

This brief tutorial does not aim to cover the issue of data visualization in full.
Instead, it delves into a particular area, namely health, in which the potential of
data visualization is illustrated in some detail. Readers are then provided with
some general outlook of the main opportunities and challenges concerning the
use of computational intelligence approaches in data visualization. Finally, the
main contributions of the papers accepted for the ESANN 2011 special session
that this tutorial prefaces are summarily discussed.

2 Data Visualization in Health

Visualization is absolutely central to the communication of complex information
in a way that is rapidly absorbed and conveys the necessary insight. We are all
familiar with the astounding progress in medical imaging, which started as a
window to anatomical structures, but is increasingly driven by functional methods
which show metabolic activity such as, for instance, glucose metabolism. This
field is moving towards the use of detailed 3D maps of the concentration of



specific metabolites, entering the era of molecular imaging. An example that
combines signal processing for tissue segmentation using Magnetic Resonance
Spectroscopy (MRS) overlaid onto a high resolution anatomical image can be
found in [26].

Clearly, direct rendering of physiological activity is as close as we can get to
the locus of disease. More generally, the role of visualization is the last cognitive
step in intelligent data analysis, linking individual observations to the structure
of the rest of the data set. This involves mapping as much of the data as possible
into a low dimensional projection, while retaining the proximity structure and
with as little distortion as possible. Given the clear preference in health for
linear methods, canonical analysis remains the projection method of choice [27].
Besides Fisher Linear Discriminant Analysis, linearly separable cohorts arising e.g.
from clustering may be projected still in linear space while achieving significant
dimensionality reduction with minimal, or no mixing, of the cohorts [28]. This
approach to low-dimensional visualization with scatter matrices has since been
developed for diagnostic classification of MRS [29].

Beyond the application of linear methods, lies what we normally term compu-
tational intelligence methods. These methods comprise three broad categories of
which only the first is well developed. They are non-linear projections, directed
graphs and proximity networks.

Non-linear projections with neural networks hark back to the Self-Organizing
Map, which has been developed to project high-dimensional, time-varying in-
formation, in 2-D maps that correlate with diagnostic features, as in [30]. The
further development of probabilistic non-linear dimensionality reduction tech-
niques has also included different data density functions [31], including kernels
[32]. There are, of course, many other methods to map data structure with
non-linear models, mostly used in exploratory data analysis rather than intended
for direct human-computer interfaces.

While projective methods focus on the visual display of the structure of
labeled observations, commonly represented as the rows in the data matrix, it
is often as important to visualize the relationship between the covariates i.e.
the associative structure of the row elements. This is particularly the case in
bioinformatics for the discovery of activity pathways linking the genotype with the
disease expression, or phenotype. An example of the use of graphs in the context
of data mining is outlined in [33]. These methods are central for the elucidation
of functional structures that underpin the deep mechanisms of pathogenesis.

Network visualization and structural analysis is a fast growing area of research
with applications in many fields including bioinformatics. In particular, this
approach is leading to re-categorization of disease sub-types on the basis of
molecular information, an example of which can be found in [34]. In this respect,
they form a unifying link between molecular imaging, deeper understanding of
expression pathways, and graphical models which may be used to clean noise in
association maps.

In summary, visualization has grown to encompass projections of the geometric
distribution of data points, usually to show the proximity between rows in the



data matrix, but also becoming an integral part of the methodology actively
involved in unlocking networks of functional relationships between covariates,
from which to derive deep insights into the mechanisms driving disease processes.

3 Computational Intelligence in Data Visualization

As argued in the introduction and illustrated in the previous section, data visual-
ization and computational intelligence are tightly linked: many DM methods,
especially unsupervised ones, rely on human control and monitoring enabled
through visual tools and reports, while many visualization techniques are built
upon DM algorithms. For instance, visual exploration of the clustering structure
of a high dimensional dataset can be done using a nonlinear dimensionality
reduction method [14] combined with a standard scatter plot augmented with
dynamic distortion [15] and with visualization of projection errors [16]. In other
words, in order to help a future clustering algorithm, one relies on sophisticated
visualization methods that are in turn enabled by an automated manifold learning
method (or any other dimensional reduction technique).

One of the main roles of DM algorithms in visualization methods consists in
providing some form of scalability [11]: the human vision is strongly limited to
2D/3D displays, with the additional ability to decode shapes and colors efficiently.
Thus, no more that 5 to 6 variables can be displayed at a time, provided the
number of data points remains limited, in order to avoid overlapping. Then,
feature selection [17], dimensionality reduction [14] and clustering [18] are methods
of choice as preprocessing solutions for medium to large scale data visualization.

However, it remains difficult to match DM methods with visualization tools,
mainly because quality criteria used to implement e.g. dimensionality reduction
are generally unrelated to visual qualities of the display. Some progress has
been made in this direction by designing cases-oriented quality measures: in
the case of clustering analysis, for instance, it is important for neighborhood
structures on the visual representation to reflect accurately their high dimensional
counterpart and this can be assessed via rank comparisons [19]. Unfortunately,
it is well known that such quality measures are generally both very difficult to
optimize directly (because of their combinatorial nature) and non-consensual.
For instance, while minimizing the number of edge crossings is considered as
one of the most important quality criteria for graph drawing [20], many other
criteria have been shown to have influence on the way a graph is perceived [21];
moreover, the simple fact of drawing edges of a graph modifies to a large extent
the way distances between nodes are perceived [22].

Additionally, the interplay between visualization and DM is still minimal.
Some contributions stem from the use of the Self-Organizing Map (SOM) [23],
one of the earliest successful combinations of computational intelligence with
visualization methods, extended to more recent models such as the Generative
Topographic Mapping (GTM) [24] and its interactive hierarchical variant [25].
Despite this progress, further work will be required to actually reach the visual
DM goal, namely to provide visualizations that are fully integrated with DM, in a



way that permits, for instance, user feedback to be re-injected into DM methods
so as to improve the visual results on the fly, while minimizing misinterpretation
risks.

Papers of this session show examples of successful hybridisation between
visualization methods and DM: [35] provides a new visualization method for a
DM method (the growing hierarchical SOM), [36] leverages clustering to simplify
complex networks prior drawing them, [37] uses the SOM to ease meta-parameter
tuning for DM methods, and [38] uses a kernel GTM to visualization complex
non vector data. The following Section details their contributions.

4 Seeing is believing: Data Visualization in ESANN 2011

Four contributions were accepted to the special session “Seeing is believing:
the importance of visualization in real-world machine learning applications” at
ESANN 2011. They address diverse theoretical and application issues which are
organized in two main themes, glossed next.

4.1 Hierarchical visualizations

Visualization is one of the cornerstones of knowledge extraction from large
databases. In this framework, hierarchical approaches appear as a natural solution
since global methods producing a single “picture” of the data may provide either
too complicated or too simplistic visualizations, as they may lack the detail
crucial for data understanding and knowledge extraction. Hierarchical methods
can produce visualizations at different levels of the hierarchy of detail, thus
obtaining both main coarse relationships and detailed information, depending on
the level of the hierarchy we focus on. This is studied in two contributions of
this special session, [35] and [36].

In [35], a new visualization approach for the Growing Hierarchical Self-
Organizing Map (GHSOM) model, a hierarchical variant of SOM, is proposed.
Since the main limitation of GHSOM is that it is not possible visualizing simul-
taneously the data information at each level of the hierarchy, this paper presents
a visualization method based on pie charts that does allow a simultaneous and
compact visualization of the different hierarchy levels. The method is tested in
synthetic and real data sets with internal hierarchical structure. The satisfac-
tory performance achieved reinforces the viability of this method in hierarchical
data visualization, since it enables the extraction of information by inferring
relationships among features, neurons and levels of the hierarchy.

In [36], the proposed visualization makes use of clustered graphs based on
hierarchical maximal modularity clustering. The general layout of clustered
graphs is given by the higher level of the hierarchy in which the graph is strongly
simplified, and then details are added in a top-down way by descending along
the hierarchy. This paper presents a methodology to address two of the main
limitations of clustered graphs, namely the way of obtaining the hierarchical
clustering and its significance, which is usually not questioned despite the fact
that a bad clustering solution may lead to interpretation errors. An efficient



modularity visualization is obtained by means of a variant of the Fruchterman-
Reingold algorithm, which allows interactive exploration, with possibilities of
coarsening and refining. The methodology is tested on a dataset that contains
information about sexual contacts between patients infected by the HIV in Cuba.

4.2 Visualization in manifold learning

As expected in any session on the theme of visualization, manifold learning and,
more specifically, SOM plays an important role in some of the contributions.
Actually, two of contributions to this session [35, 37], propose approaches based
on SOM variants. As previously explained, [35] proposes a visualization for
GHSOM. The most explicit use of SOM can be found in [37], which resorts
to SOM visualization to infer the relationships among the different parameters
that need to be tuned in Machine Learning algorithms, thus helping to find
the optimal combination of parameters that maximizes the performance of the
algorithm. Although the approach presented in [37] is particularly applied to
Reinforcement Learning, the strategy is completely general and thus applicable
to any other kind of algortithm.

Visualization based in a kernel version of Generative Topographic Mapping
(KGTM), which is a probabilistic reformulation of SOM, is presented in [38].
This work provides new insights in the study of G-protein-coupled receptors
(GPCR’s) sequences, which are a common target in pharmaceutical research as
they regulate the function of most cells in living organisms. Sequence analysis can
help in increasing the knowledge of the GPCR function. The main contribution of
the paper is the exploitation of the probabilistic properties of KGTM to deal with
non-quantitative information and to visually explore GPCR subclasses in detail,
thus obtaining a map of probability that can qualify the differences between
sequences belonging to different model groupings.

5 Conclusions

Hierarchical visualizations and manifold learning constitute two of the main
Machine Learning approaches to produce visualizations that can extract knowl-
edge from data sets. Although there has been intense research on these topics
lately, work in the area is still very far away from being over. Available data
sets get ever bigger, more complex, structured and heterogeneous. Therefore,
there is a need for new methods that can extract knowledge from data sets
in a straightforward way. This can have an automatic effect in real practice,
since the appealing results produced by visualization methods are usually easily
understandable by application experts who are not necessarily knowledgeable
about Machine Learning. These experts may opt to choose this kind of methods
rather than others, even if producing satisfactory results, may be of more difficult
understanding.
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