
Reducing Offline Evaluation Bias in Recommendation Systems

Arnaud de Myttenaere ademyttenaere@viadeoteam.com
Boris Golden bgolden@viadeoteam.com

Viadeo, 30 rue de la Victoire, 75009 Paris, France

Bénédicte Le Grand benedicte.le-grand@univ-paris1.fr

Centre de Recherche en Informatique, Université Paris 1 Panthéon – Sorbonne, 90 rue de Tolbiac, 75013 Paris,
France

Fabrice Rossi Fabrice.Rossi@univ-paris1.fr

SAMM EA 4534, Université Paris 1 Panthéon – Sorbonne, 90 rue de Tolbiac, 75013 Paris, France

Keywords: recommendation systems, offline evaluation, evaluation bias, covariate shift

Abstract

Recommendation systems have been inte-
grated into the majority of large online sys-
tems. They tailor those systems to individ-
ual users by filtering and ranking information
according to user profiles. This adaptation
process influences the way users interact with
the system and, as a consequence, increases
the difficulty of evaluating a recommendation
algorithm with historical data (via offline eval-
uation). This paper analyses this evaluation
bias and proposes a simple item weighting so-
lution that reduces its impact. The efficiency
of the proposed solution is evaluated on real
world data extracted from Viadeo professional
social network.

1. Introduction

A recommender system provides a user with a set of
possibly ranked items that are supposed to match the
interests of the user at a given moment (Park et al.,
2012; Kantor et al., 2011; Adomavicius & Tuzhilin,
2005). Such systems are ubiquitous in the daily expe-
rience of users of online systems. For instance, they
are a crucial part of e-commerce where they help con-
sumers select movies, books, music, etc. that match
their tastes. They also provide an important source of
revenues, e.g. via targeted ad placements where the ads

Appearing in Proceedings of BENELEARN 2014. Copyright
2014 by the author(s)/owner(s).

displayed on a website are chosen according to the user
profile as inferred by her browsing history for instance.
Commercial aspects set aside, recommender systems
can be seen as a way to select and sort information in
a personalised way, and as a consequence to adapt a
system to a user.

Obviously, recommendation algorithms must be eval-
uated before and during their active use in order to
ensure the quality of the recommendations. Live moni-
toring is generally achieved using online quality metrics
such as the click-through rate of displayed ads. This ar-
ticle focuses on the offline evaluation part which is done
using historical data (which can be recorded during
online monitoring). One of the main strategy of offline
evaluation consists in simulating a recommendation by
removing a confirmation action (click, purchase, etc.)
from a user profile and testing whether the item asso-
ciated to this action would have been recommended
based on the rest of the profile (Shani & Gunawardana,
2011). Numerous variations of this general scheme are
used ranging from removing several confirmations to
taking into account item ratings.

While this general scheme is completely valid from a
statistical point of view, it ignores various factors that
have influenced historical data as the recommendation
algorithms previously used.

Assume for instance that several recommendation algo-
rithms are evaluated at time t0 based on historical data
of the user database until t0. Then the best algorithm
is selected according to a quality metric associated to
the offline procedure and put in production. It starts
recommending items to the users. Provided the algo-

Reducing Offline Evaluation Bias in Recommendation Systems

rithm is good enough, it generates some confirmation
actions. Those actions can be attributed to a good user
modeling but also to luck and to a natural attraction of
some users to new things. This is especially true when
the cost of confirming/accepting a recommendation is
low. In the end, the state of the system at time t1 > t0
has been influenced by the recommendation algorithm
in production.

Then if one wants to monitor the performance of this
algorithm at time t1, the offline procedure sometimes
overestimates the quality of the algorithm because con-
firmation actions are now frequently triggered by the
recommendations, leading to a very high predictability
of the corresponding items.

This bias in offline evaluation with online systems can
also be caused by other events such as a promotional
offer on some specific products between a first offline
evaluation and a second one. Its main effect is to favor
algorithms that tend to recommend items that have
been favored between t0 and t1 and thus to favor a kind
of “winner take all” situation in which the algorithm
considered as the best at t0 will probably remain the
best one afterwards, even if an unbiased procedure
could demote it. While limits of evaluation strategies
for recommendation algorithms have been identified in
e.g. (Herlocker et al., 2004; McNee et al., 2006; Said
et al., 2013), the evaluation bias described above has
not been addressed in the literature, to our knowledge.

This paper proposes a modification of the classical of-
fline evaluation procedure that reduces the impact of
this bias. Following the general principle of weight-
ing instances used in the context of covariate shift
(Sugiyama et al., 2007), we propose to assign a tun-
able weight to each item. The weights are optimized in
order to reduce the bias without discarding new data
generated since the reference evaluation.

The rest of the paper is organized as follows. Section
2 describes in detail the setting and the problem ad-
dressed in this paper. Section 3 introduces the weight-
ing scheme proposed to reduce the evaluation bias.
Section 4 demonstrates the practical relevance of the
method on real world data extracted from the Viadeo
professional social network1.

1Viadeo is the world’s second largest professional social
network with 55 million members in August 2013. See
http://corporate.viadeo.com/en/ for more information
about Viadeo.

2. Problem formulation

2.1. Notations and setting

We denote U the set of users, I the set of items and Dt

the historical data available at time t. A recommen-
dation algorithm is a function g from U ×Dt to some
set built from I. We will denote gt(u) = g(u,Dt) the
recommendation computed by g at instant t for user
u. The recommendation strategy, gt(u), could be a list
of k items (ordered in decreasing interest), a set of k
items (with no ranking), a mapping from a subset of I
to numerical grades for some items, etc. The specifics
are not relevant to the present analysis as we assume
given a quality function l from product of the result
space of g and I to R+ that measures to what extent
an item i is correctly recommended by g at time t via
l(gt(u), i).

Offline evaluation is based on the possibility of “re-
moving” any item i from a user profile (Iu denotes the
items associated to u). The result is denoted u−i and
gt(u−i) is the recommendation obtained at instant t
when i has been removed from the profile of user u. If
g outputs a subset of I, then one possible choice for l is
l(gt(u−i), i) = 1 when i ∈ gt(u−i) and 0 otherwise. If g
outputs a list of the best k items, then l will decrease
with the rank of i in this list (it could be, e.g., the
inverse of the rank).

Finally, offline evaluation follows a general scheme in
which a user is chosen according to some prior probabil-
ity on users P (u) (these probabilities might reflect the
business importance of the users, for instance). Given
a user, an item is chosen among the items associated
to its profile, according to some conditional probability
on items P (i|u). When an item i is not associated to a
user u (that is i 6∈ Iu), P (i|u) = 0. Notice than while
we use a stochastic framework, exhaustive approaches
are common in medium size systems. In this case, the
probabilities will be interpreted as weights and all the
pairs (u, i) (where i ∈ Iu) will be used in the evaluation
process. In both stochastic and exhaustive evaluations,
a very common choice for P (u) is the uniform proba-
bility on U . It is also quite common to use a uniform
probability for P (i|u). For instance, one could favor
items recently associated to a profile over older ones.

The two distributions P (u) and P (i|u) lead to a joint
distribution P (u, i) = P (i|u)P (u) on U × I. In an
online system, P (i|u) evolves over time2. For exam-
ple, if the probability P (i|u) is uniform over the items
associated to user u, then as soon as u gets a new
item (recommended by an algorithm, for instance), all

2While P (u) could also evolve over time, we do not
consider the effects of such evolution in the present article.

Reducing Offline Evaluation Bias in Recommendation Systems

probabilities are modified. The same is true for more
complex schemes that take into account the age of the
items, for instance.

2.2. Origin of the bias in offline evaluation

The offline evaluation procedure consists in calculating
the quality of the recommender g at instant t as Lt(g) =
E(l(gt(u−i), i)) where the expectation is taken with
respect to the joint distribution, that is

Lt(g) =
∑

(u,i)∈U×I

Pt(i|u)Pt(u)l(gt(u−i), i). (1)

In very large systems, Lt(g) is approximated by actually
sampling from U×I according to the probabilities while
in small ones, the probabilities are used as weights, as
pointed out above.

Then if two algorithms are evaluated at two different
moments, their qualities are not directly comparable.
While this problem does not fall exactly into the co-
variate shift paradigm (Shimodaira, 2000), it is related:
once a recommendation algorithm is chosen based on a
given state of the system, it is almost guaranteed to in-
fluence the state of the system while put in production,
inducing an increasing distance between its evaluation
environment (i.e. the initial state of the system) and
the evolving state of the system. This influence of the
recommendation algorithm on the state of the system
is responsible for the bias since offline evaluation relies
on historical data.

A naive solution to this bias would be to define a fixed
evaluation database (a snapshot of the system at t0)
and to compare algorithms only with respect to the
original database. This is clearly unacceptable for an
online system as it would discard both new users and,
more importantly, evolutions of user profiles.

2.3. Real world illustration of the bias

We illustrate the evolution of the Pt(i) probabilities
in an online system with a functionality provided by
the Viadeo platform: each user can claim to have some
skills that are displayed on his/her profile (examples
of skills include project management, marketing, etc.).
In order to obtain more complete profiles, skills are
recommended to the users via a recommendation algo-
rithm, a practice that has obviously consequences on
the probabilities Pt(i), as illustrated on Figure 1.

The skill functionality has been implemented at time
t = 0. After 300 days, some of the Pt(i) are roughly
static. Probabilities of other items still evolve over
time under various influences, but the major sources of
evolution are recommendation campaigns. Indeed, at

●

●
●

●

●

●

●

●

●
●

● ●
● ● ●

● ● ● ● ● ●

300 350 400 450

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
01

2
0.

01
4

0.
01

6
0.

01
8

t

se
le

ct
io

n
pr

ob
ab

ili
ty

Figure 1. Impact of recommendation campaigns on the item
probabilities: each curve displays the evolution of P (i) over
time for a given item.

times t = 330 and t = 430, recommendation campaigns
have been conducted: users have received personalized
recommendation of skills to add to their profiles. The
figure shows strong modifications of the Pt(i) quickly
after each campaign. In particular, the probabilities
of the items which have been recommended increase
significantly; this is the case for the black, pink and
light blue curves at t = 330. On the other hand, the
probabilities of the items which have not been recom-
mended decrease at the same time. The probabilities
tend to become stable again until the same phenomenon
can be observed right after the second recommenda-
tion campaign at t = 430: the curves corresponding
to the items that have been recommended again keep
increasing. The green curve represents the probability
of an item which has been recommended only during
the second recommendation campaign. Section 4.2
demonstrates the effects of this evolution on algorithm
evaluations.

3. Reducing the evaluation bias

3.1. Principle for reducing the bias

Let us consider a naive algorithm which always recom-
mends the same items whatever the user and historical
data. In other words, g is constant. Constant algo-
rithms are particularly easy to understand and useful
to illustrate the bias due to external factors. Indeed one

Reducing Offline Evaluation Bias in Recommendation Systems

can reasonably assume that the score of such algorithms
does not strongly vary over time.

A simple transformation of equation (1) shows that for
a constant algorithm g:

Lt(g) =
∑
u∈U

∑
i∈I

Pt(i|u)Pt(u)l(gt, i)

=
∑
i∈I

l(gt, i)
∑
u∈U

Pt(i|u)Pt(u)

=
∑
i∈I

Pt(i)l(gt, i). (2)

As a consequence, a way to guarantee a stationary eval-
uation framework for a constant algorithm is to have
constant values for the Pt(i) (the marginal distribution
of the items).

A natural solution to have constant values for Pt(i)
would be to record those probabilities at t0 and use
them subsequently in offline evaluation as the proba-
bility to select an item. However, this would require
to revert the way offline evaluation is done: first select
an item, then select a user having this item with a
certain probability πt(u|i). But as the probability law
originally defined on users reflects their relative impor-
tance and should not be modified, it will be necessary
to compute πt(u|i) such as the overall probability law
on users is close enough to the original one

(
Pt0(u)

)
.

The computation of the coefficients πt(u|i) would need
to be done for all users. Keeping the standard offline
evaluation procedure and computing coefficients to al-
ter the probabilities of selecting an item for a given
user is more efficient because it can be done only for
a limited number of key items (in practice in much
smaller quantity than the number of users for most of
real world systems) leading to a much lower complexity.

A strong assumption we make is that in practice re-
ducing offline evaluation bias for constant algorithms
contributes to reducing offline evaluation bias for all
algorithms.

3.2. Item weights

Pt(i|u) probabilities are thus the only quantities that
can be modified in order to reduce the bias of offline
evaluation. In particular, Pt(u) is driven by business
considerations related to the importance of individ-
ual users and can seldom be manipulated without im-
pairing the associated business metrics. We propose
therefore to depart from the classical values for Pt(i|u)
(such as using a uniform probability) in order to mimic
static values for Pt0(i). This approach is related to the
weighting strategy used in the case of covariate shift
(Sugiyama et al., 2007).

This is implemented via tunable item specific weights,
the ω = (ωi)i∈I , which induce modified conditional
probabilities Pt(i|u, ω). The general idea is to increase
the probability of selecting i if ωi is larger than 1 and
vice versa, so that ω recalibrates the probability of
selecting each item. The simplest way to implement
this probability modification is to define Pt(i|u, ω) as
follows:

Pt(i|u, ω) =
ωiPt(i|u)∑

j∈It ωjPt(j|u)
. (3)

Other weighting schemes could be used. Notice
that these weighted conditional probabilities lead to
weighted item probabilities defined by:

Pt(i|ω) =
∑
u∈U

Pt(i|u, ω)Pt(u). (4)

3.3. Adjusting the weights

We thus reduce the evaluation bias by leveraging
the weights ω and using the associated distribution
Pt1(i|u, ω) instead of Pt1(i|u). Indeed one can chose ω
in such as way that Pt1(i|ω) ' Pt0(i). This allows one
to use all the data available at time t1 for the offline
evaluation while limiting the bias induced by those new
data.

This leads to a non-linear system with ni equations and
ni parameters (ω1, . . . , ωni

) such that for all i ∈ It1 :∑
u∈U

ωiPt1(i|u, ωi)∑
j∈I ωjPt1(j|u, ωj)

· Pt1(u) = Pt0(u)

ω cannot be solved easily and we thus need to approxi-
mate it using an optimisation algorithm.

Optimizing the weights amounts to reducing a dissimi-
larity between the weighted distribution and the origi-
nal one. We use here the Kullback-Leibler divergence,
that is

D(ω) = DKL(Pt0(.)‖Pt1(.|ω))

=
∑
i∈It0

Pt0(i) log
Pt0(i)

Pt1(i|ω)
. (5)

Where It0 represents the set of items which have been
selected at least once at t0.

The asymmetric nature of DKL is useful in our context
as it reduces the influence of rare items at time t0
as they were not very important in the calculation of
Lt0(g).

The target probability Pt0(i) is computed once and for
all items at the initial evaluation time. One coordinate
of the gradient can be computed in O(NU×It1), where

Reducing Offline Evaluation Bias in Recommendation Systems

NU×It1 is the number of couples (u, i) with i ∈ Iu
and u ∈ U at instant t1. Thus the whole gradient
can be computed in complexity O(ni ·NU×It1). This
would be prohibitive on a large system. To limit the
optimization cost, we focus on the largest modifications
between Pt0(i) and Pt1(i). More precisely, we compute
once Pt1(i) for all i ∈ It0 and select the subset It1t0 (p)
of It1 of size p which exhibits the largest differences in
absolute values between Pt0(i) and Pt1(i).

Then D(ω) is only optimized with respect to the cor-
responding weights (ωi)i∈It1

t0
(p)

, leading to a cost in

O(p ·NU×It1) for each gradient calculation. Notice that
p is therefore an important parameter of the weighting
strategy. In practice, we optimize the divergence via a
basic gradient descent.

Notice that to implement weight optimization, one
needs to compute Pt0(i) and Pt1(i). As pointed out in
3.1 these are costly operations. We assume however
that evaluating several recommendation algorithms has
a much larger cost, because of the repeated evaluation
of Lt(g) associated to e.g. statistical model parameter
tuning. Then while optimizing ω is costly, it allows
one to rely on the efficient classical offline strategy to
evaluate recommendation algorithms with a reduced
bias.

4. Experimental evaluation

4.1. Data and metrics

The proposed approach is studied on real world data
extracted from the Viadeo professional social network.
The recommendation setting is the one described in
Section 2.3: users can attach skills to their profile.
Skills are recommended to the users in order to help
them build more accurate and complete profiles. In
this context, items are skills. The data set used for
the analysis contains 34 448 users and 35 741 items.
The average number of items per user is 5.33. The
distribution of items per user follows roughly a power
law, as shown on Figure 2.

Both probabilities Pt(u) and Pt(i|u) are uniform. The
quality function l is given by l(gt(u−i), i) = 1i∈gt(u−i)

where gt(u−i) consists in 5 items. We use constant rec-
ommendation algorithms to focus on the direct effects
of our weighting proposal, which means here that each
algorithm is based on a selection of 5 items that will
be recommended to all users.

The quality of a recommendation algorithm, Lt(g), is
estimated via stochastic sampling in order to simulate
what could be done on a larger data set than the
one used for testing. We selected repeatedly 20 000

●

● ● ●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

●●
●

●
●
●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●●● ●●●●●●

1 2 5 10 20 50

1
5

10
50

10
0

50
0

50
00

N items

N
 m

em
be

rs

Figure 2. Distribution of items per user

users (uniformly among the 34 448, including possible
repetitions) and then one item per user (according to
Pt(i|u) or Pt(i|u, ω)).

The analysis is conducted on a 201 days period, from
day 300 to day 500. Day 0 corresponds to the launch
date of the skill functionality. As noted in Section
2.3 two recommendation campaigns were conducted
by Viadeo during this period at t = 330 and t = 430
respectively.

4.2. Bias in action

We first demonstrate the effect of the bias on two
constant recommendation algorithms. The first one g1

is modeled after the actual recommendation algorithm
used by Viadeo in the following sense: it recommends
the five most recommended items from t = 320 to
t = 480. The second algorithm g2 takes the opposite
approach by recommending the five most frequent items
at time t = 300 among the items that were never
recommended from t = 320 to t = 480. In a sense, g1

agrees with Viadeo’s recommendation algorithm, while
g2 disagrees.

Figures 3 and 4 show the evolution of Lt(g
1) and Lt(g

2)
over time. As both algorithms are constant, it would be
reasonable to expect minimal variations of their offline
evaluation scores. However in practice the estimated
quality of g1 increases by more than 25 %, while the
relative decrease of g2 reaches 33 %.

Reducing Offline Evaluation Bias in Recommendation Systems

● ●

● ●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

300 350 400 450

0.
04

0
0.

04
2

0.
04

4
0.

04
6

0.
04

8
0.

05
0

0.
05

2

t

ex
pe

ct
ed

 s
co

re

Figure 3. Evolution of Lt(g
1) over time (g1 “agrees” with

the recommendation algorithm)

4.3. Reduction of the bias

We apply the strategy described in Section 3 to compute
optimal weights at different instants and for several
values of the p parameter. Results are summarized in
Figures 5 and 6.

The figures show clearly the stabilizing effects of the
weighting strategy on the scores of both algorithms.
In the case of algorithm g1, the stabilisation is quite
satisfactory with only p = 20 active weights. This is
expected because g1 agrees with Viadeo’s recommen-
dation algorithm and therefore recommends items for
which probabilities Pt(i) change a lot over time. Those
probabilities are exactly the ones that are corrected by
the weighting technique.

The case of algorithm g2 is less favorable, as no stabili-
sation occurs with p ≤ 20. This can be explained by the
relative stability over time of the probabilities of the
items recommended by g2 (indeed, those items are not
recommended during the period under study). Then
the perceived reduction in quality over time is a con-
sequence of increased probabilities associated to other
items. Because those items are never recommended by
g2, they correspond to direct recommendation failures.
In order to stabilize g2 evaluation, we need to take into
account weaker modifications of probabilities, which
can only be done by increasing p. This is clearly shown
by Figure 6.

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
● ● ●

●
●

300 350 400 450

0.
00

40
0.

00
45

0.
00

50
0.

00
55

0.
00

60

t

ex
pe

ct
ed

 s
co

re

Figure 4. Evolution of Lt(g
2) over time (g2 “disagrees” with

the recommendation algorithm)

5. Conclusion

We have analyzed the offline evaluation bias induced
by various factors that have influenced historical data
as the recommendation algorithms previously used for
such an online system. Indeed, as recommendations
influence users, a recommendation algorithm in produc-
tion tends to be favored by offline evaluation over time.
On the contrary, an algorithm with different recom-
mendations will generally witness over time a reduction
of its offline evaluation score. To overcome this bias,
we have introduced a simple item weighting strategy
inspired by techniques designed for tackling the covari-
ate shift problem. We have shown on real world data
extracted from Viadeo professional social network that
the proposed technique reduces the evaluation bias for
constant recommendation algorithms.

While the proposed solution is very general, we have
only focused on the simplest situation of constant rec-
ommendations evaluated with a binary quality metric
(an item is either in the list of recommended items or
not). Further works include the confirmation of bias
reduction on more elaborate algorithms, possibly with
more complex quality functions. The trade off between
the computational cost of the proposed solution and
its quality should also be investigated in more details.

Reducing Offline Evaluation Bias in Recommendation Systems

● ●

●

● ●

●

●

300 350 400 450

0.
03

8
0.

04
0

0.
04

2
0.

04
4

0.
04

6
0.

04
8

0.
05

0
0.

05
2

t

sc
or

e

● 1
5
10
20
100
300
600
1000

Figure 5. Evolution of Lt(g
1) over time (g1 “agrees” with

the recommendation algorithm) when items are weighted
(see text for details).

A. Algorithmic details

A.1. Gradient calculation

We optimize D(ω) with a gradient based algorithm and
hence ∇D is needed. Let i and k be two distinct items
i 6= k, then

∂P (i|u, ω)

∂ωk
= − ωiP (i|u)P (k|u)(∑

j∈I ωjP (j|u)
)2 ,

= −P (i|u, ω)
P (k|u, ω)

ωk
. (6)

We have also

∂P (i|u, ω)

∂ωi
=
P (i|u, ω)

ωi
(1− P (i|u, ω)) , (7)

and therefore for all k:

∂P (i|u, ω)

∂ωk
=
P (k|u, ω)

ωk
(δik − P (i|u, ω)) . (8)

We have implicitly assumed that the evaluation is based
on independent draws, and therefore:

P (i, k|ω) =
∑
u

P (i|u, ω)P (k|u, ω)P (u). (9)

●

●

●

● ●

●

●

300 350 400 450

0.
00

40
0.

00
45

0.
00

50
0.

00
55

0.
00

60

t

sc
or

e

● 1
5
10
20
100
300
600
1000

Figure 6. Evolution of Lt(g
2) over time (g2 “disagrees” with

the recommendation algorithm) when items are weighted
(see text for details).

Then

∂D(ω)

∂ωk
=∑
i

Pt0(i)

ωkPt1(i|ω)
(Pt1(i, k|ω)− δikPt1(k|ω)) .

Application: if P (u) ∼ U(U) and P (i|U) ∼ U(Iu),
then:

P (u) =
1

#U

P (i|u) =
1

#Iu
· 1i∈Iu

P (i|ω) =
1

#U
·
∑
u∈Ui

ωi∑
j∈Iu ωj

P (i, k|ω) =
1

#U
·
∑

u∈Ui∩Uk

ωiωk

(
∑

j∈Iu ωj)2

Complexity: Assuming we have a sparse matrix A ∈
MnU , nI(R) such as Au,i = 1u∈Iu , we suggest to pre-
calculate Pt0(i) and then for each coordinate of the
gradient and for each i:

• compute P (i|ω) =
∑

u∈Ui
P (i|u, ω)P (u) in

O(#Ui)

Reducing Offline Evaluation Bias in Recommendation Systems

• compute P (i, k|ω) =∑
i∈Ui

P (i|u, ω)P (k|u, ω)P (u) in O(#Ui)

Then each ∂D(ω)
∂ωk

consists in a sum of I terms computed

in O(1), so that we can compute each coordinate of
the gradient is O(

∑
i∈I Ui) = O(|A|).

Thus, as |A| = NU×I the complexity to compute p
coordinates of the gradient is O(p ·NU×I).

References

Adomavicius, G., & Tuzhilin, A. (2005). Toward the
next generation of recommender systems: A survey of
the state-of-the-art and possible extensions. Knowl-
edge and Data Engineering, IEEE Transactions on,
17, 734–749.

Herlocker, J. L., Konstan, J. A., Terveen, L. G., &
Riedl, J. T. (2004). Evaluating collaborative filter-
ing recommender systems. ACM Transactions on
Information Systems, 22, 5–53.

Kantor, P. B., Rokach, L., Ricci, F., & Shapira, B.
(Eds.). (2011). Recommender systems handbook.
Springer.

McNee, S. M., Riedl, J., & Konstan, J. A. (2006).
Being accurate is not enough: how accuracy metrics
have hurt recommender systems. CHI’06 extended
abstracts on Human factors in computing systems
(pp. 1097–1101).

Park, D. H., Kim, H. K., Choi, I. Y., & Kim, J. K.
(2012). A literature review and classification of rec-
ommender systems research. Expert Systems with
Applications, 39, 10059–10072.

Said, A., Fields, B., Jain, B. J., & Albayrak, S. (2013).
User-centric evaluation of a k-furthest neighbor col-
laborative filtering recommender algorithm. Proceed-
ings of the 2013 conference on Computer supported
cooperative work (pp. 1399–1408).

Shani, G., & Gunawardana, A. (2011). Evaluating rec-
ommendation systems. In P. B. Kantor, L. Rokach,
F. Ricci and B. Shapira (Eds.), Recommender sys-
tems handbook, 257–297. Springer.

Shimodaira, H. (2000). Improving predictive inference
under covariate shift by weighting the log-likelihood
function. Journal of Statistical Planning and Infer-
ence, 90, 227 – 244.

Sugiyama, M., Krauledat, M., & Müller, K.-R. (2007).
Covariate shift adaptation by importance weighted
cross validation. The Journal of Machine Learning
Research, 8, 985–1005.

