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Abstract— Automatic anomaly detection is a major issue
in various areas. Beyond mere detection, the identification of
the source of the problem that produced the anomaly is also
essential. This is particularly the case in aircraft engine health
monitoring where detecting early signs of failure (anomalies)
and helping the engine owner to implement efficiently the
adapted maintenance operations (fixing the source of the
anomaly) are of crucial importance to reduce the costs attached
to unscheduled maintenance.

This paper introduces a general methodology that aims at
classifying monitoring signals into normal ones and several
classes of abnormal ones. The main idea is to leverage expert
knowledge by generating a very large number of binary
indicators. Each indicator corresponds to a fully parametrized
anomaly detector built from parametric anomaly scores de-
signed by experts. A feature selection method is used to keep
only the most discriminant indicators which are used at inputs
of a Naive Bayes classifier. This give an interpretable classifier
based on interpretable anomaly detectors whose parameters
have been optimized indirectly by the selection process. The
proposed methodology is evaluated on simulated data designed
to reproduce some of the anomaly types observed in real world
engines.
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I. INTRODUCTION

AUTOMATIC anomaly detection is a major issue in
numerous areas and has generated a vast scientific

literature [1]. Among the possible choices, statistical tech-
niques for anomaly detection are appealing because they
can leverage expert knowledge about the expected normal
behavior of the studied system in order to compensate for the
limited availability of faulty observations (or more generally
of labelled observations). Those techniques are generally
based on a stationarity hypothesis: if for instance the studied
system is monitored via a series of real valued observations
X1, . . . , Xn, then the Xi are assumed to be identically
distributed under normal conditions. Detecting an anomaly
amounts to detecting a change in the probability distribution
of the Xi, at some point k, for example a change in the
mean value from µ1 for X1, . . . , Xk to µ2 for Xk+1, . . . , Xn.
Numerous parametric and nonparametric methods have been
proposed to achieve this goal [2].

However, statistical tests efficiency is highly dependent to
the adequacy between the assumed data distribution and the
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actual data distribution. While this is obvious for parametric
tests, it also applies to non parametric ones as, in general,
they are not as efficient as parametric ones when the data
distribution is known. In addition, statistical methods rely on
meta-parameters, such as the length of the time window on
which a change is looked for, that have to be tuned to give
maximal efficiency.

This article proposes to combine a (supervised) classifi-
cation approach to statistical techniques in order to obtain
an automated anomaly detection system that leverages both
expert knowledge and labelled data sets. The main idea
consists in building from expert knowledge a large number
of binary indicators that correspond to anomaly detection
decisions taken by statistical tests suggested by the experts,
with varying (meta)-parameters. Then a feature selection
method is applied to the high dimensional binary vectors
to select the most discriminative ones, using a labeled data
set. Finally, a classifier is trained on the reduced binary vectors
to provide automatic detection for future samples.

This approach has numerous advantages over using clas-
sification or statistical tests only. On the classification point
of view, it has been shown in e.g. [3] that selecting relevant
binary features among a large number of simple features
can lead to very high classification accuracy in complex
tasks. In addition, using features designed by experts allows
one to at least partially interpret the way the classifier
is making decisions as none of the features will be off
a black box nature. This is particularly important in our
application context (see Section II). The indicators play also
a homogenisation role by hiding the complexity of the signals
in which anomalies are looked for (in a way similar to the
one used in [4], for instance). On the statistical point of view,
the proposed approach brings a form of automated tuning: a
test recommended by an expert can be included in numerous
variants, with a different set of meta-parameters per variant.
The feature selection process keep then the most adapted
parameters.

This methodology can be applied in various areas. This
article focuses on aircraft engine health monitoring which
aims at detecting early signs of failure to prevent from the
occurrence of operational events (such as air turn back). This
detection is done through the analysis of data originating
from sensors embedded in the engine. For example, messages
on the Aircraft Communications Addressing and Reporting
System (ACARS2) give an overview of engines status,
and provide useful measurements at specific moments that
have been deemed important by experts. Flight after flight,

2The ACARS is a standard system used to transmit messages between an
aircraft and ground stations, see http://en.wikipedia.org/wiki/
ACARS for details.



measurements, such as exhausted gas temperature (EGT) and
high pressure (HP) core speed (N2) (see Figure 1) form a
time series on which anomaly detection may be applied to
detect early signs of failure.

Fig. 1. Localization of some sensors embedded in an engine.

As aircraft engines are extremely reliable, labelled data
including early signs of failure are very scarce and not in a
sufficient quantity to build reliable fully automated detection
systems. The methodology proposed in this paper is therefore
evaluated on simulated data in order to demonstrate its
efficiency and to justify the very costly collection of labelled
data.

The rest of the paper is organized as follows. Section II
describes in more details Snecma’s engine health monitoring
context which motivates this study. Section III presents in
more details the proposed methodology. Section IV presents
the results obtained on simulated data.

II. APPLICATION CONTEXT

A. Introduction and Objectives

The very high reliability of aircraft engines is obtained by
regular and scheduled maintenance operations but also via
engine health monitoring. This process consists in ground
based monitoring of numerous measurements made on the
engine and its environment during the aircraft operation. One
of the goal of this monitoring it to detect abnormal behavior
of the engine that are early signs of potential failures.

On the one hand, missing such an early sign can lead
to operational events such as air turn back and delay and
cancellation. Such operational events can cause customers
disturbance but also higher maintenance costs. On the other
hand, a false alarm (detecting an anomaly when the engine
is behaving normally) can have costly consequences from
a useless inspection operation to a useless engine removal
procedure. This has a high cost both money wise and in terms
of customers’ disturbance.

Thus to minimize false alarm, each potential anomaly
is analyzed by human operators. They are in charge of
confirming the anomaly and in identifying its probable origin.
This latter part allows to estimate the repair costs (when
needed) and/or the immobilization time. (Note that human

operators submit their recommendations to the company
owing the engine.)

The long term goal of engine manufacturers is to help
companies to minimize their maintenance costs by giving
maintenance recommendations as accurate as possible. This
means improving the detection performances of early signs of
failure. However, the context makes this goal more difficult
to achieve than in other situations because of two factors.
Firstly, human operators have a very important role in the
current industrial process: the goal is to help them reach
improved decisions thanks to a grey box classifier, mainly
because the complexity of the problem seems to prevent any
fully automated decision making. Secondly, the reliability of
current engines makes very scarce data that display abnormal
behavior. In practice, the scheduled maintenance tends to
prevent early signs of anomaly to manifest. In addition, the
labelling of abnormal data has to be done by experts, which
makes it very expensive (especially considering the scarceness
just mentioned).

The methodology proposed in this paper aims at addressing
the first factor by leveraging expert knowledge and relying
on feature selection to keep only a small number of binary
indicators. In order to justify the costs of collecting a large
set of labelled data, and thus to address the second factor,
the methodology is evaluated on artificial data.

B. Health monitoring

As mentioned in the Introduction, aircraft engines are
equipped with multiple sensors which measure several phys-
ical quantities such as the oil pressure, high pressure and
low pressure core speed, air temperature, oil temperature, etc.
(See Figure 1.) Engine health monitoring is mainly based on
such flight data.

Monitoring is strongly based on experts knowledge and
field experience. Faults and early signs of failures are
identified from suitable measurements associated to adapted
computational transformations of the data. We refer the reader
to e.g. [5] for examples of the types of measurements and
transformations that can be used in practice.

Fig. 2. Examples of results after preprocessing computation use to remove
flight context dependency.

One of the main difficulty faced by the experts consists



in removing from the measurements any dependency from
the flight context. (See Figure 2 for an example of such
a transformation.) This normalization process is extremely
important as it allows one to assume stationarity of the residual
signal and therefore to leverage change detection methods.
In practice, experts build some anomaly score from those
stationarity hypothesis and when the score passes a limit, the
corresponding early sign of failure is signalled to the human
operator. See [6], [7] and [8] for some examples.

One of the problems induced by this general approach
is that experts are generally specialized on a particular
subsystem, thus each anomaly score is mainly focused on
a particular subsystem despite the need of a diagnostic of
the whole system. This task is done by human operator who
collects all available information about the desired engine.
One of the benefits of the proposed methodology is its ability
to handle binary indicators coming from all subsystems in
an integrated way, as explained in the next section.

III. METHODOLOGY

The proposed methodology aims at combining expert
knowledge to supervised classification in order to provide
accurate and interpretable automatic anomaly detection in
the context of complex system monitoring. It is based on
the selection and combination of a large number of binary
indicators. While this idea is not entirely true (see e.g., [3],
[4]), the methodology proposed here has some specific aspects.
Rather than relying on very basic detectors as in [3] or on
fixed high level expertly designed ones as in [4], our method
takes an intermediate approach: it varies the parameters of a
set of expertly designed parametric indicators. In addition, it
aims at providing an interpretable model. This section details
the proposed procedure.

A. Expert knowledge

As explained in the introduction, this article focuses on
change detection based on statistical techniques [2]. In many
contexts, experts can generally describe more or less explicitly
the type of change they are expecting for some specific (early
signs of) anomalies. In the proposed application context, one
can observe for instance mean shift as in Figure 4 or variance
shift as in Figure 3.

More generally, experts can described aggregation and
transformation techniques of raw signals that lead to quan-
tities which should behave in a “reasonable manner” under
normal circumstances. This can in general be summarized by
computing a distance between the actual quantities and there
expected values.

B. Exploring parameter space

In practice however, experts can seldom provide detailed
parameter settings for the aggregation and transformation
techniques they recommend. Fixing the threshold above which
a distance from the “reasonable values” becomes critical is
also difficult.

Let us consider for illustration purpose that the expert
recommends to look for shifts in mean of a certain quantity

Fig. 3. Variance shift in a real world time series extracted from ACARS
messages.

Fig. 4. Mean shift in a real world time series extracted from ACARS
messages.

as early signs of a specific anomaly (as in Figure 4). If the
expert believes the quantity to be normally distributed with a
fixed variance, then a natural test would be Student’s t-test. If
the expert has no strong priors on the distribution, a natural
test would be the MannWhitney U test.

Then, in both cases, one has to assess the scale of the shift.
Indeed, those tests work by comparing summary statistics of
two populations, before and after a possible change point. To
define the populations, the expert has to specify the length of
the time windows to consider before and after the possible
change point: this is the expected scale at which the shift
will appear. In most cases, the experts can only give a rough
idea of the scale.

Given the choice of the test, of its scale and of a change
point, one can construct a statistic, whose value can be
turned into a p-value based on its distribution under the
null hypothesis (which would be stationarity in this case).
To take a decision, one has to choose a level to which the
p-value will be compared.

So all in one, looking for a shift in mean can be done by
choosing at least three parameters: the type of the test, the
scale at which the shift can occur and the level of the test. For
all these parameters, experts can give only rough guidelines, in
general. The proposed methodology consists in considering (a
subset of) all possible combinations of parameters compatible
with expert knowledge to generate binary indicators. In the



present example, this means choosing a finite set of scales
and a finite set of levels, and computing the decision of
the tests obtained by applying both solutions (t-test and U
test) for all the combinations of levels and scales. This is a
form of indirect grid search procedures for meta-parameter
optimisation.

C. Confirmatory indicators

Finally, as pointed out before, aircraft engines are extremely
reliable, a fact that increases the difficulty in balancing
sensibility and specificity of anomaly detectors. In order
to alleviate this difficulty, high level confirmatory indicators
are built from low level tests. For instance, if we monitor
the evolution of a quantity on a long period compared to the
expected time scale of anomalies, we can compare the number
of times the null hypothesis of a test has been rejected on
the long period with the number of times it was not rejected,
and turn this into a binary indicator with a majority rule.

D. Decision

To summarize, we construct parametric anomaly scores
from expert knowledge, together with acceptable parameter
ranges. By exploring those ranges, we generate numerous
(possible hundreds of) binary indicators. Each indicator can
be linked to an expertly designed score with a specific set
of parameters and thus is supposedly easy to interpret by
operators. Notice that while we focused in this presentation
on temporal data, this framework can be applied to any data
source.

The final decision step consists in classifying these high
dimensional binary vectors in order to further discriminate
between seriousness of anomalies and/or sources (in terms of
subsystems of the engine, for instance). For this, a labelled
data set is obviously needed.

In the considered context, black box modelling is not
acceptable, so while numerous classification algorithms are
available (see e.g. [9]), we shall focus on interpretable ones.
Random Forests [10] are chosen as the reference method
as they are very adapted to binary indicators and to high
dimensional data. They are also known to be robust and to
provide state-of-the-art classification performances at a very
small computational cost. While they are not as interpretable
as their ancestors CART [11], they provide at least variable
importance measures that can be used to identify the most
important indicators.

Another classification algorithms used in this paper is
naive Bayes classifier [12] which is also appropriate for high
dimensional data. They are known to provide good results
despite the strong assumption of the independence of features
given the class. In addition, decisions taken by a naive Bayes
classifier are very ease to understand thanks to the estimation
of the conditional probabilities of the feature in each class.
Those quantities can be shown to the human operator as
references.

Finally, while including hundreds of indicators is important
to give a broad coverage of the parameter spaces of the
expert scores and thus to maximize the probability of detecting

anomalies, it seems obvious that some redundancy will appear.
Unlike [4] who choose features by random projection, the
proposed methodology favors interpretable solutions, even
at the expense of the classification accuracy: the goal is to
help the human operator, not to replace her/him. Thus feature
selection [13] is more appropriate. The reduction of number of
features will ease the interpretation by limiting the quantity of
information transmitted to the operators in case of a detection
by the classifier. Among the possible solutions, we choose
to use the Mutual information based technique Minimum
Redundancy Maximum Relevance (mRMR, [14]) which was
reported to give excellent results on high dimensional data
(see also [3] for another possible choice).

IV. EXPERIMENTS

As pointed out in the introduction, labelling a sufficiently
large data set in the context of engine health monitoring will
be a very costly task, mainly because of the strong reliability
of those engines. The proposed methodology is therefore
evaluated on simulated data which have been modelled based
on real world data such as the ones shown on Figures 3 and
4.

A. Simulated data

We consider univariate time series of variable length in
which three types of shifts can happen: the mean and variance
shifts described in Section III-A, together with a trend shift
described below. Two data sets are generated, A and B.

In both cases, it is assumed that expert based normalization
has been performed. Therefore when no shift in the data
distribution occurs, we observe a stationary random noise
modeled by the standard Gaussian distribution, that is n
random variables X1, . . . , Xn independent and identically
distributed according to N (µ = 0, σ2 = 1). Signals have a
length chosen uniformly at random between 100 and 200
observations (each signal has a specific length).

The three types of shift are:
1) a variance shift: in this case, observations are distributed

according to N (µ = 0, σ2) with σ2 = 1 before the
change point and σ chosen uniformly at random in
[1.01, 5] after the change point;

2) a mean shift: in this case, observations are distributed
according to N (µ, σ2 = 1) with µ = 0 before the
change point and µ chosen uniformly at random in
[1.01, 5] after the change point in set A. Set B is more
difficult on this aspect as µ after the change point is
chosen uniformly at random in [0.505, 2.5];

3) a trend shift: in this case, observations are distributed
according to N (µ, σ2 = 1) with µ = 0 before the
change point and µ increasing linearly from 0 from
the change point with a slope of chosen uniformly at
random in [0.02, 3].

Assume that the signal contains n observations, then the
change point is chosen uniformly at random between the
2n
10 -th observation and the 8n

10 -th observation.
We generate according to this procedure two balanced data

set with 6000 observations corresponding to 3000 observations



with no anomaly, and 1000 observations for each of the three
types of anomalies. The only difference between data set A
and data set B is the amplitude of the mean shift which is
smaller in B, making the classification harder.

B. Indicators

As explained in Section III, binary indicators are con-
structed from expert knowledge by varying parameters,
including scale and position parameters. In the present context,
sliding windows are used: for each position of the window,
a classical statistical test is conducted to decide whether a
shift in the signal occurs at the center of the window.

The “expert” designed tests are here:
1) the MannWhitneyWilcoxon U test (non parametric test

for shift in mean);
2) the two sample Kolmogorov-Smirnov test (non para-

metric test for differences in distributions);
3) the F-test for equality of variance (parametric test based

on a Gaussian hypothesis).
The direct parameters of those tests are the size of the window
which defines the two samples (30, 50, and min(n− 2, 100)
where n is the signal length) and the level of significance of
the test (0.005, 0.1 and 0.5). Notice that those tests do not
include a slope shift detection.

Then, confirmatory indicators are generated, as explained
in Section III-C:

1) for each underlying test, the derived binary indicator
takes the value one if on β×m windows out of m, the
test detects a change. Parameters are the test itself with
its parameters, the value of β (we considered 0.1, 0.3
and 0.5) and the number of observations in common
between two consecutive windows (the length of the
window minus 1, 5 or 10);

2) for each underlying test, the derived binary indicator
takes the value one if on β ×m consecutive windows
out of m, the test detects a change (same parameters);

3) for each underlying test, the derived binary indicator
takes the value one if there are 5 consecutive windows
such that the test detects a change on at least k of these
5 consecutive windows (similar parameters where β is
replaced by k).

In addition, based on expert recommendation, all those
indicators are applied both to the original signal and to
a smoothed signal (using a simple moving average of 5
observations).

More than 50 different configurations are used for each
indicator, leading to a total number of 810 binary indicators
(it should be noted that only a subset of all possible
configurations is included into this indicator vector).

C. Performance analysis

Each data set is split in a balanced way into a learning set
with 1000 signals and a test set with 5000 signals. We report
the global classification accuracy (the classification accuracy
is the percentage of correct predictions, regardless of the
class) on the learning set to monitor possible over fitting.

Data set Training set acc. OOB acc. Test set average acc.
A 0.9770 0.9228 0.9352 (0.0100)
B 0.9709 0.9118 0.9226 (0.0108)

TABLE I
CLASSIFICATION ACCURACY OF THE RANDOM FOREST USING THE 810

BINARY INDICATORS. FOR THE TEST SET, WE REPORT THE AVERAGE

CLASSIFICATION ACCURACY AND ITS STANDARD DEVIATION BETWEEN

PARENTHESIS.

The performances of the methodology are evaluated on 10
balanced subsets of size 500 from the 5000 signals’ test set.
This allows to evaluate both the average performances and
their variability. For the Random Forest, we also report the
out-of-bag (oob) estimate of the classification accuracy (this
is a byproduct of the bootstrap procedure used to construct
the forest, see [10]). Finally, we use confusion matrices and
class specific accuracy to gain more insights on the results
when needed.

D. Performances with all indicators

As indicators are expertly designed and should cover the
useful parameter range of the tests, it is assumed that the best
classification performances should be obtained when using
all of them, up to the effects of the curse of dimensionality.

Table I reports the global classification accuracy of the
Random Forest, using all the indicators. As expected, Random
Forests suffer neither from the curse of dimensionality nor
from strong over fitting (the test set performances are close to
the learning set ones). Table II reports the same performance
indicator for the Naive Bayes classifier. Those performances
are significantly lower than the one obtained by the Random
Forest. As shown by the confusion matrix on Table III, the
classification errors are not concentrated on one class (even if
the errors are not perfectly balanced). This tends to confirm
that the indicators are adequate to the task (this was already
obvious from the Random Forest).

Data set Training set accuracy Test set average accuracy
A 0.7856 0.7718 (0.0173)
B 0.7545 0.7381 (0.0178)

TABLE II
CLASSIFICATION ACCURACY OF THE NAIVE BAYES CLASSIFIER USING

THE 810 BINARY INDICATORS. FOR THE TEST SET, WE REPORT THE

AVERAGE CLASSIFICATION ACCURACY AND ITS STANDARD DEVIATION

BETWEEN PARENTHESIS.

E. Feature selection

While the Random Forest give very satisfactory results, it
would be unacceptable for human operators as it operates in a
black box way. While the indicators have simple interpretation,
it would be unrealistic to ask to an operator to review 810
binary values to understand why the classifier favors one
class other the others. In addition, the performances of the
Naive Bayes classifier are significantly lower than those of



0 1 2 3 total
0 1759 667 45 29 2500
1 64 712 50 3 829
2 7 2 783 37 829
3 32 7 195 595 829

TABLE III
DATA SET A: CONFUSION MATRIX WITH ALL INDICATORS FOR NAIVE

BAYES CLASSIFIER ON THE FULL TEST SET.

the Random Forest one. Both drawbacks favor the use of a
feature selection procedure.

As explained in Section III-D, the feature selection relies on
the mRMR ranking procedure. A forward approach is used to
evaluate how many indicators are needed to achieve acceptable
predictive performances. Notice that in the forward approach,
indicators are added in the order given by mRMR and then
never removed. As mRMR takes into account redundancy
between the indicators, this should not be a major issue. Then
for each number of indicators, a Random Forest and a Naive
Bayes classifier are constructed and evaluated.
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Fig. 5. Data set A Random Forest: classification accuracy on learning
set (circle) as a function of the number of indicators. A boxplot gives
the classification accuracies on the test subsets, summarized by its median
(black dot inside a white circle). The estimation of those accuracies by the
out-of-bag (oob) bootstrap estimate is shown by the crosses.

Figures 5, 6, 7 and 8 summarize the results for the 100
first indicators. The classification accuracy of the Random
Forest increases almost monotonously with the number of
indicators, but after roughly 25 to 30 indicators (depending
on the data set), performances on the test set tend to stagnate
(this is also the case of the out-of-bag estimate of the
performances, which shows, as expected, that the number of
indicators could be selected using this measure). In practice,
this means that the proposed procedure can be used to select
the relevant indicators implementing this way an automatic
tuning procedure for the parameters of the expertly designed
scores.

Results for the Naive Bayes classifier are slightly more
complex in the case of the second data set, but they confirm
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Fig. 6. Data set B Random Forest, see Figure 5 for details.
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Fig. 7. Data set A Naive Bayes classifier: classification accuracy on
learning set (circle) as a function of the number of indicators. A boxplot
gives the classification accuracies on the test subsets, summarized by its
median (black dot inside a white circle).
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Fig. 8. Data set B Naive Bayes classifier, see Figure 7 for details.
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Fig. 9. Data set A Naive Bayes classifier: classification error for each
class on the training set (solid lines) and on the test set (dotted lines, average
accuracies only).

that indicator selection is possible. Moreover, reducing the
number of indicators has here a very positive effect on
the classification accuracy of the Naive Bayes classifier
which reaches almost as good performances as the Random
Forest. Notice that the learning set performances of the
Naive Bayes classifier are almost identical to its test set
performances (which exhibit almost no variability over the
slices of the full test set). This is natural because the classifier
is based on the estimation of the probability of observing
a 1 value independently for each indicator, conditionally on
the class. The learning set contains at least 250 observations
for each class, leading to a very accurate estimation of those
probabilities and thus to very stable decisions. In practice
one can therefore select the optimal number of indicators
using the learning set performances, without the need of a
cross-validation procedure.

It should be noted that significant jumps in performances
can be observed in all cases. This might be an indication
that the ordering provided by the mRMR procedure is
not optimal. A possible solution to reach better indicator
subsets would be to use a wrapper approach, leveraging
the computational efficiency of both Random Forest and
Naive Bayes construction. Meanwhile Figure 9 shows in
more detail this phenomenon by displaying the classification
error class by class, as a function of the number of indicators,
in the case of data set A. The figure shows the difficulty of
discerning between mean shift and trend shift (for the latter,
no specific test have been included, on purpose). But as the
strong decrease in classification error when the 23-th indicator
is added concerns both classes (mean shift and trend shift),
the ordering provided by mRMR could be questioned.

F. Indicator selection

Based on results shown on Figures 7 and 8, one can select
an optimal number of binary indicators, while enforcing a
reasonable limit on this number to avoid flooding the human

operator with to many results. For instance Table IV gives
the classification accuracy of the Naive Bayes classifier using
the optimal number of binary indicators between 1 and 30.

Data set Training set acc. Test set average acc. # of indicators
A 0.8958 0.8911 (0.0125) 23
B 0.8828 0.8809 (0.0130) 11

TABLE IV
CLASSIFICATION ACCURACY OF THE NAIVE BAYESIAN NETWORK USING

THE OPTIMAL NUMBER BINARY INDICATORS BETWEEN 1 AND 30. FOR

THE TEST SET, WE REPORT THE AVERAGE CLASSIFICATION ACCURACY

AND ITS STANDARD DEVIATION BETWEEN PARENTHESIS.

While the performances are not as good as the ones of the
Random Forest, they are much improved compared to the ones
reported in Table II. In addition, the selected indicators can
be shown to the human operator together with the estimated
probabilities of getting a positive result from each indicator,
conditionally on each class, shown on Table V. For instance
here the first selected indicator, confu(2, 3), is a confirmation
indicator for the U test. It is positive when there are 2 windows
out of 3 consecutive ones on which a U test was positive.
The Naive Bayes classifier uses the estimated probabilities
to reach a decision: here the indicator is very unlikely to be
positive if there is no change or if the change is a variance
shift. On the contrary, it is very likely to be positive when
there is a mean or a trend shift. While the table does not
“explain” the decisions made by the Naive Bayes classifier, it
gives easily interpretable hints to the human operator.

V. CONCLUSION AND PERSPECTIVES

This paper proposes a general methodology that combines
expert knowledge with feature selection and automatic clas-
sification to design accurate anomaly detector and classifier.
The main idea is to build from expert knowledge parametric
anomaly scores associated to range of plausible parameters.
From those scores, hundreds of binary indicators are generated
in a way that covers the parameter space as well as introduce
simple confirmation indicators. This turns anomaly detection
into a classification problem with a very high number of binary
features. Using a feature selection technique, one can reduce
the number of useful indicators to a humanly manageable
number. This allows a human operator to understand at least
partially how a decision is reached by an automatic classifier.
This is favored by the choice of the indicators which are
based on expert knowledge. A very interesting byproduct of
the methodology is that it can work on very different original
data as long as expert decision can be modeled by a set of
parametric anomaly scores. This was illustrated by working
on signals of different lengths.

The methodology has been shown sound using simulated
data. Using a reference high performance classifier, Random
Forests, the indicator generation technique covers sufficiently
the parameter space to obtain high classification rate. Then,
the feature selection mechanism (here a simple forward
technique based on mRMR) leads to a reduced number of



type of indicator no change variance mean trend
confu(2,3) 0.010333 0.011 0.971 0.939

F test 0.020667 0.83 0.742 0.779
U test 0.027333 0.03 0.977 0.952

ratef(0.1) 0.0016667 0.69 0.518 0.221
confu(4,5) 0.034333 0.03 0.986 0.959
confu(3,5) 0.0013333 0.001 0.923 0.899

U test 0.02 0.022 0.968 0.941
F test 0.042 0.853 0.793 0.813

rateu(0.1) 0.00033333 0.001 0.906 0.896
confu(4,5) 0.019 0.02 0.946 0.927
conff(3,5) 0.052333 0.721 0.54 0.121

U test 0.037667 0.038 0.983 0.951
KS test 0.016 0.294 0.972 0.936

confu(3,5) 0.049 0.043 0.988 0.963
F test 0.030667 0.841 0.77 0.801
U test 0.043 0.043 0.981 0.963

lseqf(0.3) 0.0093333 0.749 0.59 0.36
rateu(0.1) 0.001 0.002 0.896 0.895
lsequ(0.1) 0.062667 0.06 0.992 0.949
confu(3,5) 0.025667 0.021 0.963 0.936
lseqf(0.3) 0.008 0.732 0.656 0.695
KS test 0.016333 0.088 0.955 0.93

confu(3,5) 0 0 0.003 0.673

TABLE V
THE 23 BEST INDICATORS ACCORDING TO MRMR FOR DATA SET A.

CONFU(K,N) CORRESPONDS TO A POSITIVE MANNWHITNEYWILCOXON

U TEST ON K WINDOWS OUT OF N CONSECUTIVE ONES. CONFF(K,N) IS

THE SAME THING FOR THE F-TEST. RATEF(α) CORRESPONDS TO A

POSITIVE F-TEST ON α×m WINDOWS OUT OF m. LSEQF(α)
CORRESPONDS TO A POSITIVE F-TEST ON α×m CONSECUTIVE

WINDOWS OUT OF m. LSEQU(α) IS THE SAME FOR A U TEST. DETAILED

PARAMETERS OF THE INDICATORS HAVE BEEN OMITTED FOR BREVITY.

indicators (23 for one of the data set) with good predictive
performances when paired with a simpler classifier, the Naive
Bayes classifier. As shown in the experiments, the class
conditional probabilities of obtaining a positive value for
those indicators provide interesting insights on the way the
Naive Bayes classifier takes a decision.

In order to justify the costs of collecting a sufficiently large
real world labelled data set in our context (engine health
monitoring), additional experiments are needed. In particular,
multivariate data must be studied in order to simulate the case
of a complex system made of numerous sub-systems. This
will naturally lead to more complex anomaly models. We
also observed possible limitations of the feature selection
strategy used here as the performances displayed abrupt
changes during the forward procedure. More computationally
demanding solutions, namely wrapper ones, will be studied
to confirm this point.

It is also important to notice that the classification accuracy
is not the best way of evaluating the performances of a
classifier in the health monitoring context. Firstly, health
monitoring involves intrinsically a strong class imbalance [15].
Secondly, health monitoring is a cost sensitive area because
of the strong impact on airline profit of an unscheduled
maintenance. It is therefore important to take into account
specific asymmetric misclassification cost to get a proper
performance evaluation.
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