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Abstract. Aircraft engine manufacturers collect large amount of engine
related data during flights. These data are used to detect anomalies in
the engines in order to help companies optimize their maintenance costs.
This article introduces and studies a generic methodology that allows
one to build automatic early signs of anomaly detection in a way that
is understandable by human operators who make the final maintenance
decision. The main idea of the method is to generate a very large number
of binary indicators based on parametric anomaly scores designed by
experts, complemented by simple aggregations of those scores. The best
indicators are selected via a classical forward scheme, leading to a much
reduced number of indicators that are tuned to a data set. We illustrate
the interest of the method on simulated data which contain realistic early
signs of anomalies.
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1 Introduction

Aircraft engines are generally made extremely reliable by their conception process
and thus have low rate of operational events. For example, in 2013, the CFM56-7B
engine, produced jointly by Snecma and GE aviation, has a rate of in flight shut
down (IFSD) is 0.02 (per 1000 Engine Flight Hour) and a rate of aborted take-off
(ATO) is 0.005 (per 1000 departures). This dispatch availability of nearly 100 %
(99.962 % in 2013) is obtained also via regular maintenance operations but also
via engine health monitoring (see also e.g. [15] for an external evaluation).

This monitoring is based, among other, on data transmitted by satellites3

between aircraft and ground stations. Typical transmitted messages include engine

? This study is supported by a grant from Snecma, Safran Group, one of the world’s
leading manufacturers of aircraft and rocket engines, see http://www.snecma.com/

for details.
3 using the commercial standard Aircraft Communications Addressing and Reporting

System (ACARS, see http://en.wikipedia.org/wiki/ACARS), for instance.
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status overview as well as useful measurements collected as specific instants (e.g.,
during engine start). Flight after flight, measurements sent are analyzed in order
to detect anomalies that are early signs of degradation. Potential anomalies can
be automatically detected by algorithms designed by experts. If an anomaly is
confirmed by a human operator, a maintenance recommendation is sent to the
company operating the engine.

As a consequence, unscheduled inspections of the engine are sometimes
required. These inspections are due to the abnormal measurements. Missing a
detection of early signs of degradation can result in an IFSD, an ATO or a delay
and cancellation (D&C). Despite the rarity of such events, companies need to
avoid them to minimize unexpected expenses and customers’ disturbance. Even
in cases where an unscheduled inspection does not prevent the availability of the
aircraft, it has an attached cost: it is therefore important to avoid as much as
possible useless inspections.

We describe in this paper a general methodology to built complex automated
decision support algorithms in a way that is comprehensible by human operators
who take final decisions. The main idea of our approach is to leverage expert
knowledge in order to build hundreds of simple binary indicators that are all signs
of the possible existence of an early sign of anomaly in health monitoring data.
The most discriminative indicators are selected by a standard forward feature
selection algorithm. Then an automatic classifier is built on those features. While
the classifier decision is taken using a complex decision rule, the interpretability
of the features, their expert based nature and their limited number allows the
human operator to at least partially understand how the decision is made. It is a
requirement to have a trustworthy decision for the operator.

We will first describe the health monitoring context in Section 2. Then, we
will introduce in more details the proposed methodology in Section 3. Section 4
will be dedicated to a simulation study that validates our approach.

2 Context

2.1 Flight data

Engine health monitoring is based in part on flight data acquisition. Engines
are equipped with multiple sensors which measure different physical quantities
such as the high pressure core speed (N2), the Fuel Metering Valve (FMV), the
Exhausted Gas Temperature (EGT), etc. (See Figure 1.) Those measures are
monitored in real time during the flight. For instance the quantities mentioned
before (N2, FMV, etc.) are analyzed, among others, during the engine starting
sequence. This allows one to check the good health of the engine. If potential
anomaly is detected, a diagnostic is made. Based on the diagnostic sent to a
company operator, the airline may have to postpone the flight or cancel it,
depending on the criticality of the fault and the estimated repair time.

The monitoring can also be done flight after flight to detect any change that
can be flagged as early signs of degradations. Flight after flight, measurements
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Fig. 1. Localization of some followed parameters on the Engine

are compressed in order to obtain an overview of engines status that consists
in useful measurements at specific recurrent moments. These useful measure-
ments are then preprocessed to obtain measurements independent from external
environment. These preprocessed data are analyzed by algorithms and human
operators. The methodology introduced in this article is mostly designed for this
kind of monitoring.

2.2 Detecting faults and abnormal behaviors

Traditional engine health monitoring is strongly based on expert knowledge and
field experience (see e.g. [14] for a survey and [5] for a concrete example). Faults
and early signs of faults are identified from suitable measurements associated
to adapted computational transformation of the data. For instance, the differ-
ent measurements (temperatures, vibration, etc.) are influenced by the flight
parameters (e.g. throttle position) and conditions (outside temperature, etc.).
Variations in the measured values can therefore result from variations in the
parameters and conditions rather than being due to abnormal behavior. Thus a
typical computational transformation consists in preprocessing the measurements
in order to remove dependency to the flight context [10].

In practice, the choice of measurements and computational transformations
is generally done based on expert knowledge. For instance in [12], a software is
designed to record expert decision about a time interval on which to monitor the
evolution of such a measurement (or a time instant when such a measurement
should be recorded). Based on the recorded examples, the software calibrates a
pattern recognition model that can automatically reproduce the time segmenta-
tion done by the expert. Once the indicators have been computed, the normal
behavior of the indicators can be learned. The residuals between predictions and
actual indicators can be statistically modeled, e.g. as a Gaussian vector. A score
measurement is obtained from the likelihood of this distribution. The normalized
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vector is a failure score signature that may be described easily by experts to
identify the fault origin, in particular because the original indicators have some
meaning for them. See [4], [5] and [9] for other examples.

However experts are generally specialized on a particular subsystem, thus
each algorithm focuses mainly on a specific subsystem despite the need of a
diagnostic of the whole system.

2.3 Data and detection fusion

The global diagnostic is currently done by the operator who collects all available
results of diagnostic applications. The task of taking a decision based on all
incoming information originating from different subsystems is difficult. A first
difficulty comes from dependencies between subsystems which means that for
instance in some situations, a global early sign of failure could be detected by
discovering discrepancies between seemingly perfectly normal subsystems. In
addition, subsystem algorithms can provide conflicting results or a decision with
a very low confidence level. Furthermore, extreme reliabilities of engines lead to
an exacerbated trade off between false alarm levels and detection levels, leading
in general to a rather high level of false alarms, at least at the operator level.
Finally, the role of the operator is not only to identify a possible early sign of
failure, but also to issue recommendations on the type of preventive maintenance
needed. In other words, the operator needs to identify the possible cause of the
potential failure.

2.4 Objectives

The long term goal of engine health monitoring is to reach automated accurate,
trustworthy and precise maintenance decisions during optimally scheduled shop
visit, but also to drastically reduce operational events such as IFSD and ATO.
However, partly because of the current industrial standard, pure black box
modeling is unacceptable. Indeed, operators are currently trained to understand
expertly designed indicators and to take complex integrated decisions on their
own. In order for a new methodology to be accepted by operators, it has at
least to be of a gray box nature, that is to be (partially) explainable via logical
and/or probabilistic reasoning. Then, our objective is to design a monitoring
methodology that helps the human operator by proposing integrated decisions
based on expertly designed indicators with a “proof of decision”.

3 Architecture of the Decision Process

3.1 Health monitoring data

In order to present the proposed methodology, we first describe the data obtained
via health monitoring and the associated decision problem.

We focus here on ground based long term engine health monitoring. Each
flight produces dozens of timestamped flight events and data. Concatenating those
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data produces a multivariate temporal description of an engine whose dimensions
are heterogeneous. In addition, sampling rates of individual dimensions might be
different, depending on the sensors, the number of critical time points recorded
in a flight for said sensor, etc.

Based on expert knowledge, this complex set of time series is turned into a very
high dimensional indicator vector. The main idea, outlined in the previous section,
is that experts generally know what is the expected behavior of a subsystem
of the engine during each phase of the flight. Then the dissimilarity between
the expected behavior and the observed one can be quantified leading to one
(or several) anomaly scores. Such scores are in turn transformed into binary
indicators where 1 means an anomaly is detected and 0 means no anomaly
detected.

This transformation has two major advantages: it homogenizes the data and
it introduces simple but informative features (each indicator is associated to
a precise interpretation related to expert knowledge). It leads also to a loss of
information as the raw data are in general non recoverable from the indicators.
This is considered here a minor inconvenience as long as the indicators capture all
possible failure modes. This will be partially guaranteed by including numerous
variants of each indicator (as explained below). On a longer term, our approach
has to be coupled with field experience feedback and expert validation of its
coverage.

After the expert guided transformation, the monitoring problem becomes
a rather standard classification problem: based on the binary indicators, the
decision algorithm has to decide whether there is an anomaly in the engine and
if, this is the case, to identify the type of the anomaly (for instance by identifying
the subsystem responsible for the potential problem).

We describe now in more details the construction of the binary indicators.

3.2 Some types of anomalies

Some typical univariate early signs of anomalies are shown on Figures 2, 3 and 4
which display the evolution through time of a numerical value extracted from real
world data. One can identify, with some practice, a variance shift on Figure 2, a
mean shift on Figure 3 and a trend modification (change of slope) on Figure 4. In
the three cases, the change instant is roughly at the center of the time window.

The main assumption used by experts in typical situations is that, when
external sources of change have been accounted for, the residual signal should be
stationary in a statistical sense. That is, observations

Yn = (Y1(θ1), ..., Yn(θn))

are assumed to be generated identically and independently from a fixed parametric
law, with a constant set of parameters (that is, all the θi are identical). Then,
detecting an anomaly amounts to detecting a change in the time series (as
illustrated by the three Figures above). This can be done via numerous well
known statistical tests [1]. In the multivariate cases, similar shifts in the signal
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Fig. 4. Trend modification

can be associated to anomalies. More complex scenarios, involving for instance
time delays, can also be designed by experts.

3.3 From anomaly types to indicators

While experts can generally describe explicitly what type of change they are
expecting for some specific early signs of anomaly, they can seldom provide
detailed parameter settings for statistical tests (or even for the aggregation
technique that could lead to a statistical test after complex calculations). To
maximize coverage it seems natural to include numerous indicators based on
variations of the anomaly detectors compatible with expert knowledge.

Let us consider for illustration purpose that the expert recommends to look
for shifts in mean of a certain quantity as early signs of a specific anomaly. If
the expert believes the quantity to be normally distributed with a fixed variance,
then a natural test would be Student’s t-test. If the expert has no strong priors
on the distribution, a natural test would be the Mann–Whitney U test. Both can
be included to maximize coverage.

Then, in both cases, one has to assess the scale of the shift. Indeed those
tests work by comparing summary statistics of two populations, before and after
a possible change point. To define the populations, the expert has to specify the
length of the time windows to consider before and after the possible change point:
this is the expected scale at which the shift will appear. In most cases, the experts
can only give a rough idea of the scale. Again, maximizing the coverage leads to
the inclusion of several scales compatible with the experts’ recommendations.

Given the choice of the test, of its scale and of a change point, one can
construct a statistic. A possible choice for the indicator could be this value or
the associated p-value. However, we choose to use simpler indicators to ease
their interpretation. Indeed, the raw value of a statistic is generally difficult to
interpret. A p-value is easier to understand because of the uniform scale, but can
still lead to misinterpretation by operators with insufficient statistical training.
We therefore choose to use binary indicators for which the value 1 corresponds
to a rejection of the null hypothesis of the underlying test to a given level (the
null hypothesis is here the case with no mean shift).
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Finally, as pointed out before, aircraft engines are extremely reliable, a fact
that increases the difficulty in balancing sensibility and specificity of anomaly
detectors. In order to alleviate this difficulty, we build high level indicators from
low level tests. For instance, if we monitor the evolution of a quantity on a long
period compared to the expected time scale of anomalies, we can compare the
number of times the null hypothesis of a test has been rejected on the long period
with the number of times it was not rejected, and turn this into a binary indicator
with a majority rule.

To summarize, we construct parametric anomaly scores from expert knowledge,
together with acceptable parameter ranges. By exploring those ranges, we generate
numerous (possible hundreds of) binary indicators. Each indicator can be linked
to an expertly designed score with a specific set of parameters and thus is
supposedly easy to interpret by operators. Notice that while we as focused in
this presentation on temporal data, this framework can be applied to any data
source.

3.4 Decision

The final decision step consists in classifying these high dimensional binary
vectors into at least two classes, i.e., the presence or absence of an anomaly.
A classification into more classes is highly desirable if possible, for instance to
further discriminate between seriousness of anomalies and/or sources (in terms
of subsystems of the engine). In this paper however, we will restrict ourselves to
a binary classification case (with or without anomaly).

As explained before, we aim in the long term at gray box modeling, so while
numerous classification algorithms are available see e.g. [8], we shall focus on
interpretable ones. In this paper, we choose to use Random Forests [2] as they are
very adapted to binary indicators and to high dimensional data. They are also
known to be robust and to provide state-of-the-art classification performances
at a very small computational cost. While they are not as interpretable as their
ancestors CART [3], they provide at least variable importance measures that can
be used to identify the most important indicators.

Finally, while including hundreds of indicators is important to give a broad
coverage of the parameter spaces of the expert scores and thus to maximize the
probability of detecting anomalies, it seems obvious that some redundancy will
appear. Therefore, we have chosen to apply a feature selection technique [6] to
this problem. The reduction of number of features will ease the interpretation
by limiting the quantity of information transmitted to the operators in case of a
detection by the classifier. Among the possible solutions, we choose to use the
Mutual information based technique Minimum Redundancy Maximum Relevance
(mRMR, [11]) which was reported to give excellent results on high dimensional
data.
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4 A simulation study

4.1 Introduction

It is difficult to find real data with early signs of degradations, because their are
scarce and moreover the scheduled maintenance operations tend to remove these
early signs. Experts could study in detail recorded data to find early signs of
anomalies whose origins were fixed during maintenance but it is close to looking
for a needle in a haystack, especially considering the huge amount of data to
analyze. We will therefore rely in this paper on simulated data. Our goal is to
validate the interest of the proposed methodology in order to justify investing in
the production of carefully labelled real world data.

In this section we begin by the description of the simulated data used for
the evaluation of the methodology, and then we will present the performance
obtained on this data.

4.2 Simulated data

The simulated data are generated according to the univariate shift models
described in Section 3.2. We generate two data sets a simple one A and a more
complex one B.

In the first case A, it is assumed that expert based normalisation has been
performed. Therefore when no shift in the data distribution occurs, we observe a
stationary random noise modeled by the standard Gaussian distribution. Using
notations of Section 3.2 the Yi are independent and identically distributed
according to N (µ = 0, σ2 = 1). Signals in set A have a length chosen uniformly
at random between 100 and 200 observations (each signal has a specific length).

Anomalies are modelled after the three examples given in Figures 2, 3 and 4.
We implement therefore three types of shift:

1. a variance shift: in this case, observations are distributed according to N (µ =
0, σ2) with σ2 = 1 before the change point and σ chosen uniformly at random
in [1.01, 5] after the change point (see Figure 5);

2. a mean shift: in this case, observations are distributed according to N (µ, σ2 =
1) with µ = 0 before the change point and µ chosen uniformly at random in
[1.01, 5] after the change point (see Figure 6);

3. a slope shift: in this case , observations are distributed according to N (µ, σ2 =
1) with µ = 0 before the change point and µ increasing linearly from 0 from
the change point with a slope chosen uniformly at random in [0.02, 3] (see
Figure 7).

Assume that the signal contains n observations, then the change point is chosen
uniformly at random between the 2n

10 -th observation and the 8n
10 -th observation.

According to this procedure, we generate a balanced data set with 6000
observations corresponding to 3000 observations with no anomaly, and 1000
observations for each of the three types of anomalies.
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Fig. 7. Trend modification

0 20 40 60 80 100 120
−2

0

2

4

6

8

10

12

14

16

Number of flights
°C

Fig. 8. Data without anomaly but with
suboptimal normalisation represented
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nent

In the second data set, B, a slow deterministic variation is added to randomly
chosen signals with no anomaly: this is a way to simulate a suboptimal normalisa-
tion (see Figure 8 for an example). The slow variation is implemented by adding
to the base noise a sinus with a period of 2

3 of the signal length and amplitude 1.
Signals in set B are shorter, to make the detection more difficult: they are

chosen uniformly at random between 100 and 150 observations. In addition, the
noise is modeled by a χ2 distribution with 4 degrees of freedom. Signals with an
anomaly are generated using the same rationale as for set A. In this case however,
the mean shift is simply implemented by adding a constant to the signal after the
change point. The “variance” shift is in fact a change in the number of degrees
of freedom of the χ2 distribution: after the change point, the number of degrees
is chosen randomly (uniformly) between 8 and 16. The change point is chosen as
in set A.

According to this procedure, we generate a balanced data set with 6000
observations corresponding to 3000 observations with no anomaly, and 1000
observations for each of the three types of anomalies. Among the 3000 anomaly
free signals, 1200 are corrupted by a slow variation.

4.3 Indicators

As explained in Section 3.3, binary indicators are constructed from expert knowl-
edge by varying parameters, including scale and position parameters. In the
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present context, we use sliding windows: for each position of the window, a
classical statistical test is conducted to decide whether a shift in the signal occurs
at the center of the window.

The “expert” designed tests are here:

1. the Mann–Whitney–Wilcoxon U test (non parametric test for shift in mean);
2. the two sample Kolmogorov-Smirnov test (non parametric test for differences

in distributions);
3. the F-test for equality of variance (parametric test based on a Gaussian

hypothesis).

The direct parameters of those tests are the size of the window which defines the
two samples (30, 50, and min(n− 2, 100) where n is the signal length) and the
level of significance of the test (0.005, 0.1 and 0.5). Notice that those tests do
not include a slope shift detection.

Then, more complex binary indicators are generated, as explained in Section
3.3. In a way, this corresponds to build very simple binary classifiers. We use the
following ones:

1. for each underlying test, the derived binary indicator takes the value one
if on a fraction β of m windows, the test detects a change. Parameters are
the test itself with its parameters, the value of β (we considered 0.1, 0.3 and
0.5) and the number of observations in common between two consecutive
windows (the length of the window minus 1, 5 or 10);

2. for each underlying test, the derived binary indicator takes the value one if
on a fraction β of m consecutive windows, the test detects a change (same
parameters);

3. for each underlying test, the derived binary indicator takes the value one
if there are 5 consecutive windows such that the test detects a change on
at least k of these 5 consecutive windows (similar parameters where β is
replaced by k).

In addition, based on expert recommendation, we apply all those indicators both
to the original signal and to a smoothed signal (using a simple moving average
over 5 measurements).

We use more than 50 different configurations for each indicator, leading to a
total number of 810 binary indicators (it should be noted that only a subset of
all possible configurations is included into this indicator vector).

4.4 Reference performances

In this paper, we focus on the simple case of learning to discriminate between a
stationary signal and a signal with a shift. We report therefore the classification
rate (classification accuracy).

For both sets A et B, the learning sample is composed of 1000 signals keeping
the balance between the three classes of shifts. The evaluation is done on the
remaining 5000 signals that have been divided in 10 groups of 500 time series
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each. The rationale of this data splitting in the evaluation phase is to estimate
both the prediction quality of the model but also the variability in this rate as
an indication of the trust we can put on the results. We also use and report the
out-of-bag (OOB) estimate of the performances provided by the Random Forest
(this is a byproduct of the bootstrap procedure used to construct the forest, see
[2]).

When all the 810 indicators are used, the classification performances are very
high on set A and acceptable on set B (see Table 1). The similarity between
the OOB estimate of the performances and the actual performances confirms
that the OOB performances can be trusted as a reliable estimator of the actual
performances. Data set B shows a strong over fitting of the Random Forest,
whereas data set A exhibits a mild one.

Data set Training set accuracy OOB accuracy Test set average accuracy

A 1 0.953 0.957 (0.0089)
B 1 0.828 0.801 (0.032)

Table 1. Classification accuracy of the Random Forest using the 810 binary indicators.
For the test set, we report the average classification accuracy and its standard deviation
between parenthesis.

4.5 Feature selection

On the data set A, the performances are very satisfactory, but the model is close
to a black box in the sense that it uses all the 810 indicators. Random Forests
are generally difficult to interpret, but a reduction in the number of indicators
would allow an operator to study the individual decisions performed by those
indicators in order to have a rough idea on how the global decision could have
been made. On the data B set, the strong over fitting is another argument for
reducing the number of features.

Using the mRMR we ranked the 810 indicators according to a mutual infor-
mation based estimation of their predictive performances. We use then a forward
approach to evaluate how many indicators are needed to achieve acceptable
predictive performances. Notice that in the forward approach, indicators are
added in the order given by mRMR and then never removed. As mRMR takes
into account redundancy between the indicators, this should not be a major issue.
Then for each number of indicators, we learn a Random Forest on the learning
set and evaluate it.

Figure 9 shows the results for data set A. Accuracies are quite high with a
rather low number of indicators, with a constant increase in performances on
the learning set (as expected) and a stabilisation of the real performances (as
evaluated by the test set and the OOB estimation) around roughly 40 indicators.

Figure 10 shows the results for data set B. Excepted the lower performances
and the stronger over fitting, the general behavior is similar to the case of data set
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Fig. 9. Data set A : classification accuracy on learning set (circle) as a function of the
number of indicators. A boxplot gives the classification accuracies on the test subsets,
summarized by its median (black dot inside a white circle). The estimation of those
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A. Those lower performances were expected because data set B has been designed
to be more difficult to analyze, in part because of the inadequacy between the
actual data model (χ2 distribution) and the “expert” based low level tests (in
particular the F test which assumes Gaussian distributions).

In both cases, the feature selection procedure shows that only a small subset
of the original 810 indicators is needed to achieve the best performances reachable
on the data sets. This is very satisfactory as this allows to present to operators a
manageable number of binary decisions together with the aggregated one provided
by the random forest.

4.6 Selected indicators

In order to illustrate further the interest of the proposed methodology, we show
in Table 2 the best ten indicators for data set A. Those indicators lead to quite
good performances with an average test set classification accuracy of 0.944 (OOB
estimation is 0.938).

type of indicator level window length window step

F test 0.005 100 5
confu(2,3) 0.005 50 5
ratef(0.1) 0.005 50 5
KS test 0.005 100 1

conff(3,5) 0.005 100 5
KS test 0.1 100 5
F test 0.005 100 1

KS test 0.005 100 10
lseqf(0.1) 0.1 50 1

F test 0.005 50 10

Table 2. The best ten indicators according to mRMR for data set A. Confu(k,n)
corresponds to a positive Mann–Whitney–Wilcoxon U test on k windows out of n
consecutive ones. Conff(k,n) is the same thing for the F-test. Ratef(α) corresponds to a
positive F-test on α×m windows out of m. Lseqf(α) corresponds to a positive F-test
on α×m consecutive windows out of m. Lsequ(α) is the same for a U test. Here, none
of the indicators are based on a smoothed version of the signal.

Table 3 shows the best ten indicators for data set B. Again, this corresponds
to quite good performances with an average test set classification accuracy of
0.831 (OOB estimation is 0.826). As expected, the F test and indicators based
on it are less interesting for this data set as the noise is no more Gaussian.

In both cases, we see that the feature selection method is able to make a
complex selection in a very large set of binary indicators. This induces indirectly
an automatic tuning of the parameters of the low level tests and of simple
aggregation classifiers. Because of their simplicity and their binary outputs,
indicators are easy to understand by an operator.
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type of indicator level window length smoothed window step

KS test 0.005 100 no 5
lseqf(0.1) 0.1 30 yes 1
confu(4,5) 0.005 30 no 1

U test 0.1 100 no 5
confu(4,5) 0.005 100 no 5
confu(2,3) 0.005 100 no 1
lsequ(0.3) 0.1 50 no 1

F test 0.005 100 yes 10
confu(2,3) 0.005 30 no 5
KS Test 0.005 100 no 10

Table 3. The best ten indicators according to mRMR for data set B. Please refer Table
2 for notations.

5 Conclusion and perspectives

In this paper, we have introduced a diagnostic methodology for engine health
monitoring that leverage expert knowledge and automatic classification. The
main idea is to build from expert knowledge parametric anomaly scores associated
to range of plausible parameters. From those scores, hundreds of binary indicators
are generated in a way that covers the parameter space as well as introduces
simple aggregation based classifiers. This turns the diagnostic problem into
a classification problem with a very high number of binary features. Using a
feature selection technique, one can reduce the number of useful indicators to
a humanly manageable number. This allows a human operator to understand
at least partially how a decision is reached by an automatic classifier. This is
favored by the choice of the indicators which are based on expert knowledge and
on very simple decision rules. A very interesting byproduct of the methodology is
that is can work on very different original data as long as expert decision can be
modelled by a set of parametric anomaly scores. This was illustrated by working
on signals of different lengths.

Using simulated data, we have shown that the methodology is sound: it reaches
good predictive performances even with a limited number of indicators (e.g., 10).
In addition, the selection process behaves as expected, for instance by discarding
statistical tests that are based on hypothesis not fulfilled by the data. However,
we limited ourselves to univariate data and to a binary classification setting
(i.e., abnormal versus normal signal). We need to show that the obtained results
can be extended to multivariate data and to complex classification settings (as
identifying the cause of a possible anomaly is extremely important in practice).

It should also be noted that we relied on Random Forests which are not as
easy to interpret as other classifiers (such as CART). In our future work, we will
compare Random Forest to simpler classifiers. As we are using binary indicators,
some form of majority voting is probably the simplest possible rule but using
such as rule implies to choose very carefully the indicators [13].
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Finally, it is important to notice that the classification accuracy is not the
best way of evaluating the performances of a classifier in the health monitoring
context. Firstly, health monitoring intrinsically involves a strong class imbalance
[7]. Secondly, health monitoring is a cost sensitive area because of the strong
impact on airline profit of an unscheduled maintenance. It is therefore important
to take into account specific asymmetric misclassification cost to get a proper
performance evaluation.
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