
Study of a bias in the offline evaluation of a
recommendation algorithm

Arnaud de Myttenaere1,2, Boris Golden1, Bénédicte Le Grand2, and Fabrice
Rossi2

1 Viadeo
2 Université Paris 1 Panthéon - Sorbonne

Abstract. Recommendation systems have been integrated into the ma-
jority of large online systems to filter and rank information according
to user profiles. It thus influences the way users interact with the sys-
tem and, as a consequence, bias the evaluation of the performance of a
recommendation algorithm computed using historical data (via offline
evaluation). This paper describes this bias and discuss the relevance of
a weighted offline evaluation to reduce this bias for different classes of
recommendation algorithms.

1 Introduction

A recommender system provides a user with a set of possibly ranked items
that are supposed to match the interests of the user at a given moment [7,4,1].
Such systems are ubiquitous in the daily experience of users of online systems.
For instance, they are a crucial part of e-commerce where they help consumers
select movies, books, music, etc. that match their tastes. They also provide an
important source of revenues, e.g. via targeted ad placements where the ads
displayed on a website are chosen according to the user profile as inferred by
her browsing history for instance. Commercial aspects set aside, recommender
systems can be seen as a way to select and sort information in a personalized
way, and as a consequence to adapt a system to a user.

Obviously, recommendation algorithms must be evaluated before and dur-
ing their active use in order to ensure their performance. Live monitoring is
generally achieved using online performance metrics (e.g. click-through rate of
displayed ads) and several recommendation strategies can be compared using
AB testing and online evaluation, whereas offline evaluation is computed using
historical data. However putting an algorithm in production, collect and analyze
data is generally a long process (many days or weeks). Offline evaluation allows
to quickly test several strategies without having to wait for real metrics to be
collected nor impacting the performance of the online system. One of the main
strategy of offline evaluation consists in simulating a recommendation by remov-
ing a confirmation action (click, purchase, etc.) from a user profile and testing
whether the item associated to this action would have been recommended based
on the rest of the profile [9]. Numerous variations of this general scheme are

used ranging from removing several confirmations to taking into account item
ratings.

While this general scheme is completely valid from a statistical point of view,
it ignores various factors that have influenced historical data as the recommen-
dation algorithms previously used. Even if limits of evaluation strategies for
recommendation algorithms have been identified ([3,6,8]), this protocol is still
intensively used in practice.

We study in this paper the general principle of instance weighting proposed
in [2] and show its practical relevance on the simple case of constant recom-
mendation and on two collaborative filtering algorithms. In addition to its good
performances, this method is more realistic than solutions proposed in [3,6] for
which a data collection phase based on random recommendations has to be per-
formed. While this phase allows one to build a bias free evaluation data set, it has
also adverse effects in terms of e.g. public image or business performance when
used on a live system, as random recommendations are obviously less relevant
than personnalized recommendations got by an algorithm.

The rest of the paper is organized as follows. Section 2 describes in details the
setting and the problem. Section 3 introduces the weighting scheme proposed to
reduce the evaluation bias. Section 4 demonstrates the practical relevance of our
method for the particular case of constant algorithms and present experimen-
tal results based on real world data extracted from Viadeo (professional social
network3). Section 5 describes the results of our approach on two collaborative
filtering and discuss the reduction of the bias for elaborated algorithms.

2 Problem formulation

2.1 Notations

We denote U the set of users, I the set of items and Dt the historical data
available at time t. As user are associated to items, Dt can be represented as a
bipartite graph. Let nU = #U and nI = #I be the cardinal of the set of users
and items at time t, and A represents the adjacency matrix of the bipartite graph

given by Dt. Then A =

(
0nI

B
BT 0nU

)
where 0n represents the zero matrix of size

n×n, and B is a nI ×nU binary matrix. B is called biadjacency matrix and for
each (i, u) in I × U , bi,u = 1 if the item i is associated to user u and 0 else. A
representation of the data is presented on figure 1

A recommendation algorithm is a function g from U × Dt to some set built
from I. We will denote gt(u) = g(u,Dt) the recommendation computed by the
algorithm g at instant t for user u. We assume given a quality function l from
the product of the result space of g and I to R+ that measures to what extent
an item i is correctly recommended by g at time t via l(gt(u), i). We denote Iu
the items associated to a user u, and Ui the set of users which are associated to
the item i.

3 See http://corporate.viadeo.com/en/ for more information about Viadeo.

Fig. 1. Representation of the data as a bipartite graph and notations

2.2 The classical offline evaluation procedure

Offline evaluation is based on the possibility of “removing” any item i from
a user profile, which can be computed using stochastic or exhaustive sampling.
Although exhaustive sampling gives more robust results, the stochastic approach
is often prefered (especially for large systems) as it is faster and often precise
enough to compare several algorithms. The user profile got after removing item
i from user u is denoted u−i and gt(u−i) is the recommendation obtained at
instant t when i has been removed from the profile of user u.

Finally, offline evaluation follows a general scheme in which a user is chosen
according to some probability on users P (u), which might reflect the business
importance of the users. Given a user, an item i is chosen among the items asso-
ciated to its profile, according to some conditional probability on items P (i|u).
When an item i is not associated to a user u (that is i 6∈ Iu), P (i|u) = 0. A
very common choice for P (u) is the uniform probability on U and it is also very
common to use a uniform probability for P (i|u) (other strategy could favor items
recently associated to a profile). As the system evolves over the time, P (u) and
P (i) depends on t.

The two distributions P (u) and P (i|u) lead to a joint distribution P (u, i) =
P (i|u)P (u) on U × I. In other words, the classical offline evaluation consists in
selecting a random node in user’s part of the bipartite graph, and then a random
node among the ones associated to the selected user. Many other graph sampling
methods could be used (random edge selection, . . .)

2.3 Origin of the bias in offline evaluation

As presented in [5,2] the classical offline evaluation procedure ignores various
factors that have influenced historical data as the recommendation algorithms
previously used, promotional offers on some specific products, etc. Assume for
instance that several recommendation algorithms are evaluated at time t0 based
on historical data of the user database until t0. Then the best algorithm is
selected according to a quality metric associated to the offline procedure and

put in production. It starts recommending items to the users. Provided the
algorithm is good enough, it generates some confirmation actions. In other words,
the recommendation campaigns introduce many new vertices in the bipartite
graph representing the data (see figure 1). Those actions can be attributed to a
good user modeling but also to luck and to a natural attraction of some users
to new things. This is especially true when the cost of confirming/accepting a
recommendation is low. In the end, the state of the system at time t1 > t0 has
been influenced by the recommendation algorithm in production.

Then if one wants to monitor the performance of this algorithm at time t1,
the offline procedure tends to overestimate the quality of the algorithm because
confirmation actions are now frequently triggered by the recommendations, lead-
ing to a very high predictability of the corresponding items.

Finally, one can decompose the evolution of a recommendation system in
two cycles represented in figure 2. On one hand there is a virtuous circle (also
called lean circle) in three steps: first an algorithm is put in production and the
data collection process starts, then the collected data are analyzed to measure
the performance of the algorithm, and finally data are also used to select the
best algorithm among several new ones by offline evaluation. On the other hand
we also observe a vicious circle as the algorithm in production influences the
users behaviors, which introduces a bias in historical data used for the offline
evaluation procedure.

Fig. 2. The evolution of the recommendation system

This bias in offline evaluation with online systems can also be caused by
other events such as a promotional offer on some specific products between a
first offline evaluation and a second one. The main effect of this bias is to favor
algorithms that tend to recommend items that have been favored between t0 and
t1 and thus to favor a kind of “winner take all” situation in which the algorithm
considered as the best at t0 will probably remain the best one afterwards, even
if an unbiased procedure could demote it. Indeed the score of an algorithm
in production, given by the classical offline evaluation, tends to increase over
time. More generally, the classical offline evaluation tends to overestimate (resp.
underestimate) the unbiased score of an algorithm similar (resp. orthogonal) to
the one in production.

More formally, the classic offline evaluation procedure consists in calculat-
ing the quality of the recommendation algorithm g at instant t as Lt(g) =
E(l(gt(u−i), i)) where the expectation is taken with respect to the joint distri-
bution:

Lt(g) =
∑

(u,i)∈U×I

Pt(i|u)Pt(u)l(gt(u−i), i). (1)

Then if two algorithms are evaluated at two different moments, their qualities
are not directly comparable. Although as in an online system P (i|u) evolves over
time4 once a recommendation algorithm is chosen based on a given state of the
system, it starts influencing the state of the system when put in production,
inducing an increasing distance between its evaluation environment (i.e. the
initial state of the system) and the evolving state of the system. This influence
is responsible for a bias on offline evaluation as it relies on historical data.

A naive solution to correct this bias would be to compare algorithms only
with respect to the original database at t0, but this approach is not optimal as
it would discard natural evolutions of user profiles.

2.4 Impact of recommendation campaigns on real data

We illustrate the evolution of the Pt(i) probabilities in an online system with a
functionality provided by the Viadeo platform: each user can claim to have some
skills that are displayed on his/her profile (examples of skills include project
management, marketing, etc.). In order to obtain more complete profiles, skills
are recommended to the users via a recommendation algorithm, a practice that
has obviously consequences on the probabilities Pt(i), as illustrated on Figure 3.

The skill functionality has been implemented at time t = 0. After 300 days,
some of the Pt(i) are roughly static. Probabilities of other items still evolve over
time under various influences, but the major sources of evolution are recom-
mendation campaigns. Indeed, at times t = 330 and t = 430, recommendation
campaigns have been conducted: users have received personalized recommenda-
tion of skills to add to their profiles. The figure shows strong modifications of the
Pt(i) quickly after each campaign. In particular, the probabilities of the items
which have been recommended increase significantly; this is the case for the
green, yellow and turquoise curves at t = 330. On the other hand, the probabil-
ities of the items which have not been recommended decrease at the same time.
The probabilities tend to become stable again until the same phenomenon can be
observed right after the second recommendation campaign at t = 430: the curves
corresponding to the items that have been recommended again keep increasing.
The purple curve represents the probability selection of an item which has been
recommended only during the second recommendation campaign. Section 4.2
demonstrates the effects of this evolution on the evaluation of recommendation
algorithms.

4 even if P (u) could also evolve over time we do not consider the effects of such
evolution in the present article.

300 350 400 450

0.
5

1.
0

1.
5

2.
0

2.
5

t

%
 d

'a
ct

io
ns

 d
ue

s
au

x
re

co
m

m
an

da
tio

ns

●

●
●

●

●

●

●

●

●
●

● ●
● ● ●

● ● ● ● ● ●

300 350 400 450

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
01

2
0.

01
4

0.
01

6
0.

01
8

t

se
le

ct
io

n
pr

ob
ab

ili
ty

Fig. 3. Impact of recommendation campaigns on the item probabilities: the left figure
displays the percentage of observations induced by the recommendations, while the
right figure shows examples of the evolution of P (i) through time.

3 Reducing the evaluation bias

3.1 A weighted offline evaluation method to reduce the bias

A simple transformation of equation (1) shows that for a constant algorithm g
(i.e. if recommendations are the same for every users): Lt(g) =

∑
i∈I Pt(i)l(gt, i).

As a consequence, a way to guarantee a stationary evaluation framework for a
constant algorithm is to have constant values for the marginal distribution of
the items, Pt(i).

A natural solution would be to record those probabilities at t0 and use them
as the probability to select an item in offline evaluation at t1 > t0. However, as
the selection of users and items leads to a joint distribution, this would require
to revert the way offline evaluation is done: first select an item, then select a
user having this item with a certain probability πt(u|i) leading to a different
probability of users selection. Finally this process lead to a similar problem on
users, and as in most of systems #U > #I, it is more efficient to keep the
classical evaluation protocol (see section 3.3 for more details).

Moreover, we will see that the recalibration of every items is not necessary
to reduce the main part of the bias. Indeed in practice most of the time a few
items concentrate most of the recommendations (very popular items, discount
on selected products, ...). Thus one can reduce the major part of the bias by
optimizing the weight of the p items such that the deviation given by |Pt0(i)−
Pt1(i)| have the highest values. In practice the choice of p is done according to
practical (time) or business constraints.

Thus the weighting strategy that we described in [2] consists in keeping the
classical choice for Pt(u) and weighting Pt(i|u) by departing from the classical
values for Pt(i|u) (such as using a uniform probability) in order to mimic static
values for Pt0(i) by :

Pt(i|u, ω) =
ωiPt(i|u)∑

j∈It ωjPt(j|u)
.

These weighted conditional probabilities lead to weighted item probabilities
defined by:

Pt(i|ω) =
∑
u∈U

Pt(i|u, ω)Pt(u).

Then we suggest to minimize the distance between Pt1(i|ω) and Pt0(i) by
optimizing the Kullback-Leibler divergence, defined by :

D(ω) =
∑
i∈It0

Pt0(i) log
Pt0(i)

Pt1(i|ω)

where It0 represents the set of items present at t0. The asymmetric nature of
this distance is useful in our context to consider time t0 as a reference. Moreover
this asymmetry reduces the influence of rare items at time t0 (as they were not
very important in the calculation of Lt0(g)).

3.2 Gradient calculation

We optimize D(ω) with a gradient based algorithm and hence ∇D is needed.
Let i and k be two distinct items i 6= k, then

∂P (i|u, ω)

∂ωk
= − ωiP (i|u)P (k|u)(∑

j∈I ωjP (j|u)
)2

= −P (i|u, ω)
P (k|u, ω)

ωk
.

We have also

∂P (i|u, ω)

∂ωi
=
P (i|u, ω)

ωi
(1− P (i|u, ω)) ,

and therefore for all k:

∂P (i|u, ω)

∂ωk
=
P (k|u, ω)

ωk
(δik − P (i|u, ω)) .

We have implicitly assumed that the evaluation is based on independent
draws, and therefore:

P (i, k|ω) =
∑
u

P (i|u, ω)P (k|u, ω)P (u).

Then
∂D(ω)

∂ωk
=
∑
i

Pt0(i)

ωkPt1(i|ω)
(Pt1(i, k|ω)− δikPt1(k|ω)) .

And in the particular case of uniform selection, i.e. if P (u) ∼ U(U) and
P (i|u) ∼ U(Iu), then:

P (u) =
1

#U

P (i|u) =
1

#Iu
· 1i∈Iu

P (i|ω) =
1

#U
·
∑
u∈Ui

ωi∑
j∈Iu ωj

P (i, k|ω) =
1

#U
·
∑

u∈Ui∩Uk

ωiωk

(
∑

j∈Iu ωj)2

3.3 Complexity

The value of p coordinates of the gradient can be computed with a O(p×nU×I)
complexity, where nU×I is the number of couples (u, i) wih u ∈ U and i ∈ Iu
(nU×I =

∑
i∈I #Ui).

Indeed let us assume we have computed the beadjacency sparse matrix B of
the bipartite graph twice: once indexed by raws, and once indexed by columns.
Such matrix can be got in O(nU×I) and give access to every element in O(1).
Then, in the particular case of uniform sampling it is possible to compute P (i|ω)
for all i ∈ I in O(nU×I).

Then if
∑

u∈Ui

ωi

(
∑

j∈Iu ωj)2
P (u) has been computed and saved for all i (com-

plexity in O(nu×I)), we have P (i, k|ω) in O(#Ui) for all k.
So, after having computed and saved the values of Pt0(i) and Pt1(i) for all

i, the quantity ∂D(ω)
∂ωk

is a sum of #I elements computed in O(#Ui) and every

coordinate of the gradient can be computed in O(
∑

i∈I Ui) = O(nU×I)

4 Illustration on constant algorithms

4.1 Data and metrics

We consider real world data extracted from Viadeo, where skills are attached to
user’s profile. The objective of the recommendation systems consists in suggest-
ing new skills to users. The dataset contains 18294 users and 180 items (skills),
leading to 117376 couples (u, i).

Both probabilities Pt(u) and Pt(i|u) are uniform, and the quality function l
is given by l(gt(u−i), i) = 1i∈gt(u−i) where gt(u−i) is a set of 5 items. The quality
of a recommendation algorithm, Lt(g), is estimated via stochastic sampling in
order to simulate what could be done on a larger data set than the one used
for this illustration. We selected repeatedly 20 000 couples (user, item) (first we
select a user u uniformly, then an item according to Pt(i|u, ω)).

The recommendation setting is the one described in Section 2.4: users can
attach skills to their profile. Skills are recommended to the users in order to help

them to build more accurate and complete profiles. In this context, items are
skills. The data set used for the analysis contains 34 448 users and 35 741 items.
The average number of items per user is 5.33. The distribution of items per user
follows roughly a power law, as shown on Figure 4.

●

● ● ●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

●●
●

●
●
●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●●● ●●●●●●

1 2 5 10 20 50

1
5

10
50

10
0

50
0

50
00

N items

N
 m

em
be

rs

Fig. 4. Distribution of items per user

4.2 Impact of previous recommendations campaigns

As described in section 2.2, the offline evaluation of a recommendation algorithm
can by computed using stochastic or exhaustive approach. Here we will describe
the impact of previous recommendation campaigns on the offline evaluation score
and compute the score of offline evaluation by stochastic sampling on the sample
data extracted from Viadeo, what permits to mimic the results which could be
computed on bigger datasets. We first demonstrate the effect of the bias on two
constant recommendation algorithms. The first one g1 is modeled after the actual
recommendation algorithm used by Viadeo in the following sense: it recommends
the five most recommended items from t = 320 to t = 480. The second algorithm
g2 takes the opposite approach by recommending the five most frequent items
at time t = 300 among the items that were never recommended from t = 320 to
t = 480. In a sense, g1 agrees with Viadeo’s recommendation algorithm, while
g2 disagrees.

For each couple of selected user and item (u, i), the score given by the offline
evaluation procedure of an algorithm g is given by l(g(u, i)). For the experiments
we have selected 30 000 couples (u, i), where u is a user chosen uniformly on U ,
and i a skill chosen uniformly on Iu (the set of skills associated to u). We will
consider the quality function given by l(g(u, i)) = 1i∈g(u,i), where g(u, i) repre-
sents the top fives items suggested by the algorithm g after selecting the couple
(u, i). Figure 5 shows the evolution of Lt(g

1) and Lt(g
2) over time. As both

algorithms are constant, it would be reasonable to expect minimal variations of

their offline evaluation scores. However in practice the estimated quality of g1

increases by more than 25 %, while the relative decrease of g2 reaches 33 %.

300 350 400 450

0.
05

0.
06

0.
07

0.
08

0.
09

t

sc
or

e

300 350 400 450

0.
13

0.
15

0.
17

0.
19

t

sc
or

e
Fig. 5. Evolution of Lt(g

1) (left) and Lt(g
2) (right) though time.

As l is a binary function, it can be considered as a Bernoulli random variable
of parameter p, where p corresponds to the expected probability that l(g(u, i)) =
1. Then, after nB simulations we have nB observations

(
l(g(u(k), i(k)))

)
k=1,...,nB

(where u(k) and i(k) corresponds to the user and item selected during the kth

step of the offline evaluation procedure) and the maximum likelihood estimator
of p is given by

p̂ =

nB∑
k=1

l(g(u(k), i(k)))

nB

Thus p̂ follows a binomial law which can be approximated by a gaussian
random variable for nB big enough, and a 95% confident interval for p̂ is classicaly
given by

IC95%(p̂) =

[
p̂− 1.96

√
p̂(1− p̂)
nB

; p̂+ 1.96

√
p̂(1− p̂)
nB

]

4.3 Reducing the bias

We apply the strategy described in Section 3 to compute optimal weights at dif-
ferent instants and for several values of the p parameter. Results are summarized
in Figure 6.

The figures show clearly the stabilizing effects of the weighting strategy on
the scores of both algorithms. In the case of algorithm g1, the stabilisation is
quite satisfactory with only p = 20 active weights. This is expected because
g1 agrees with Viadeo’s recommendation algorithm and therefore recommends

● ●

●

● ●

●

●

300 350 400 450

0.
03

8
0.

04
0

0.
04

2
0.

04
4

0.
04

6
0.

04
8

0.
05

0
0.

05
2

t

sc
or

e

● 1
5
10
20
100
300
600
1000

●

●

●

● ●

●

●

300 350 400 450

0.
00

40
0.

00
45

0.
00

50
0.

00
55

0.
00

60

t

sc
or

e

● 1
5
10
20
100
300
600
1000

Fig. 6. Evolution of Lt(g
1) (left) and Lt(g

2) (right) though time.

items for which probabilities Pt(i) change a lot over time. Those probabilities
are exactly the ones that are corrected by the weighting method.

The case of algorithm g2 is less favorable, as no stabilisation occurs with
p ≤ 20. This can be explained by the relative stability over time of the prob-
abilities of the items recommended by g2 (indeed, those items are not recom-
mended during the period under study). Then the perceived reduction in quality
over time is a consequence of increased probabilities associated to other items.
Because those items are never recommended by g2, they correspond to direct
recommendation failures. In order to stabilize g2 evaluation, we need to take
into account weaker modifications of probabilities, which can only be done by
increasing p, as represented on figure 5.

Thus, the weighted offfline evaluation procedure reduces the bias for the very
simple class of constant algorithms. In the next part we discuss the relevance
of this procedure to reduce the offline evaluation bias on collaborative filtering
algorithms.

5 Experimentations on a collaborative filtering

5.1 Collaborative filtering algorithms

Collaborative filtering is a very popular class a recommendation algorithms
which consists in computing recommendation to a user u using the information
available on other users, especially the ones similar to u. For example, a classical
collaborative filtering consists in recommending the most frequent items among
the ones associated to users having items in common with the user u.

More formally, let Bt
u be the vector of items of user u at time t (Bt

u ∈
{0, 1}#I). Then Bu(t) is a sparse vector as most of users are associated to only
a few items, and corresponds to the uth column of the biadjacency matrix rep-
resenting Dt. The objective of collaborative filtering algorithms is to estimate

Bt′

u for t′ > t using the information known on other users. In this section we will
discuss the efficiency of our method to reduce the offline evaluation bias on two
different collaborative filtering algorithms:

a)B̂t′

u =
∑

v∈U\{u}

〈Bt
u, B

t
v〉√

‖Bt
u‖ · ‖Bt

v‖
·Bt

v b)B̂t′

u (i) = max
j∈Iu(t)

#(Ui ∩ Uj)

#Uj

The equation a) is known as collaborative filtering with cosine similarity,
whereas the equation b) computes the proportion of users associated to item i
among the one associated to items possessed by u. Then we will note naive CF
(Collaborative Filtering) the algorithm b).

Finally, the recommendation strategy consists in recommending the k items
having the highest values in B̂t′

u .

5.2 Results

We apply the method described in Section 3 to compute optimal weights at
different instants and for several values of the parameter p. The collaborative
filtering algorithms are the one presented in section 5.1. Results are summarized
in figure 7.

300 350 400 450

0.
26

0.
28

0.
30

0.
32

0.
34

time

sc
or

e

p = 0
p = 10
p = 25
p = 50
p = 100
p = 150

(a) cosine similarity

300 350 400 450

0.
41

0.
43

0.
45

time

sc
or

e

p = 0
p = 10
p = 25
p = 50
p = 100
p = 150

(b) naive CF

Fig. 7. Results on the collaborative filtering with cosine similarity and naive CF, re-
spectively defined by equation a) and b) in section 5.1, for several values of p (the
number of weights optimized).

Once again the analysis is conducted on a 201 days period, from day 300 to
day 500, where day 0 corresponds to the launch date of the skill feature and it
is important to notice that two recommendation campaigns were conducted by
Viadeo during this period at t = 330 and t = 430 respectively. As we can see on
figure 7, the scores strongly decrease after the first recommendation campaign
(t = 330). Thus those campaigns have strongly biased the collected data, leading
to a significant bias in the offline evaluation.

The figure 7 shows the influence of the value of p: the higher is p the more
weights are optimized and the more the bias is corrected. However, the effi-
ciency of the recalibration depends on the algorithms. The results show that
the weighting protocol permits to reduce the impact of recommendation cam-
paigns on offline evaluation results as intended. However it does not lead to the
stabilization of the score of collaborative filtering algorithms (while it lead to
constant scores for constant algorithms). This can be explained by the nature of
collaborative filtering: we can’t expect the score to be constant for such an algo-
rithm as it depends on the correlation between users, which have been modified
by the recommendation campaigns. In others words the bias can be decompose
in two parts: one depending on the probability selection of each item, and the
second one depending on the structure of the data (the vertices in the bipartite
graph representing the data). Indeed the structure of the graph Dt has been
modified because since recommendation campaigns have increased the density
of the graph by adding new vertices from targeted users to recommended items.

6 Conclusion

Various factors influence historical data and bias the score obtained by classical
offline evaluation strategy. Indeed, as recommendations influence users, a rec-
ommendation algorithm in production tends to be favored by offline evaluation.

We have presented a new application of the item weighting strategy inspired
by techniques designed for tackling the covariate shift problem. Whereas our
previous results presented the efficiency of this method for constant algorithms,
we have shown that this method also reduces the bias of more elaborate algo-
rithms. However experiments on collaborative filtering shows that the bias can
be decomposed in two part since previous recommendation campaigns change
the probabilty selection of each item, but also modify the structure of the data.

Experiments shows that our is efficient to reduce the first bias. Future works
will invesgate the correction of the structural bias.

References

1. G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. Knowledge and
Data Engineering, IEEE Transactions on, 17(6):734–749, 2005.

2. A. De Myttenaere, B. Golden, B. Le Grand, and F. Rossi. Reducing offline evalua-
tion bias in recommendation systems. In B. Frénay, M. Verleysen, and P. Dupont,
editors, Proceedings of 23rd annual Belgian-Dutch Conference on Machine Learning
(Benelearn 2014), pages 55–62, Brussels (Belgium), 6 2014.

3. J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating collabo-
rative filtering recommender systems. ACM Transactions on Information Systems,
22(1):5–53, January 2004.

4. P. B. Kantor, L. Rokach, F. Ricci, and B. Shapira, editors. Recommender systems
handbook. Springer, 2011.

5. L. Li, W. Chu, J. Langford, and X. Wang. Unbiased offline evaluation of contextual-
bandit-based news article recommendation algorithms. In Proceedings of the fourth
ACM international conference on Web search and data mining, pages 297–306.
ACM, 2011.

6. S. M. McNee, J. Riedl, and J. A. Konstan. Being accurate is not enough: how
accuracy metrics have hurt recommender systems. In CHI’06 extended abstracts on
Human factors in computing systems, pages 1097–1101. ACM, 2006.

7. D. H. Park, H. K. Kim, I. Y. Choi, and J. K. Kim. A literature review and
classification of recommender systems research. Expert Systems with Applications,
39(11):10059–10072, 2012.

8. A. Said, B. Fields, B. J. Jain, and S. Albayrak. User-centric evaluation of a k-furthest
neighbor collaborative filtering recommender algorithm. In Proceedings of the 2013
conference on Computer supported cooperative work, pages 1399–1408. ACM, 2013.

9. G. Shani and A. Gunawardana. Evaluating recommendation systems. In P. B. Kan-
tor, L. Rokach, F. Ricci, and B. Shapira, editors, Recommender systems handbook,
pages 257–297. Springer, 2011.

