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Abstract For the last few years, the amount of data has significantly increased in the
companies. It is the reason why data analysis methods have to evolve to meet new
demands. In this article, we introduce a practical analysis of a large database from a
telecommunication operator. The problem is to segment a territory and characterize
the retrieved areas owing to their inhabitant behavior in terms of mobile telephony.
We have call detail records collected during five months in France. We propose a two
stages analysis. The first one aims at grouping source antennas which originating calls
are similarly distributed on target antennas and conversely for target antenna w.r.t.
source antenna. A geographic projection of the data is used to display the results on a
map of France. The second stage discretizes the time into periods between which we
note changes in distributions of calls emerging from the clusters of source antennas.
This enables an analysis of temporal changes of inhabitants behavior in every area of
the country.
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1 Introduction

The telecommunication operators interest in investigating the behavior of the cus-
tomers using the call detail records has continuously grown in recent years. Several
studies has been performed, some of them focusing on clustering antennas using
the call flows [Blondel et al., 2010], [Guigourès and Boullé, 2011]. They high-
light a strong correlation between the retrieved clusters and the covered territories
characteristics like the spoken languages, the metropolitan areas in country-wide
studies ; or the socio-economic profile of the neighborhoods (e.g. student, upper-
or working-class) in local focuses. Such analysis are interesting for the telecommu-
nication operators, particularly in developing countries where the needs in access
to telecom services are becoming increasingly important while their usage are still
unknown.

To go even further in the study of call detail records, clustering antennas from
which the traffic similarly occurs over a studied time period could be investigated. A
temporal analysis of the calls gives the means for understanding where excesses and
lacks of traffic are located over the territory in function of the time period. Such a
study provides information as well on the structure of the day, the week, the month
or the year, as on the areas where the temporal phenomena are observed.

One major issue in the analysis of call detail records is the large amount of data.
The data set we investigate in this article is a daily record of inter-antennas calls
made in France from May 13, 2007 to October 13, 2007. The number of antennas
throughout the French territory is 17,895 between which 1.12 billions calls have
transited. The calls originating from (resp. terminating) outside the french mobile
network are not included in the data. In Section 2, we introduce methods dealing
with this kind of analysis and justify the choice of them for our problem. Then in
Section 3, results on the spatial correlations are investigated while in Section 4 the
temporal correlations are explored. Finally, the last section provides an assessment
of the analysis results.

2 Antenna Clustering based on Mobile Calls

The first concern is the data representation. Indeed, a call is described by the source
antenna, the destination antenna and the day it has been made. In a previous work
[Blondel et al., 2010], an undirected graph is used to model a network of antennas
linked by edges weighted by the calls frequency. In this paper, we choose to keep the
matrix representation to exploit the natural direction of the calls.
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2.1 Related Works

In [Blondel et al., 2010], the authors build a partition of the graph by modularity
maximization. This criterion [Newman, 2006] measures the quality of the segmenta-
tion of the graph into cliques (or community in the graph-theory terminology) that
are groups of strongly connected vertices. The clusters of antennas obtained using
this technique can be efficiently retrieved by employing algorithms that exploit the
sparsity of the network [Blondel et al., 2008] and thus modularity maximization is
suitable for problems with a large amount of data, like clustering antennas. Numerous
other graph clustering approaches have been proposed, see for instance [Schaeffer,
2007, Fortunato, 2010] for surveys. However, most of those approaches are based
on some modularity or clustering assumptions: in terms of our context, those as-
sumptions mean that the calls between antennas mostly occur within the groups of
antennas. If it is the case, using e.g. modularity maximization or other fast graph
clustering technique is very effective. If this is not the case, some patterns might
be missed and the actual structure of the graph not retrieved. In our problem, we
have no a priori knowledge that would justify a restriction to modular patterns. In
fact we have even reasons to believe that non symmetric and non modular patterns
might be present in the data: for instance, some antennas might be associated to
specific locations (universities, popular touristic destinations) that lead to a significant
amount of calls outside the area, while other antennas might exhibit more localized
call destinations. We thus must find an alternative approach that enables the discovery
of any kinds of patterns.

The concept of blockmodeling originates in the pioneering works on quantitative
graph structure analysis conducted by sociologists in the 1950s in the context of social
network analysis [Nadel, 1957]. To track the underlying structure of the network, a
matrix representation of a graph is usually exploited, generally its adjacency matrix.
Rows and columns represent the source and destination antennas, and the values of
the matrix indicate the number of calls made between the antennas. Early sociological
approaches suggested to rearrange the rows and the columns in order to partition the
matrix in homogeneous blocks, a technique called blockmodeling. Once the blocks
are extracted, a partition of the antennas of both source and destination subsets can be
deduced. This type of simultaneous grouping is named co-clustering. Notice that the
only way to produce non symmetric patterns (between source and target antennas) is
to allow for two different clusterings (one for the source antennas and one for the
destination antennas), thus leading to a co-clustering. Using this technique, we are
able to track more sophisticated patterns than approaches based on a single clustering
whose quality is judged by a density based measure such as the modularity. In fact
such approaches can be considered as looking for a diagonal blockmodel in which
off diagonal terms should be zeros.

Numerous methods have been proposed to extract satisfactory clusters of ver-
tices. Some of them [Doreian et al., 2004] are based on the optimization of criteria
that favor partitions with homogeneous blocks, especially with pure zero-blocks as
recommended in [White et al., 1976]. More recent deterministic approaches have
focused on optimizing criteria that quantify how well the co-clustering summarizes
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the input data [Reichardt and White, 2007] (see e.g. [Wasserman and Faust, 1994]
for details on such criteria). Other approaches include stochastic blockmodeling.
In those generative models, a latent cluster indicator variable is associated to each
vertex. Conditionally to the latent variables, the probability of observing an edge
between two actors follows some standard distribution (a Bernoulli distribution in the
simplest case) whose parameters only depend on the pair of clusters designated by
the latent variables. In early approaches, the number of clusters is chosen by the user
[Nowicki and Snijders, 2001]. More recent techniques automatically determine the
number of clusters using a Dirichlet Process [Kemp and Tenenbaum, 2006]. Finally,
some recent approaches consider non-boolean latent variables: cluster assignments
are not strong and a vertex has an affiliation degree to each cluster [Airoldi et al.,
2008].

In addition to the diversity of structures that can be inferred from the network,
co-clustering approaches are also able to deal with continuous variables [Nadif
and Govaert, 2010],[Boullé, 2012]. Blocks are extracted from the data that yields a
discretization of the continuous variables. For a further analysis, we are able to track
temporal patterns: the source antennas are still the rows in the data matrix while the
columns now model the time.

In the case of an analysis of a call detail record, the technique we employ must
have some properties:

• Scalability: with nearly 18,000 antennas and 1.12 billion calls, we cannot afford
to use methods with a too high algorithmic complexity, that is often an issue with
co-clustering/blockmodeling techniques.

• Genericity: the processed data are either nominal or continuous. This point is
really important in our study because we focus on nominal attributes (the antennas
label) and continuous (the time).

• User-parametrization free: data are complex and their underlying structure is a
priori unknown, giving parametrization of the co-clustering scheme (e.g number
of clusters, etc.) might be an issue for the user with such a data set.

• Reliability : the chosen approach must not yield spurious patterns, be resilient to
noise and avoid overfitting.

• Fineness and interpretability : the approach must exploit all the relevant data
information in order to extract fine patterns. In addition, exploratory analysis tools
must allow users to work with the results effectively.

Given the large amount of data, the majority of the co-clustering approaches is
not applicable to the problem of antennas clustering. Sampling the data set might be
possible. However with 17,895 antennas and 1.12 billion calls, the average frequency
of calls between two antennas is approximately 3.5 and sampling the data would lead
to a significant loss of information. Among the co-clustering approaches, we decide
to use the MODL approach [Boullé, 2011] 1 .

1 Software available on www.khiops.com
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2.2 Applying the MODL Approach

Before detailing the chosen approach, the problem must be formalized. The data set
under study consists of calls which are the statistical units. Each call is described
by three variables: the source antenna of the call, an element of VS (see Table 1);
the destination antenna of the calls, an element of VD; and the time at which the call
started a real number (the observed call times form the set VT ⊂R). Notice that while
physical antennas are handling both incoming and outgoing calls, those two roles are
separated in our model: VS and VD are completely distinct sets. This allows to build a
directed model of the phone calls and therefore limits information loss.

The Table 1 lists the data features and the modelization parameters we want to
infer. The analysis we perform can be divided into two steps. In the first one, we focus
on the correlations between source and destination antennas while in the second, we
concentrate on studying the time dimension of the calls. That is why, we introduce
two distinct models: one is spatial MS and the other one is temporal MT . In both
case, the MODL approach infers the parameters of the model MS (resp. MT ) from
the data D .

In a first step, the model is based only on the antenna variables (source and
destination). The co-clustering approach is applied to the call detail record to extract
clusters of source antennas (in rows of the data matrix) and destination antennas (in
columns of the data matrix). The objective is to group source antennas for which the
calls are similarly distributed over the destination antennas and conversely for target
antenna w.r.t. source antenna.

In a second step, the model is based again on two variables: the source antenna and
the starting time of the call. As the time variable is continuous, the clustering has been
constrained to respect the time ordering. This corresponds to a time quantization. The
aim of the co-clustering in this case is to simultaneously group antennas and discretize
the studied time period into segments during which the network is stationary. A higher
order co-clustering (e.g. a tri-clustering approach like in [Guigourès et al., 2012])
could be applied in order to keep the three original variables. However, as will be
become clear in Section 3, the source/destination coupling is very strong in this data
set, up to a point where it hides the temporal patterns. By removing the destination
variable, one can hope finding temporal structures.

MODL optimizes a criterion to find the co-clustering structure. The detailed
formulation of the criterion as well as the optimization algorithms and the asymptotic
properties are detailed in [Boullé, 2011] for a co-clustering with nominal variables
and in [Boullé, 2012] for a co-clustering with heterogeneous variables, i.e nominal
and continuous. The criterion is formulated following a MAP (Maximum a Posteriori)
approach and is made up of a prior probability on the parameters of the co-clustering
model and of the likelihood:

• The prior : denoted P(MS) (resp. P(MT )), it penalizes the model by specifying
the a priori distribution of its parameters. It is hierarchically and uniformly built
in order to be the most weakly informative [Jaynes, 2003].
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D : Data MS : spatial co-clustering
model

MT : temporal co-clustering
model

VS: source antennas V M
S : partition of VS into clusters

of source antennas
V M

S : partition of VS into clusters
of source antennas

VD: destination antennas V M
D : partition of VD into clusters

of destination antennas

VT : time V M
T : discretization of VT into

time segments

kS: number of clusters V M
S kS: number of clusters of V M

S

kD: number of clusters of V M
D

kT : number of time segments of
V M

T

k = kSkD: number of biclusters k = kSkT : number of biclusters

nS: number of source antennas nM
i. : number of source antennas

in the ith cluster from the parti-
tion V M

S

nM
i. : number of source antennas

in the ith cluster from the parti-
tion V M

S

nC: number of destination anten-
nas

nM
. j : number of destination an-

tennas in the jth cluster from the
partition V M

D

m: total number of calls

mi..: number of calls originating
from the source antenna vi

mM
i.. : number of calls originating

from the ith cluster from the par-
tition V M

S

mM
i.. : number of calls originating

from the ith cluster from the par-
tition V M

S

m. j.: number of calls terminat-
ing in the destination antenna v j

mM
. j.: number of calls terminat-

ing in the je cluster from the
partition V M

D

mM
..t : number of calls made dur-

ing the tth time segments

mi jt : number of calls made from
the antenna vi to the antenna v j
at time vt

mM
i j.: number of calls made from

the ith cluster of source antennas
to the jth cluster of destination
antennas

mM
i.t : number of calls made from

the ith cluster of source antennas
during the tth time segment

Table 1: Notations.

• The likelihood : Once the model parameters are specified, the likelihood
P(D |MS) (resp. P(D |MT )) is defined as the probability to observe the data
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given the parameters.

The product of the prior and the likelihood results in the posterior probability of
the model. Its negative logarithm is the optimized criterion.

Definition 1. The spatial model MS, summarized representation of the data D , is
optimal if it minimizes the following criterion:

c(MS) =− log [P(MS)]− log [P(D |MS)]

= lognS + lognC + logB(nS,kS)+ logB(nC,kD)+ log
(

m+ k−1
k−1

)
+ ∑

ci∈V M
S

log
(

mM
i.. +nM

i. −1
nM

i. −1

)
+ ∑

c j∈V M
D

log
(

mM
. j.+nM

. j −1
nc
. j−1

)
(1)

+ logm!− ∑
ci∈V M

S
c j∈V M

D

logmM
i j.!+ ∑

c j∈V M
D

logmM
. j.!− ∑

v j∈VD

logm. j.!

+ ∑
ci∈V M

S

logmM
i..!− ∑

vi∈VS

logmi..!

Definition 2. The temporal model MT , summarized representation of the data D , is
optimal if it minimizes the following criterion:

c(MT ) =− log [P(MT )]− log [P(D |MT )]

= lognS + logm+ logB(nS,kS)

+ log
(

m+ k−1
k−1

)
+ ∑

ci∈V M
S

log
(

mM
i.. +nM

i. −1
nM

i. −1

)
(2)

+ logm!− ∑
ci∈V M

S
V M

D ∈V M
T

logmM
i.t !+ ∑

V M
D ∈V M

T

logmM
..t !

+ ∑
ci∈V M

S

logmM
i..!− ∑

vi∈VS

logmi..!

B(|VS|,KS) is the number of possible partitions of VS into KS potentially empty
subsets.

The two first lines of the equation 1 and the equation 2 are the prior terms while
the two last lines are the likelihood terms. In an information-theoretic point of view,
a negative logarithm of a probability amounts to a Shannon-Fano coding length
[Shannon, 1948]. Thus, the negative log of the prior probability − log(P(M )) is the
description length of the model. As for the negative log likelihood − log(P(D |M )),
it is the description length of the data when modeled by the co-clustering. Minimizing
the sum of these two terms therefore has a natural interpretation in terms of a crude
MDL (minimum description length) principle [Grünwald, 2007]. The criterion c(M )
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provides an exact analytical formula for the posterior probability of a model M .
That is why the design of sophisticated optimization algorithms is both necessary
and meaningful. Such algorithms are described by [Boullé, 2011].

The criterion is minimized using a greedy bottom-up merge heuristic. It starts
from the finest model, i.e with one antenna per cluster and/or one timestamp per
time segment. The merges of source and destination clusters or the merges of source
clusters and time segments are evaluated and performed so that the criterion decreases.
A post-optimization step improve this heuristic by making permutation between the
clusters of antennas. This algorithm, that has a time complexity of O(m

√
m logm),

is detailed in [Boullé, 2011].

3 Analysis of the Spatial Correlations

First, we focus on the analysis of the calls between source and destination anten-
nas. We obtain 2,141 clusters of source antennas and 2,107 clusters of destination
antennas. The average number of antennas per cluster is between 8 and 9, which
is very fine. The challenge lies in exploiting the results. The number of clusters is
too important for a countrywide analysis of the antennas grouping but is suitable for
local studies. We thus propose analysis at different geographic scales.

3.1 A Countrywide Analysis

First, we propose a countrywide analysis of the results and a projection on a map
of France. The finest results do not provide a summarized enough view of the co-
clustering structure for such an analysis. That is why, we process an agglomerative
hierarchical clustering of the clusters to reduce their number. Clusters are merged
so that the criterion is the least decreased in order to obtain the most probable
co-clustering model for a given number of clusters. This post-treatment allows a
simplification of the model while handling its quality loss. In order to quantify this
loss, we introduce a quality measure we call informativity rate.

Definition 3. The null model M /0
S is the parametrization of the model, such that there

is one single cluster of source and destination vertices or one single cluster of source
and one time segment. The null model is the best representation of a data set with no
underlying structure. Given the best model M ∗

S obtained by optimizing the criterion
defined in Definitions 1 and 2, the informativity rate of a model MS is:

τ(MS) =
c(MS)− c(M /0

S )

c(M ∗
S )− c(M /0

S )

By definition, τ(MS)≤ 1 ; note that τ(MS)< 0 is possible when MS is an irrelevant
modelization of the data D (e.g. MS 6= M /0

S when D are random data).
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Fig. 1: Informativity rate function of the number of clusters

The informativity rate allows the construction of a curve of the informativity of
the model in function of the number of clusters. This aims at helping the user in
finding a good trade off between a simple and an informative co-clustering.

The Figure 1 shows that the first merges have a weak impact on the model
informativity. Hence, the number of clusters of both source and destination antennas
can be significantly reduce from more than 2,000 to 85 while keeping 75% of the
model informativity. This simplified model is used for the countrywide study: it is
simple enough to be interpreted and informative enough to make a reliable analysis.
Results are displayed in Figure 2.

The correlation between the clusters of antennas and their locations is strong
despite the antennas positions are not taken in account in the optimized criterion.
We can thus deduce that the people living in the same areas use to call the same
destination and vice-versa. The map of the Figure 2 shows that the french territory
can be segmented into several geographic areas that do not necessarily correspond to
the regional administrative boundaries.

3.2 A local analysis

In a second step, we focus on a local analysis. To that end, we exploit the finest
model (M ∗

S ) and only consider a subset of antennas corresponding to the area of a
french city. The antennas in Toulouse are segmented into seven clusters, displayed in
Figure 3. The first cluster groups the antennas of the inner city (pale yellow circles),
another cluster (neon green circles) groups antennas located in the west bank of the
Garonne river, that corresponds to a largely residential area. The cluster of antennas
pictured as pale pink circles takes place over the University of Toulouse campus
and a disadvantaged neighborhood. As for the cluster grouping antennas displayed
using pale green circles, it covers an area with the same characteristics than the
previous one. The orange circles are located in the residential periphery of the city
with different socio-economic profiles: upper-class toward South and working-class
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Fig. 2: Projection of the clusters of source antennas on a map of France. There is one color and
shape per cluster.

toward North. Finally the red squares are antennas located in the industrial areas
adjacent to the international airport.

In order to understand why antennas have been grouped together, we focus now
on the distribution of calls originating from the clusters. To that end, we study the
contribution to the mutual information of each couple of source/destination stations.

Definition 4. This measure quantifies the dependence of two variables, here the
partitions of the source and destination antennas. Let us denote it MI(V M

S ,V M
D ),

defined as follows [Cover and Thomas, 2006]:

MI(V M
S ,V S

D) = ∑
cS

i ∈V M
S

∑
cD

j ∈V M
D

p(cS
i ,c

D
j ) log

p(cS
i ,c

D
j )

p(cS
i )p(cD

j )
(3)

Mutual information is necessarily positive and its normalized version is com-
monly used as a quality measure in the coclustering problems [Strehl and Ghosh,
2003]. Here, we only focus on the involvement to mutual information of a couple of
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Fig. 3: Projection of the clusters of source antennas on a map of Toulouse, there is one shape and
color per cluster.

source/destination clusters stations. This value can be positive or negative according
to whether the observed joint probability of journeys p(cS

i ,c
D
j ) is above or below the

expected probability p(cS
i )p(cD

j ) in case of independence. Displaying such a measure
allows to quantify whether there is a lack or an excess of calls between two groups
of antennas in comparison to the expected traffic.

This is illustrated in the Figure 4. We focus on the traffic of calls originating from
the pale pink cluster of the Figure 3. Antennas that are pictures as red circles are the
ones to which an excess of traffic from the studied cluster is observed (p(V M

S ,V M
D )>

p(V M
S )p(V M

D )) while the antennas corresponding to the white circles are the ones to
which the traffic is null or expected (p(V M

S ,V M
D )≈ 0 or p(V M

S ,V M
D )≈ p(V M

S )p(V M
D )).

For this cluster of source antennas, there are no antennas to which we observe a
significant lack of traffic. If any, their location would have been identified by a blue
circle on the map. Note that the colors in the map represent the contribution to the
mutual information, not the frequency of calls which logarithm is proportional to the
diameter of the circles. Hence, we observe that the excess of traffic mainly occurs
within the cluster we focus on, and slightly to the rest of the city.
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Fig. 4: Contribution to the Mutual Information between the cluster of the university campus and the
clusters of the plotted antennas.

4 Spatio-Temporal Analysis

In this second study, we propose to process a co-clustering on the source antennas
and the time. In this study, we could have envisaged to apply a tri-clustering approach
like in [Guigourès et al., 2012]. However, the previous analysis showed us a strong
correlation between the partitions of source and destination antennas. Hence, we
consider that both source and destination antennas bring the same information and
we consequently use only one of them. The data are call detail records with 17,895
source antennas and 1.12 billion calls made over five month. The timestamps are the
dates. The antennas grouping is different from the one we obtained in the Section 3.
Here the antennas are grouped if the emerging calls are similarly distributed over the
days. We obtain 6,129 clusters of source antennas and 117 time segments. Contrary
to the source/destination antennas analysis, there is no correlations between the
clusters of antennas and their locations: they are scattered over the entire french
territory. As a consequence, a projection of the clusters on a map of France would
not be interpretable, even for a reduced number of clusters. In order to investigate the
phenomena that lead to such a result, we also study the contribution to the mutual
information between the clusters of antennas and the time segments. To visualize
this measure, we have simplified the co-clustering model in the same way as for the
previous study and we have plotted a calendar of the excesses and lacks of traffic in
Figure 5.
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Fig. 5: Calendar of the excesses and lacks of calls from three clusters and 42 time segments.

From May 13 to July 5 and from September 1 to October 13, the discretization is
periodic, highlighting the working days and the week-ends. During the working days
at both these periods, the calls originate in excess from the antennas of the middle
cluster and in deficit from the bottom cluster. The contrast between the clusters is
reducing as summer approaches. As for the weekends, the inverse phenomenon is
observed, but not to the same degree. These phenomena can be explained by the
agglomeration of the economic activity on concentrated geographical areas, usually
urban. Note that there is always a lack of calls originating from the top cluster at this
period.

During the summer vacations, the periodicity working days/weekends is not
observed anymore. The calls originating from the middle cluster are now in deficit
while the ones made from the top cluster are significantly in excess compared to the
usual traffic of the areas covered by the antennas and the traffic in the time segments.
It is during this period that the contrast is the sharpest. That is the reason why, we
focus on the segment from August 5 to August 15 and draw a map where the antennas
are displayed and colored in function of the excess or deficit of calls made during
this segment (see Figure 6).

During the summer vacations, there is a significant excess of calls made from the
Atlantic and Mediterranean coasts. This means that during this period, the number of
calls originating from these areas are more important than usually. These areas can
truly be regarded as seasonal regions since they are characterized by an unbalanced
distribution of calls over the year. Actually the population of the areas covered by
this cluster have also an unbalanced population over the year: during the summer
vacations, the population can be multiplied by more than ten, this has a direct impact
on the calls distribution.

Conversely, the cities are colored in blue on the map of the Figure 6. This can
be explained by the diminution of the economic activity due to the vacations. It
is thus assumed that the populations move from the urban centers to the holidays
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Fig. 6: Contribution to the mutual information between the clusters of source antennas and the time
segment from August 5 to August 15. In red, the antennas from which there is an excess of calls, in
blue a deficit and in white the expected number of calls.

resorts located on the seashore. We note however that the color only indicates the
contribution to the mutual information, not the frequency: during this period, the
antenna from which the most calls have been made is colored in blue and located in
Paris.

5 Conclusion

In this article, we have proposed an analysis of a five month call detail record between
17,895 mobile phone antennas spread throughout the French territory. That represents
a total of 1.12 billion calls. After having listed similar studies and introduced methods
suitable for such analysis, we have discussed on the choices that conducted us to
use the MODL approach. Two different types of analysis have been conducted
while using one single approach, being generic and scalable enough to thoroughly
investigate the data.

In a first study, the antennas have been grouped together if the calls originating
from (resp. terminating to) them are distributed on the same groups of antennas. An
analysis of a projection of the clusters on a map reveals a strong correlation between



A Study of the Spatio-Temporal Correlations in Mobile Calls Networks 15

the geographic position of the antennas and the clusters they belong to, at the national
or local levels. In a second study, we have lead a study in which the time is taken into
account. Despite, the antennas belonging to a same cluster are not located in a well-
defined area anymore, they cover nevertheless areas with common features: urban,
rural or touristic. As for the time segmentation, this highlights different behaviors in
terms of mobile phone usage during the summer vacations and the working periods,
during which we observe a periodicity between the working days and the weekends.
For example in August, there is an excess of calls in the touristic areas while there is
a deficit of calls in the urban areas, where most economic activity is concentrated.

In future works, it might be interesting to lead a study in which several time
features are embedded in order to characterize the behavior in terms of mobile phone
usage, in function of the date, the day of the week and the time of the day.
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: une alternative à la détection de clusters. In EGC, pages 353–364.
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[Nowicki and Snijders, 2001] Nowicki, K. and Snijders, T. (2001). Estimation and prediction for
stochastic blockstructures. Journal of the American Statistical Association, 96:1077–1087.

[Reichardt and White, 2007] Reichardt, J. and White, D. R. (2007). Role models for complex
networks. The European Physical Journal B, 60:217–224.

[Schaeffer, 2007] Schaeffer, S. E. (2007). Graph clustering. Computer Science Review, 1(1):27–64.
[Shannon, 1948] Shannon, C. E. (1948). A mathematical theory of communication. Bell system

technical journal, 27:379–423.
[Strehl and Ghosh, 2003] Strehl, A. and Ghosh, J. (2003). Cluster ensembles – a knowledge reuse

framework for combining multiple partition. JMLR, 3:583–617.
[Wasserman and Faust, 1994] Wasserman, S. and Faust, K. (1994). Social Network Analysis:

Methods and Applications. Structural analysis in the social sciences. Cambridge Univ. Press.
[White et al., 1976] White, H., Boorman, S., and Breiger, R. (1976). Social structure from multiple

networks: I. blockmodels of roles and positions. Am. J. of Sociology, 81(4):730–80.


