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This exam consists in a series of independent exercises. They can be solved in any
order. Answers must be justified: a simple “yes” or “no” answer will not be considered as
a proper one.

Exercise 1
We study in this exercise a data set D = (Xi,Yi)1≤i≤20 with Yi ∈ {1,2}. The random
pairs (Xi,Yi) are assumed to by independant and identically distributed copies of a data
generating pair (X,Y ). Using this data set, an analyst builds two models, g1 and g2 whose
predictions on D are given by the following table:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Yi 1 1 1 2 1 1 1 1 1 2 2 2 2 1 2 2 2 1 1 1

g1(Xi) 1 1 1 2 1 2 1 2 1 2 1 1 2 1 1 2 2 1 1 1
g2(Xi) 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 2

In this table, each column corresponds to an observation (Xi, Yi). The top row gives the
value of Yi while the two other ones correspond to model predictions.

Question 1 Using the table, provide an estimation of P(Y = 1). What general estimation
principle is used to compute this estimation?

Correction
Using the maximum likehood principle, the parameter of the Bernoulli distribution of
Y is estimated by the frequency of the “success” value. Here P(Y = 1) ' 0,6.

Question 2 Using the table, compute estimations of P(g1(X) 6= Y ) and P(g2(X) 6=
Y ).

Correction
We estimate again probabilities by frequencies. This gives

P(g1(X) 6= Y ) ' 0,25,

P(g2(X) 6= Y ) ' 0,35.

Question 3 Assume the loss function l0(p,t) = Ip6=t is used (p is the prediction, t the
true value and IC equals 1 when the condition C is fulfilled and 0 when it is not). The
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corresponding risk is denoted L0. Using the table, provide an estimation of the risks of g1
and g2. What are the limitations (if any) of this estimation? What other strategy could
be used to estimate the risks?

Correction
The proposed method (risk estimation based on the table) corresponds to empirical
risk calculation on the training set. Obviously, the empirical risks are equal to the
probabilities of error computed in the previous question, that is

L̂0(g1) ' 0,25,

L̂0(g2) ' 0,35.

The main problem with this estimation is that it underestimate the risk and can lead
to overfitting. One should use a resampling technique or a least a holdout estimation
set.

Question 4 Let l1 be the following loss function:

l1(p,t) t = 1 t = 2
p = 1 0 1
p = 2 2 0

Determine the best model among g1 and g2 according to the risk associated to l1. Possi-
ble limitations described in the previous question should be disregarded in the present
one.

Correction
We use empirical risk minimization to select the best model.
The empirical risks are

L̂1(g1) ' 0,35,

L̂1(g2) ' 0,5.

Therefore the best model is g1.

Exercise 2
We assume given a random pair (X,Y ) with the following characteristics:

1. Y takes values in {−1,1} and P(Y = -1) = 2
3 ;

2. X takes values in {a, b, c} and the conditional distribution of X given Y is specified
by the following table:

x a b c

P(X = x|Y = −1) 1
6

1
3

1
2

P(X = x|Y = 1) 1
3

1
6

1
2
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Question 1 Recall the expression of the general theoretical optimal model g∗0 for (X,Y )
when using the loss function l0 defined by l0(p,t) = Ip 6=t (p is the prediction and t the true
value) and assuming the joint distribution of (X,Y ) is known.

Correction
The theoretical optimal model minimizing the L0 risk is given by

g∗0(x) =
{

1 if P(Y = −1|X = x) < P(Y = 1|X = x)
−1 if P(Y = −1|X = x) ≥ P(Y = 1|X = x)

Question 2 Using the assumptions on (X,Y ) compute g∗0(x) for all x ∈ {a, b, c}.

Correction
As recalled above, we need to compute P(Y = y|X = x), or, more efficiently, the ratio
P(Y =1|X=x)
P(Y =−1|X=x) . Using the Bayes rule, we know that

P(Y = y|X = x) = P(X = x|Y = y)P(Y = y)
P(X = x) ,

and thus the ratio is given by

P(Y = 1|X = x)
P(Y = −1|X = x) = P(X = x|Y = 1)P(Y = 1)

P(X = x|Y = −1)P(Y = −1) ,

= 2P(X = x|Y = 1)
P(X = x|Y = −1) ,

where the second expression is obtained by using the hypothesis on Y . The following
table give the value of the ratio for each value of x, as well as g∗0(x).

x a b c
P(Y =−1|X=x)
P(Y =1|X=x) 1 4 2

g∗0(x) -1 -1 -1

Question 3 Compute L∗0 = L0(g∗0).

Correction
We want to compute L0(g∗0) = E(l0(g∗0(X),Y )). We have

E(l0(g∗0(X),Y )) =
∑
x,y

l0(g∗0(x),y))P(X = x,Y = y),

=
∑

x

P(X = x,Y 6= g∗0(x)),

where the simplification is induced by the properties of l0.
As P(X = x,Y 6= g∗0(x)) = P(X = x|Y 6= g∗0(x))P(Y 6= g∗0(x)), one can compute
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E(l0(g∗0(X),Y )) using both the (conditional) probabilities from the hypothesis and the
optimal model computed above.
This gives E(l0(g∗0(X),Y ) = 0,3333333.

Question 4 Let l2 be the following loss function:

l2(p,t) t = 1 t = −1
p = 1 0 2

p = −1 1 0

Compute both g∗2 and L∗2, respectively the optimal model according to l2 and its risk.

Correction
We follow the exact same reasoning. We know that g∗2 is given by

g∗2(x) =
{

1 if 2P(Y = −1|X = x) < P(Y = 1|X = x)
−1 if 2P(Y = −1|X = x) ≥ P(Y = 1|X = x)

Thus we have
x a b c

P(Y =−1|X=x)
P(Y =1|X=x) 1 4 2

g∗2(x) -1 -1 -1
The computation of L∗2 is essentially similar as L∗0, with the added costs. One have

E(l2(g∗2(X),Y )) =
∑
x,y

l2(g∗2(x),y))P(X = x,Y = y),

=
∑

x

l2(g∗2(x),− g∗2(x))P(X = x,Y = −g∗2(x)),

using the fact that when y 6= g∗2(x), then y = −g∗2(x) because of the only two possible
values of Y .
This gives E(l2(g∗2(X),Y ) = 0,3333333.

Exercise 3
We assume given a random pair (X,Y ) with the following characteristics:

1. Y takes values in {A, B, C} and P(Y = A) = P(Y = B) = 1
3 ;

2. X takes values in {0,1}3 (that is a typical value of X is (1,0,1)). Xi,j denotes the
j-th coordinate of observation number i;

3. the distribution of (X,Y ) satisfies the conditional independence assumptions of the
Naive Bayes classifier.
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We study a data set D = (Xi,Yi)1≤i≤300 for such that |{i|Yi = A}| = |{i|Yi = B}| = 100,
where |U | is the cardinality of the set U (its number of elements).

The values taken by the Xi are summarized in the following table:

Xi,1 Xi,2 Xi,3
Yi = A 85 74 85
Yi = B 38 57 50
Yi = C 43 93 8

The table reads as follows: each row corresponds to the subset of observations for which
Yi takes the given value. For instance the first row corresponds to observations for which
Yi = A. Then each column gives the number of such observations for which the coordinate
associated to the column equals 1. For instance, the upper left corner value 85 says that
among the 100 observations for which Yi = A, 85 observations have a 1 as their first
coordinate.

Question 1 Estimate from the data all the (conditional) probabilities needed to design a
Naive Bayes classifier on those data.

Correction
We have been given the distribution of Y , therefore we only need the conditional
distribution of the Xi given Y . There are given directly by the table is one simply
divides each value by 100. This corresponds to a frequency based estimate of e.g.
P(Xi,1 = 1|Yi = A) by the fraction

|{i|Yi = A and Xi,1 = 1}|
|{i|Yi = A}|

= 0,85.

Question 2 Using the loss function l0 defined by l0(p,t) = Ip6=t (p is the prediction and t
the true value), compute the optimal decision of the Naive Bayes classifier for u = (1, 0, 1)
and for v = (0,0,1).

Correction
As already recalled in the previous exercise, the optimal decision is obtained here by
maximizing the a posteriori probability of Y given X, that is:

g∗0(x) = arg max
y

P(Y = x|X = x).

Using the NB hypothesis, we have

P(Y = x|X = x) =
P(Y = y) ∏3

j=1 P(Xj = xj|Y = y)
P(X = x)

For a given x, P(X = x) is fixed. In addition, the distribution of Y is uniform, thus
g∗0 is given by

g∗0(x) = arg max
y

3∏
j=1

P(Xj = xj|Y = y).
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As explained above, each of the conditional probability P(Xj = xj|Y = y) can be
estimated easily from the summary table. Let us first consider u = (1,0,1).
We have

3∏
j=1

P(Xj = uj|Y = A) = 85× 26× 85
1003 ,

3∏
j=1

P(Xj = uj|Y = B) = 38× 43× 50
1003 ,

3∏
j=1

P(Xj = uj|Y = C) = 43× 7× 8
1003 ,

and thus g∗0(u) = A.
Similar calculations give g∗0(v) = B.

Exercise 4
The data set studied in this exercise comprises 1473 objects described by 9 explanatory
(X1 to X9) and 1 target variable Y . Y takes values in {1, 2, 3}. Explanatory variables X1
and X4 are numerical variables while all other variables are nominal ones (with numbered
categorical values, from 0 to 4, but no special numerical meaning should be assigned to
said values).

Values taken by Y on the data set are summarized on the following table:

1 2 3
Y 624 345 504

Question 1 The data scientist builds a full (unprunned) decision tree on the data. The
tree ends up with 644 leaves and its confusion matrix on the data set is given by following
table:

1 2 3
1 603 9 4
2 5 321 22
3 16 15 478

In the confusion matrix, predictions are in row, with true values are in column.

Comment briefly the results.

Correction
As expected for a full unprunned tree, the results are very good in the sense where the
number of classification errors is very limited. Appart from that it seems that the larger
class might be easier to separate from the two others than those one from another.
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However, because of the possible overfitting, this might not be very meaningful.
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Figure 1: Behavior of the number of misclassified examples as a function of the number of
leaves in the tree (during pruning), both on the data set and as estimated by a 10 fold
cross-validation method. The x-axis uses a logarithmic scale.

Question 2 The analysts implements a ten fold cross-validation on the tree in order to
estimate its performances during the pruning process. Results are shown on Figure 1.
Comment briefly the figure. Compare in particular the results from the figure and the
confusion matrix.

Correction
We observe the standard behavior of learning algorithms. Indeed, the cross-validation
estimates are valid estimates of the risk and thus they show the classical increase of
the risk when the tree starts to overfit. This happens after a relatively small number
of leafs (7). On the contrary, the risk estimated on the training set keeps on decreasing
as in a typical overfitting scenario. A very important point is that the classification
error is here around 650 over 1473 objects which is quite bad and thus the overfitting
shown in the confusion matrix is massive.

Question 3 The analysts decides to prune the tree up to leaving only 7 leaves. Justify
briefly her choice.
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Correction
This corresponds to the smallest risk as estimated by cross-validation.

Question 4 The pruned tree is represented on Figure 2. Use this figure to compute the
confusion matrix of the pruned tree. Are the results compatible with the ones from Figure
1?

X4 < 0,5

X1 >= 37,5

X2 = 1 or 2 or 3

X4 < 1,5

X2 = 1 or 2

X4 < 2,5

1
93  1  3

1
164  39  33

1
17  0  2

2
33  80  40

1
71  12  38

3
60  22  103

3
186  191  285

yes no

Figure 2: Pruned decision tree. At each node, the left branch corresponds to a "yes" answer
to the question of the node, while the right branch correspond to "no". In a leaf, the upper
value is the predicted class for the leaf, while the lower values correspond to the number of
examples from the data set that fall into this leaf, attributed to each class (in the natural
class order, 1, 2 and 3).

Correction
We obtain the following confusion matrix

1 2 3
1 345 52 76
2 33 80 40
3 246 213 388

The performances are quite low, as expected from the cross-validation estimates.
Indeed, before overfitting kicks in the cross-validation risk estimates are very close to
the risk on the learning set (on Figure 1) and thus we expect roughly 650 classification
errors. Figure 2 gives 660 classification errors and thus results are compatible.
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Question 5 For each of the leaves of the pruned tree, construct an artificial data point
(by choosing the values of its coordinates) in such a way that it will fall into the associated
leaf when submitted to the tree.

Correction
Nothing complicated here...
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