Data Science and Privacy

Fabrice Rossi

CEREMADE Université Paris Dauphine

2021

Data collection

- is massive
- is here to stay (very probably)
- is invasive and potential dangerous
- is very useful and practical

Data science

- is based on data
- provides better results with accurate data
- needs very personal data to provide personalized experiences

Data collection

- is massive
- is here to stay (very probably)
- is invasive and potential dangerous
- is very useful and practical

Data science

- is based on data
- provides better results with accurate data
- needs very personal data to provide personalized experiences

Trust is mandatory

personal data are provided only to trusted collectors:

- people will lie to collectors they do not trust
- people will use protection techniques such as ad-blockers
- data science tolerates noisy data but not false ones!

Trust is mandatory

- personal data are provided only to trusted collectors:
 - people will lie to collectors they do not trust
 - people will use protection techniques such as ad-blockers
- data science tolerates noisy data but not false ones!

Collection and attack model

- a large number of individuals
- one or several trusted collectors
- external attackers who cannot access directly to the collected data
- but collectors share with the attackers some information about the collected data

A limited model

- no rogue collector:
 - collectors are trusted
 - they operate as they declare to do
- perfect security:
 - data are secured in the collectors database systems
 - attackers cannot access the collected data

Addressing the limitations

- out of scope of this course
- IT security
- legal enforcement

The core challenge

How to publish information about the content of a database without compromising the privacy of the contributors?

Practical examples

- data breach as a data release
- data leaks (e.g. misconfigured social networks)
- internal distribution, i.e. from collectors to data scientists (especially subcontractors)
- open data (public statistics)
- data reuse and data brokers

GDPR

- General Data Protection Regulation (05/25/2018)
- Privacy by design and by default
 - data minimisation principle:

Personal data shall be adequate, relevant and limited to what is necessary in relation to the purposes for which they are processed

- anonymization: irreversible transformation that prevent any re-identification of the data
- pseudonymization: re-identification is possible with additional data (that have to be kept separated)

Models

Full data release

Query answering

Outline

Models

Full data release

Query answering

Standard tabular data

- \blacktriangleright observations/instances/rows are elements of ${\cal X}$
- with $\mathcal{X} = \mathcal{X}_1 \times \mathcal{X}_2 \times \ldots \times \mathcal{X}_P$, *P* variables/attributes
- \mathcal{X}_k is either \mathbb{R} (numerical data) or finite (categorical/nominal data)
- some variables are identifiers: they can be used to identify with certainty the associated person (e.g., social security number)
- some variables are sensitive: they must be protected (e.g., medical condition)

Extensions

- relational data:
 - standard data
 - and in addition a graph of interaction between the instances
- multi-relational data: several graphs!

Full data release

- > a trusted collector wants to release her database at a *micro-level*:
 - the released database is comparable to the private one
 - it contains individual data (e.g. "rows" of the database)
- attackers gain access to this database and can do whatever they want with it

Query answering

- a trusted collector wants to allow requests on her database:
 - sql like queries with only aggregate answers
 - no direct individual data results
- attackers can issue "arbitrary" queries (within some budget and other limitations)

Identity disclosure (record linkage)

The attacker can link data in a published database to a specific person

Attribute disclosure (attribute linkage)

The attacker can guess the exact value of a hidden attribute of a specific person

Inferential disclosure

The attacker can make more accurate predictions on the value of a hidden attribute of a specific person

- via standard machine learning on the data set
- via partial linkage
- using both

Examples

- anonymous publishing is impaired by identity disclosure
- potential dangerous hidden attributes include religious views, political views, sexual orientation, etc.
- publishing a database might allow an attacker to disclose information in another data source: the fact that collection of sensitive information is strongly regulated in some countries does not prevent its release through a breach of anonymity
- trails following: revealing hidden attributes can ease subsequent attacks

Naive solution

- just remove the identifier variables (or obfuscate them)
- (John, Doe, 36, Male, Roman Catholic, 50k) becomes (98b1aa7b4, 36, Male, Roman Catholic, 50k)
- pseudonymization if the obfuscated identifier can be mapped back to the original identifier

Naive solution

- just remove the identifier variables (or obfuscate them)
- (John, Doe, 36, Male, Roman Catholic, 50k) becomes (98b1aa7b4, 36, Male, Roman Catholic, 50k)
- pseudonymization if the obfuscated identifier can be mapped back to the original identifier

Unreliable scheme

- if the attacker knows (auxiliary information):
 - that John Doe is in the database
 - that he is Male and earns 50k a year
- then the attacker might guess John is 98b1aa7b4
- or more generally narrow down the possible records associated to John Doe

Quasi-identifier

Secondary identification

- identifiers are removed from an anonymized database by essence
- but some other variables can identify a person or at least a group of instances to which the person must belong
- quasi-identifiers

Linkage attacks

- one of the main de-anonymization technique
- conditions:
 - auxiliary information
 - non anonymous data in the auxiliary information
- ► principle:
 - match quasi-identifiers from a data set to another
 - identity/attribute disclosure
 - inferential disclosure for a large match

Well known de-anonymization cases

Hospital discharge data (1997)

- ▶ in the USA, hospitals release anonymized discharge data:
 - include health related information (diagnoses, procedures, etc.)
 - and potential quasi-identifiers: date of birth, gender and ZIP code
- cross-referencing with publicly available voter lists:
 - identical quasi-identifiers!
 - on some experiments birth date + ZIP code identify exactly 69 % of the listed persons

DNA sequence identification (2004)

- DNA sequences can be shared for research (in the USA)
- they are associated to hospital visits, hence to discharge data
- trail matching algorithm

The AOL fiasco

- search data released in 2006, available a few days only:
 - 20 millions search keywords
 - 3-month period
 - 650 000 users
 - queries are associated to users
 - users are identified by unique numerical id
- de-anonymization by Barbaro and Zeller from the NY times
 - localization keywords ("landscapers in Lilburn, Ga")
 - last name search
 - cross-reference with public data (e.g. phonebook listings)
- quasi-identifiers:
 - a single search query is seldom a quasi-identifier
 - identification become more and more precise with added queries

The Netflix Prize

- ratings data released in 2006:
 - ~ 100 millions of ratings
 - \blacktriangleright ~ 480 thousands users
 - ~ 18 thousands movies
 - an observation: user ID (pseudonymous), movie ID (non anonymous), date of grade, grade
 - perturbations have been applied: rating deletions, rating insertions, rating date modifications
- de-anonymization by Narayanan and Shmatikov in 2007:
 - similar to AOL case: no quasi-identifier but a collection of discriminant variables (ratings with dates)
 - similarity based search
 - works well on sparse databases
 - IMDb as an example of auxiliary information source

Anonymization is hard

- under a naive attack model (no auxiliary information), removing direct identifiers is sufficient
- but auxiliary information is always available (now more frequently than ever!)
- once non-anonymous data are available, quasi-identifiers enables one to propagate identities

Modifications

- release a modified version of the database
- possible modifications:
 - noise
 - generalization (e.g. replace a complete 5 digits ZIP code by a truncated one)
 - etc.

Utility

Trade-off

One cannot at the same time

- maximize the precision of the data
- and minimize the privacy risk

Utility

Trade-off

One cannot at the same time

- maximize the precision of the data
- and minimize the privacy risk

Utility

Trade-off

One cannot at the same time

- maximize the precision of the data
- and minimize the privacy risk

Utility measures

- released databases must remain useful
- utility measures have been proposed to quantify this:
 - marginal distribution preservation
 - dependency preservation
 - machine learning oriented measures (e.g. AUC preservation)
 - etc.

Utility first

- utility preservation guarantees
- post hoc test of the privacy guarantees (e.g. the probability of re-identification under some threat model)
- quite common in official statistical institutes

Privacy first

- privacy properties guarantees
- post hoc test of the utility guarantees
- main focus of the privacy research in computer science and mathematics

Models

Full data release

Query answering

Threat model

- > a trusted collector wants to release her database at a *micro-level*:
 - the released database is comparable to the private one
 - it contains individual data (e.g. "rows" of the database)
- attackers gain access to this database and can do whatever they want with it, including using auxiliary non-anonymous data

Perturbation based solutions

- stochastic: additive noise, swapping and related methods
- partition based: approximation, recoding and generalization

R package: sdcMicro

Attack model

- linkage attack
- targeted (individual) or global (find someone vulnerable)

Disclosure risk

- Can the attacker identify someone based on a pseudo-identifier?
- standard approach
 - compute an "anonymized" data set (protected data set)
 - compute disclosure risks on this data set
 - possibly using the original data set for reference

Estimating the risk

- Diversity measures:
 - count the number of instances that match some given values of the pseudo-identifier
 - e.g.: how many Female between 25 and 35 in the data set?
 - k-anonymity, I-diversity, <u>t-closeness</u>, etc.
- Survey theory based:
 - probability that a sample unique person is population unique
 - more general probability estimation

Continuous variables

Everybody is unique

- depending on the data precision
- distance based attack

"Continuous" risks

- distance based
 - compute k-nearest neighbors of the protected data set in the original data set
 - risk: percentage of protected data whose original observation is among those k-NN (with a small k)
- interval disclosure
 - uni-dimensional queries
 - interval around each value

Rationale

- statistical point of view
- data released to enable researchers to conduct studies that involve human beings (sociology, medicine, etc.)
- researchers are implicitly trusted!
- utility first:
 - the methods try to preserve some important features (e.g., the covariance matrix)
 - privacy is checked afterward
- typically stochastic methods

Simple additive noise

- ► rather than releasing X_k release $X_k + \varepsilon_k$ where ε_k is a noise (e.g. Gaussian noise)
- properties:
 - Straightforward
 - © limited effects on univariate estimates (e.g. mean)
 - Iimited to numerical attributes
 - © inconsistent multivariate estimates (e.g. covariance matrix)
 - Iow level of protection

Correlated additive noise

- generate noise with a covariance matrix proportional to the one of the data
- solves the covariance estimation issue
 - but one might need to use a robust covariance estimation method!
- improves a bit the protection level
- variants preserve more elements

Swapping

- exchange values of attributes between instances
- involve partitioning the attributes into two subsets
- controlled preservation of dependencies is possible

Post-randomization Method

PRAM

- categorical data
- for each variable
 - chose a stochastic matrix
 - replace a category by a randomly selected one base on the stochastic matrix
 - full independence model (variables and observations)
- obvious multivariate extension (useful to protect e.g. dependencies)
- unbiased estimates of category frequencies given the stochastic matrix
- variables with a large number of categories: group based stochastic matrix

Shuffling

Model based approach

- principle
 - leverage dependencies between some continuous variables X and other variables S
 - estimate X | S and replace X by a conditional sample
- a possible implementation
 - perform a multivariate regression of X over S
 - estimate the covariance matrix of the residuals
 - generate multivariate noise around the fitted values
 - for each dimension replace a generated value by the original value with the same rank respectively in the generated data set and in the original one

Privacy first strategy

- identify a privacy threat
- build the perturbation as a protection against the threat
- identity disclosure:
 - threat: find a single record in the released database using part of its content (quasi-identifiers)
 - protection: make sure that no combination of quasi-identifiers can be used to select a single record
- typically deterministic methods from computer science
Principle

- proposed by P. Samarati and L. Sweeney in 1998
- consider a database with *P* variables among which X₁,..., X_L form a quasi-identifier
- ► the database satisfies k anonymity for an integer k if for any value (x₁,..., x_L) ∈ X₁ × ... × X_L, there are at least k instances in the database that begin with (x₁,..., x_L)
- protection: if the attacker knows the quasi-identifier for a person, she cannot recover less than k compatible persons in the database

	Ethnicity	Birth	Gender	ZIP	Condition
1	Black	1965	М	02141	short breath
2	Black	1965	Μ	02142	chest pain
3	Black	1965	F	02131	hypertension
4	Black	1965	F	02132	hypertension
5	Black	1964	F	02131	obesity
6	Black	1964	F	02132	chest pain
7	White	1964	Μ	02131	chest pain
8	White	1964	Μ	02132	obesity
9	White	1964	Μ	02133	short breath
10	White	1967	Μ	02131	chest pain
11	White	1967	Μ	02132	chest pain

Original database

	Ethnicity	Birth	Gender	ZIP	Condition
1	Black	1965	М	0214*	short breath
2	Black	1965	Μ	0214*	chest pain
3	Black	1965	F	0213*	hypertension
4	Black	1965	F	0213*	hypertension
5	Black	1964	F	0213*	obesity
6	Black	1964	F	0213*	chest pain
7	White	1964	Μ	0213*	chest pain
8	White	1964	Μ	0213*	obesity
9	White	1964	Μ	0213*	short breath
10	White	1967	Μ	0213*	chest pain
11	White	1967	Μ	0213*	chest pain

database with 2-anonymity with respect to the first 4 variables

Identity protection

- is obvious
- but limited by the value of k

Attribute protection

- is not guaranteed (at all)
- without auxiliary information, the database releases the marginal distribution of private variables
- with auxiliary information, we have *conditional* distributions that might differ from the global one!

	Ethnicity	Birth	Gender	ZIP	Condition
1	Black	1965	М	0214*	short breath
2	Black	1965	М	0214*	chest pain
3	Black	1965	F	0213*	hypertension
4	Black	1965	F	0213*	hypertension
5	Black	1964	F	0213*	obesity
6	Black	1964	F	0213*	chest pain
7	White	1964	М	0213*	chest pain
8	White	1964	М	0213*	obesity
9	White	1964	М	0213*	short breath
10	White	1967	М	0213*	chest pain
11	White	1967	M	0213*	chest pain

Marginal distribution of Condition

chest pain	hypertension	obesity	short breath
0.4545	0.1818	0.1818	0.1818

	Ethnicity	Birth	Gender	ZIP	Condition
1	Black	1965	М	0214*	short breath
2	Black	1965	М	0214*	chest pain
3	Black	1965	F	0213*	hypertension
4	Black	1965	F	0213*	hypertension
5	Black	1964	F	0213*	obesity
6	Black	1964	F	0213*	chest pain
7	White	1964	М	0213*	chest pain
8	White	1964	М	0213*	obesity
9	White	1964	М	0213*	short breath
10	White	1967	М	0213*	chest pain
11	White	1967	M	0213*	chest pain

Marginal distribution of Condition for (White, 1964, M, 02131)

chest pain	hypertension	obesity	short breath
0.3333	0.0000	0.3333	0.3333

	Ethnicity	Birth	Gender	ZIP	Condition
1	Black	1965	М	0214*	short breath
2	Black	1965	М	0214*	chest pain
3	Black	1965	F	0213*	hypertension
4	Black	1965	F	0213*	hypertension
5	Black	1964	F	0213*	obesity
6	Black	1964	F	0213*	chest pain
7	White	1964	М	0213*	chest pain
8	White	1964	М	0213*	obesity
9	White	1964	М	0213*	short breath
10	White	1967	М	0213*	chest pain
11	White	1967	M	0213*	chest pain

Marginal distribution of Condition for (Black, 1965, F, 02131)

chest pain	hypertension	obesity	short breath
0.0000	1.0000	0.0000	0.0000

Generalization

- proposed by P. Samarati and L. Sweeney in 1998
- based on the idea that data can be "generalized", that is approximated, to hide identifying values:
 - full ZIP code: 5 digits (02141)
 - approximation: 4 first digits (0214*)
 - progressive approximation
- data are not noisy but imprecise

Domains

- domains are finite set of values
- domains are partially ordered (generality order)
- ▶ ground domain: X₁, the most precise/complete description
- a maximal domain (for the partial order) contains only one value
- a domain is more general than another one if it has fewer values
- a domain has at most one *direct* more general domain
- example:
 - ground domain: age in years $X_l = \{0, 1, 2, \dots, 130\}$
 - direct generalization of \mathcal{X}_l : age rounded with 5 years precision $\mathcal{X}_l^5 = \{0, 5, 10, \dots, 130\}$
 - direct generalization of \mathcal{X}_l^5 : age rounded with 10 years precision $\mathcal{X}_l^{10} = \{0, 10, 20, \dots, 130\}$
 - direct generalization of \mathcal{X}_{l}^{10} : age unreleased $\mathcal{X}_{l}^{none} = \{unreleased\}$

Hierarchy of values

- values from one domain are mapped to values from its direct more general domain
- this creates a hierarchy of values from precise values to general ones

Generalization

- generalization consists in replacing a value by its "generalized" version at an upper level of the corresponding hierarchy
- generalization is applied:
 - uniformly for each variable: all the values of a variable are generalized at the same level in the hierarchy
 - arbitrarily for different variables: two distinct variables can be generalized to different levels of their respective hierarchy
- the distance between a variable and its generalization is the number of levels in the hierarchy between the ground domain and the domain of the generalization (including this one)
- among all the generalizations that achieve k-anonymity, one prefers the database that is the closest to the original one

	Ethnicity	Birth	Gender	ZIP	Condition
1	Black	1965	М	02141	short breath
2	Black	1965	Μ	02142	chest pain
3	Black	1965	F	02131	hypertension
4	Black	1965	F	02132	hypertension
5	Black	1964	F	02131	obesity
6	Black	1964	F	02132	chest pain
7	White	1964	Μ	02131	chest pain
8	White	1964	Μ	02132	obesity
9	White	1964	Μ	02133	short breath
10	White	1967	Μ	02131	chest pain
11	White	1967	Μ	02132	chest pain

Original database

	Ethnicity	Birth	Gender	ZIP	Condition
1	Black	1965	М	0214*	short breath
2	Black	1965	Μ	0214*	chest pain
3	Black	1965	F	0213*	hypertension
4	Black	1965	F	0213*	hypertension
5	Black	1964	F	0213*	obesity
6	Black	1964	F	0213*	chest pain
7	White	1964	Μ	0213*	chest pain
8	White	1964	Μ	0213*	obesity
9	White	1964	Μ	0213*	short breath
10	White	1967	Μ	0213*	chest pain
11	White	1967	М	0213*	chest pain

Generalization: (0,0,0,1,0)

	Ethnicity	Birth	Gender	ZIP	Condition
1	Black	1965	*	02141	short breath
2	Black	1965	*	02142	chest pain
3	Black	1965	*	02131	hypertension
4	Black	1965	*	02132	hypertension
5	Black	1964	*	02131	obesity
6	Black	1964	*	02132	chest pain
7	White	1964	*	02131	chest pain
8	White	1964	*	02132	obesity
9	White	1964	*	02133	short breath
10	White	1967	*	02131	chest pain
11	White	1967	*	02132	chest pain

Generalization: (0,0,1,0,0)

	Ethnicity	Birth	Gender	ZIP	Condition
1	Black	1965	*	0214*	short breath
2	Black	1965	*	0214*	chest pain
3	Black	1965	*	0213*	hypertension
4	Black	1965	*	0213*	hypertension
5	Black	1964	*	0213*	obesity
6	Black	1964	*	0213*	chest pain
7	White	1964	*	0213*	chest pain
8	White	1964	*	0213*	obesity
9	White	1964	*	0213*	short breath
10	White	1967	*	0213*	chest pain
11	White	1967	*	0213*	chest pain

Generalization: (0,0,1,1,0)

Outliers suppression

- rare values in a quasi-identifier are difficult to anonymize
- this can lead to over-generalization
- a simple solution consists in removing outliers (within specified limits)

Multidimensional generalization

- multidimensional generalization function: use contexts to generalize an instance
- adaptive generalization level
- most well known method: Mondrian

Partition based approach

- two key principles
 - partition the data space
 - replace values by statistics over the classes of the partition (mean, span, etc.)
- proposed solution
 - built recursively a partition tree based on
 - median cut point for numerical variables
 - a given generalization hierarchy for categorical variables
 - accept a split only if both leaves contain at least k objects
 - possibly chose an optimal splitting variable based on some additional quality metric

Quality metrics

- minimal generalizations: databases that achieve k-anonymity with minimal "distance" on each variable
- multiple solutions in some situations
- > ad hoc criteria can be used to choose one of the minimal solutions

Complexity

- obtaining minimal generalization is NP-hard in general
- approximation algorithms do not have very good guarantees
- but heuristics give acceptable results (k-anonymity is guaranteed, minimality is not)

Summary

- © guarantees against identity disclosure
- Ilexible framework
- highly dependent to the chosen quasi-identifiers
- Sub-optimal solutions (NP-hardness)
- no attribute protection

I-diversity

- k-anonymity does not protect individual attributes
- I-diversity fixes this problem:
 - proposed in 2006 by Machanavajjhala et al.
 - general principle: a database is I-diverse if any group of instances identified by a quasi-identifier contains at least I "well represented" values for the sensitive attribute
- several instantiations:
 - minimal entropy
 - recursive diversity: bound on the ratio between the frequency of the most frequent value and the frequency of the less frequent values
 - variations around non-sensitive values (e.g. healthy) and sensitive-ones

Limitations of I-diversity

- achievability: the original data could not satisfy I-diversity globally!
- semantic similarity:
 - I-diversity does not take into account links between the values of the variables
 - diversity among similar values is not sufficient to protect an attribute

t-closeness

- proposed in 2007 by Li et al. (refined in 2010)
- core principle: ensuring conditional distributions (i.e. in group of instances) are similar to the marginal distribution
- instantiation via information theoretic measures (such as the KL-divergence) would only solve the achievability problem
- differences between distributions are measured via optimal transport (the earth mover distance)

Protection against linkage attacks

- with respect to specific quasi-identifiers
- identity: k-anonymity
- attribute: closeness and related methods
- generalization/partition based (with help of suppression)
 - fast sub-optimal solutions
 - induce frequently a significative loss in data quality

Composition

Independent anonymized releases

- several databases controlled by non coordinating collectors
- some common attributes
- each collector releases an anonymized database (with e.g. k-anonymity)
- some persons belong to more than one database

Intersection attack

- analyzed by Ganta et al. in 2008
- consists simply in intersecting groups that match a quasi-identifier in different databases
- leverages the fact sensitive data a kept exact

Quasi-identifiers

- must be specified before data release
- non obvious trade-off:
 - minimal set of attributes: low protection, but high quality data
 - large set of attributes: high protection, but might be impossible to reach without a massive loss in data quality
- skewed and long tail distributions:
 - typically power law distributed attributes
 - the vast majority of persons have the same value: intrinsically anonymous
 - but persons have very atypical values: must be aggressively modified ⇒ destroys marginal distributions

A limited model

- quasi-identifiers are *public* (non sensitive) data that can be used to identify a person
- but the attacker might know private (sensitive) data also!

Netflix Prize:

- private information: movie ratings with dates
- typical skewed distribution: rare movies, compulsive watchers, etc.
- re-identification from private data is very easy: e.g. 99 % of users are unique given 8 movie ratings and approximate rating dates!
- private data obtained from IMDb, but other sources could be used (e.g. blog posts, direct interaction, etc.)
- perturbations of the ratings would reduce strongly the interest of the database

Relational data

- data + graph
- new disclosure risk: link disclosure
- much more complex anonymization problem:
 - added value of relational data: the graph structure!
 - new identification source: the graph structure!
 - typical example:
 - degree based identification
 - degree anonymity
 - obtained by inserting links, deleting links and swapping links
 - but the degree follows generally a skewed distribution!
- generalization at the graph level:
 - cluster of nodes
 - cluster of edges

Correlated neighborhood

- measure the resemblance between two nodes as the agreement between their connection:
 - A: adjacency matrix ($A_{ij} = 1 \Leftrightarrow i$ and j are connected)
 - $\blacktriangleright \quad \mathbf{s}(i,j) = \frac{1}{N} \sum_{k} \mathbf{A}_{ik} \mathbf{A}_{jk} \frac{1}{N^2} \left(\sum_{k} \mathbf{A}_{ik} \right) \left(\sum_{k} \mathbf{A}_{jk} \right)$

characteristic vector of a node:

- vector of agreements, $(s(i, 1), \ldots, s(i, N))$
- very robust to limited random modification of the graph
- re-identification via characteristic vectors
 - ordering sensitive and theoretically NP-hard
 - efficient heuristics for sparse graphs
 - very efficient re-identification scheme, even against protected graphs

Summary

Solutions...

- a collection of data release methods
- utility oriented (noise)
- privacy oriented (generalization)

Summary

Solutions...

- a collection of data release methods
- utility oriented (noise)
- privacy oriented (generalization)

with strong limitations!

- quasi-identifiers are naive, anything interesting can be used to re-identify persons
- k-anonymity (and related constraints) is essentially impossible to apply in high dimension
- the lack of guaranteed composition properties creates dangerous future opportunities for attackers
- full data release is inherently dangerous

Models

Full data release

Query answering

Threat model

a trusted collector wants to allow requests on her database:

- sql like queries with only aggregate answers
- no direct individual data results
- attackers can issue "arbitrary" queries (within some budget and other limitations)

Links to full data release

- queries can use quasi-identifiers (QI) to select groups exactly as in full data release
- aggregate answers can be used to infer attributes via differentiating attacks (comparing the results of two queries):
 - how many persons in the database have aids?
 - how many persons expected those with QI x have aids?

Query auditing

- verify that a query cannot leak information, taking into account previous ones
- but refusing to answer can leak valuable information
- and rich query language can lead to undecidable problems

Perturbated data

- execute queries on perturbated but unreleased versions of the database
- mostly identical to full data release with perturbation!

Sampling

- compute the query on a sample of the database
- different samples for different queries

Noisy answers

- compute the exact answer on the original database
- return a noisy version of the answer
- close to sampling in some situations

Rationale

- provide strong privacy guarantees (mathematically proven!)
- protection against identity disclosure in a strong sense: the attacker cannot guess whether a person belongs to a database or not
- very broad threat model: the attacker can use whatever auxiliary information she wants

Informal definition

A query mechanism is differentially private if its results do not change significantly when applied to two databases which differ only by the inclusion of one person

Formal definition

Background

- D: a database
- \mathcal{X}^N , the set of all databases of size at most N
- ► d(D₁, D₂): distance between databases, the number of distinct instances
- randomized algorithm: an algorithm with random outputs

Definition (Dwork, Nissim, McSherry and Smith, 2006)

A randomized algorithm \mathcal{M} is (ϵ, δ) -differentially private if for any possible solution set S, and any pair of databases \mathcal{D}_1 and \mathcal{D}_2 with $d(\mathcal{D}_1, \mathcal{D}_2) \leq 1$ we have

$$\mathbb{P}(\mathcal{M}(\mathcal{D}_1) \in \boldsymbol{S}) \leq \delta + \exp(\epsilon)\mathbb{P}(\mathcal{M}(\mathcal{D}_2) \in \boldsymbol{S}).$$

When $\delta = 0$, \mathcal{M} is ϵ -differentially private.

Why?

Intuitive interpretation

symmetric definition:

 $\exp(-\epsilon)\left(\mathbb{P}(\mathcal{M}(\mathcal{D}_2)\in S)-\delta\right)\leq\mathbb{P}(\mathcal{M}(\mathcal{D}_1)\in S)\leq\delta+\exp(\epsilon)\mathbb{P}(\mathcal{M}(\mathcal{D}_2)\in S).$

$$\blacktriangleright \ \mathbb{P}(\mathcal{M}(\mathcal{D}_1) \in S) \simeq \mathbb{P}(\mathcal{M}(\mathcal{D}_2) \in S)$$

- ► an attacker cannot decide based on M(D_?) whether the database is D₁ or D₂
- protects *x* who is in D_1 and not in D_2 (or vice versa)
- notice that in practice, ϵ should be small, so $\exp(\epsilon) \simeq 1 + \epsilon$
Why?

Important property

- f a probability distribution depending on the result of \mathcal{M}
- *u* a function from the support of *f* to \mathbb{R}
- if \mathcal{M} is ϵ -differentially private

 $\exp(-\epsilon)\mathbb{E}_{A\sim f(\mathcal{M}(\mathcal{D}_2))}u(A) \leq \mathbb{E}_{A\sim f(\mathcal{M}(\mathcal{D}_1))}u(A) \leq \exp(\epsilon)\mathbb{E}_{A\sim f(\mathcal{M}(\mathcal{D}_2))}u(A)$

Interpretation: utilitarian point of view

- A: state-of-the-world
- u: utility function for a given person
- ► f(M(D)): probability distribution on the states of the world after releasing the result of M
- ε-df: no significant effect of a data release on the average utility

How?

Exact answers?

- arbitrary queries, e.g. M = "how many persons expected those with QI x are hiv positive?"
- an *exact* answer cannot be ϵ -df in a useful way:
 - exact answers are deterministic: $\mathbb{P}(\mathcal{M}(\mathcal{D}_i) = r_i) = 1$
 - ▶ if *x* is hiv positive, with $x \in D_1$ and $x \notin D_2$, $\mathbb{P}(\mathcal{M}(D_1) = r_1) = 1$ and $\mathbb{P}(\mathcal{M}(D_2) = r_1) = 0$
 - ▶ $\mathbb{P}(\mathcal{M}(\mathcal{D}_1) \in S) \le \exp(\epsilon)\mathbb{P}(\mathcal{M}(\mathcal{D}_2) \in S)$ is impossible!

Distortion is mandatory

- we must give approximate answers
- randomized ones are appropriate (unpredictable)

Embarrassing question

- objective: obtain an accurate estimate of the proportion of persons engaging in "insert here an embarrassing activity"
- question: "did you engage in ... last week?"
- answering algorithm:
 - 1. flip a coin
 - 2. if Tail, then respond truthfully
 - 3. if Head, flip another coin:
 - 3.1 if Tail, answer Yes
 - 3.2 if Head, answer No
- provides plausible deniability

Estimating the frequency

- p: true frequency of the activity (that shall not be named)
- P(answer=true) = P(answer=true|Tail as first result)¹/₂ + P(answer=true|Head first result)¹/₂
- ▶ $\mathbb{P}(\text{answer=true}) = \frac{p}{2} + \frac{1}{4}$

• thus
$$p = 2\mathbb{P}(answer=true) - \frac{1}{2}$$

Estimating the frequency

- p: true frequency of the activity (that shall not be named)
- P(answer=true) = P(answer=true|Tail as first result)¹/₂ + P(answer=true|Head first result)¹/₂
- ▶ $\mathbb{P}(\text{answer=true}) = \frac{p}{2} + \frac{1}{4}$
- thus $p = 2\mathbb{P}(answer=true) \frac{1}{2}$

Differential privacy like analysis

- $\mathbb{P}(\text{answer=true}|\text{doing it} = true) = \frac{3}{4}$
- $\mathbb{P}(answer=true|doing it = false) = \frac{1}{4}$
- ratio: 3 (also for answer=false), so we are in a way In 3-differentially private

Definition (Sensitivity)

Let *f* be a function from \mathcal{X}^N to \mathbb{R}^k . The sensitivity of *f* is

$$\Delta f = \max_{d(\mathcal{D}_1, \mathcal{D}_2) \leq 1} \|f(\mathcal{D}_1) - f(\mathcal{D}_2)\|_1.$$

Interpretation

- the sensitivity of *f* is the maximum value by which the output of *f* can change by removing someone from the database
- e.g. if f = is "how many persons in the database do this and that", then $\Delta f = 1$

Definition (Laplace distribution)

The centered Laplace distribution with scale *b* is a continuous distribution on \mathbb{R} with density $f(x|b) = \frac{1}{2b} \exp\left(-\frac{|x|}{b}\right)$. Notation: $Y \sim Lap(b)$

Definition (Laplace mechanism)

Let *f* be a function from from \mathcal{X}^N to \mathbb{R}^k . The Laplace mechanism $\mathcal{M}_{l,f,\epsilon}$ is defined from \mathcal{X}^N to \mathbb{R}^k as the random algorithm that answers $\mathcal{M}_{l,f,\epsilon}(\mathcal{D}) = f(\mathcal{D}) + (Z_1, \dots, Z_k)^T$, where the Z_j are independent Laplace distributed random variables with scale $\frac{\Delta f}{\epsilon}$.

Theorem

The Laplace mechanism is ϵ -differentially private.

Proof

Comparing densities of the outputs $\mathcal{M}_{l,f,\epsilon}(\mathcal{D}_1)$ and $\mathcal{M}_{l,f,\epsilon}(\mathcal{D}_2)$

$$\begin{split} \frac{p_{\mathcal{D}_1}(t)}{p_{\mathcal{D}_2}(t)} &= \prod_{i=1}^k \frac{\exp\left(-\epsilon \frac{|f(\mathcal{D}_1)_i - t_i|}{\Delta f}\right)}{\exp\left(-\epsilon \frac{|f(\mathcal{D}_2)_i - t_i|}{\Delta f}\right)} \\ &= \prod_{i=1}^k \exp\left(\epsilon \frac{|f(\mathcal{D}_2)_i - t_i| - |f(\mathcal{D}_1)_i - t_i|}{\Delta f}\right) \\ &\leq \prod_{i=1}^k \exp\left(\epsilon \frac{|f(\mathcal{D}_2)_i - f(\mathcal{D}_1)_i|}{\Delta f}\right) \\ &= \exp\left(\epsilon \frac{\|f(\mathcal{D}_2)_i - f(\mathcal{D}_1)_i\|_1}{\Delta f}\right) \\ &\leq \exp(\epsilon) \end{split}$$

Noise of the Laplace Mechanism

Theorem If *f* is from \mathcal{X}^N to \mathbb{R}^k , then

$$\mathbb{P}\left(\|f(\mathcal{D})-\mathcal{M}_{l,f,\epsilon}(\mathcal{D})\|_{\infty}\geq \frac{\Delta f}{\epsilon}\ln\left(\frac{k}{\delta}\right)\right)\leq \delta.$$

Example

- medical database
- f: counting query of the form "how many persons have medical condition z?" (k = 1)
- $\Delta f = 1$ (true in general for counting queries!)
- bound with 1% confidence, i.e. $\delta = 0.01$
- ▶ in at least 99% of the queries, the count is at most $\frac{\log 100}{\epsilon}$ away from the true count

Example

Example

Discussion

- ► ϵ = 0.01
 - guarantees that probabilities with or without any person are within 1% one from another
 - induces a noise of at most 460 in 99 % of the cases
 - the size of the database has not effect on those values (for counting queries!)
- this is:
 - enormous for small size data and small size answers
 - well within margins for large scale data
- Differential privacy is big data oriented

An obvious attack

- just repeatedly ask the same query and average the results!
- queries can be carefully crafted to avoid being obviously identical!

Protection is impossible

- theoretical results show that if one allows arbitrary complex queries, either the answers are very inaccurate or the underlying database can be recovered using less than a linear number of queries (with respect to the size of the database)
- in practice one must limit the number of queries that can be answered
- access control is mandatory!

Principle

- allow to each user a total privacy budget
- \blacktriangleright each query to a $\epsilon\text{-dp}$ mechanism reduces the budget by ϵ
- when the budget is exhausted, the user cannot issue any more request to the database

Consequences

- access control is mandatory!
- a very important issue is to reduce the noise in the results for a fixed value of \epsilon: better use of the budget!
- a possible solution when the budget is exhausted is to throw away the data

Composing queries

Theorem

let \mathcal{M}_i be ϵ_i -dp for $i \in \{1, \ldots, k\}$. Then

$$\mathcal{M}(\mathcal{D}) = (\mathcal{M}_1(\mathcal{D}), \dots, \mathcal{M}_k(\mathcal{D}))$$

is $\sum_{i=1}^{k} \epsilon_i$ -dp.

Discussion

- differential privacy is one of the only framework that guarantees composition
- explains the issue with repeated queries:
 - applying k-times a e-dp mechanism corresponds to query once a ke-dp mechanism
 - from $\epsilon = 0.01$ with probabilities with 1% we move to
 - k = 10: probabilities within 10 %
 - k = 50: probabilities within 65 %!

budget drain...

Theorem

let M_i be ϵ_i -dp for $i \in \{1, ..., k\}$. Let $C_1, ..., C_k$ be arbitrary disjoint subsets of a database D. Then

$$\mathcal{M}(\mathcal{D}) = (\mathcal{M}_1(\mathcal{D} \cap C_1), \dots, \mathcal{M}_k(\mathcal{D} \cap C_k))$$

is $max_{i \in \{1,...,k\}} \epsilon_i$ -dp.

Application

- parallel composition enables non naive extension of the Laplace framework
- particularly useful for related queries
- efficiently limits the budget spending

Histogram queries

Setting

- assume given a partition of D into k subsets
- ask for the number of instances in each subset

Naive solution

- apply the Laplace mechanism to k queries, one per subset
- ► if each query is answered with *ϵ*-dp, then the composed query is *kϵ*-dp

Histogram analysis

- consider the k dimensional query that answers the k counts at once
- its sensitivity is 1 as the subsets are disjoint
- thus using k independent Laplace noise leads to a ε-dp mechanism!

Setting

- compute the empirical distribution of some property
- report the most common value (and the number of times it occurs)

Histogram case

- when the values of the property are mutually exclusive
- straightforward application of the histogram query
- the most common value is computed by the analyst after receiving the histogram

More general setting

- in some situations, the values are not exclusive, e.g. in case of repeated measurements over the same persons
- then the histogram case does not apply: the sensitivity is proportional to the number of values!

Most popular movie

- data set: grades for movies by users
- query: what is the movie that received the most positive grades?
- naive solution
 - for each movie compute the number of positive grades
 - add independent Laplace noise to each count
 - report the counts
- sensitivity: up to the number of movies!

Report noisy max mechanism

- compute internally all the counts needed
- add independent Laplace noise with scale $\frac{1}{\epsilon}$ to each count
- report the winning value based on the noisy counts (and possibly the winning count)

Report noisy max is ϵ -differentially private.

Generalization

- selecting the "best" something according to some external utility measure
- applies in particular when the mapping between instances and utility is very sensitive

Setting

- \blacktriangleright a set of possible answers ${\cal R}$
- a utility measure *u* from $\mathcal{X}^N \times \mathcal{R}$ to \mathbb{R}
- ideal answer: $\arg \max_{r \in \mathcal{R}} u(\mathcal{D}, r)$

Exponential mechanism

Sensitivity

the sensitivity of u is given by

$$\Delta u = \max_{r \in \mathcal{R}} \max_{d(\mathcal{D}_1, \mathcal{D}_2) \leq 1} |u(\mathcal{D}_1, r) - u(\mathcal{D}_2, r)|$$

notice this is not a sensitivity with respect to r!

Exponential mechanism

output r with probability proportional to exp

$$\left(\frac{\epsilon u(\mathcal{D},r)}{\Delta u}\right)$$

somewhat related to the softmax principle

The Exponential mechanism is ϵ -differentially private.

Mechanisms

- many other mechanisms have been designed
- the main idea is to exploit the structure of the query to reduce the budget consumption
- a particular attention has been given to answering to a set of queries rather than to a single one
- Iimited by a recent result from Ullman: if we do not restrict the range of queries or accept exponential running time, the Laplace mechanism is essentially optimal

Practical implementations

- PINQ and related models
- tools to analyze automatically release mechanisms

Additional topics

Differentially private data science

- very active field of research
- request based point of view: contradictory with the data science day to day practice
- dp version of machine learning algorithms:
 - decision trees
 - general stochastic gradient descent
 - k-means and other unsupervised models

Synthetic data release

- an old solution: build a statistical model of the data and release a sample generated by the model
- ongoing work on relating this approach to differential privacy

Differential privacy

- © strong theoretical guarantees
- © very active field with constant progress
- very complex
- e negative results

Future

- privacy guarantees are here to stay
- more and more large scale adoption (official statistical institutes, Google, Apple, etc.)
- regulation will probably impose some minimal guarantees in the future

- k-anonymity and related deterministic methods tend to be phased out
- full data release is impossible without introducing privacy risks
- privacy breaches propagate and cannot be undone
- the "look first" approach of data science is fundamentally in contradiction with the request oriented approach of secure systems
- differential privacy and related concepts are slowly becoming the main solution for privacy preservation

https://imgur.com/gallery/PazzF

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/

Last git commit: 2021-01-19 By: Fabrice Rossi (Fabrice.Rossi@apiacoa.org) Git hash: 97cfd0a9975cf193f5790845c00e476c1572a327

► July 2020: added

- inferential disclosure
- disclosure risk calculation
- PRAM and shuffling
- Mondrian
- July 2018: initial version