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Privacy in a data-driven world

Data collection
I is massive
I is here to stay (very probably)
I is invasive and potential dangerous
I is very useful and practical

Data science
I is based on data
I provides better results with accurate data
I needs very personal data to provide

personalized experiences
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Trust and attacks

Trust is mandatory
I personal data are provided only to trusted collectors:

I people will lie to collectors they do not trust
I people will use protection techniques such as ad-blockers

I data science tolerates noisy data but not false ones!

Collection and attack model
I a large number of individuals
I one or several trusted collectors
I external attackers who cannot access directly to the collected data
I but collectors share with the attackers some information about the

collected data
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Limitations

A limited model
I no rogue collector:

I collectors are trusted
I they operate as they declare to do

I perfect security:
I data are secured in the collectors database systems
I attackers cannot access the collected data

Addressing the limitations
I out of scope of this course
I IT security
I legal enforcement
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Data release

The core challenge

How to publish information about the content of a database without
compromising the privacy of the contributors?

Practical examples
I data breach as a data release
I data leaks (e.g. misconfigured social networks)
I internal distribution, i.e. from collectors to data scientists

(especially subcontractors)
I open data (public statistics)
I data reuse and data brokers
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Regulatory environment

GDPR
I General Data Protection Regulation (05/25/2018)
I Privacy by design and by default

I data minimisation principle:

Personal data shall be adequate, relevant and limited to what is
necessary in relation to the purposes for which they are processed

I anonymization: irreversible transformation that prevent any
re-identification of the data

I pseudonymization: re-identification is possible with additional data
(that have to be kept separated)
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Outline

Models

Full data release

Query answering
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Database

Standard tabular data
I observations/instances/rows are elements of X
I with X = X1 ×X2 × . . .×XP , P variables/attributes
I Xk is either R (numerical data) or finite (categorical/nominal data)
I some variables are identifiers: they can be used to identify with

certainty the associated person (e.g., social security number)
I some variables are sensitive: they must be protected (e.g.,

medical condition)

Extensions
I relational data:

I standard data
I and in addition a graph of interaction between the instances

I multi-relational data: several graphs!
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Publishing models

Full data release
I a trusted collector wants to release her database at a micro-level:

I the released database is comparable to the private one
I it contains individual data (e.g. “rows” of the database)

I attackers gain access to this database and can do whatever they
want with it

Query answering
I a trusted collector wants to allow requests on her database:

I sql like queries with only aggregate answers
I no direct individual data results

I attackers can issue “arbitrary” queries (within some budget and
other limitations)
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Risks

Identity disclosure (record linkage)
The attacker can link data in a published database to a specific person

Attribute disclosure (attribute linkage)
The attacker can guess the exact value of a hidden attribute of a
specific person

Inferential disclosure
The attacker can make more accurate predictions on the value of a
hidden attribute of a specific person
I via standard machine learning on the data set
I via partial linkage
I using both
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Potential consequences

Examples
I anonymous publishing is impaired by identity disclosure
I potential dangerous hidden attributes include religious views,

political views, sexual orientation, etc.
I publishing a database might allow an attacker to disclose

information in another data source: the fact that collection of
sensitive information is strongly regulated in some countries does
not prevent its release through a breach of anonymity

I trails following: revealing hidden attributes can ease subsequent
attacks
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Auxiliary information

Naive solution
I just remove the identifier variables (or obfuscate them)
I (John, Doe, 36, Male, Roman Catholic, 50k) becomes

(98b1aa7b4, 36, Male, Roman Catholic, 50k)
I pseudonymization if the obfuscated identifier can be mapped back

to the original identifier

Unreliable scheme
I if the attacker knows (auxiliary information):

I that John Doe is in the database
I that he is Male and earns 50k a year

I then the attacker might guess John is 98b1aa7b4
I or more generally narrow down the possible records associated to

John Doe
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Quasi-identifier

Secondary identification
I identifiers are removed from an anonymized database by essence
I but some other variables can identify a person or at least a group

of instances to which the person must belong
I quasi-identifiers

Linkage attacks
I one of the main de-anonymization technique
I conditions:

I auxiliary information
I non anonymous data in the auxiliary information

I principle:
I match quasi-identifiers from a data set to another
I identity/attribute disclosure
I inferential disclosure for a large match
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Well known de-anonymization cases

Hospital discharge data (1997)
I in the USA, hospitals release anonymized discharge data:

I include health related information (diagnoses, procedures, etc.)
I and potential quasi-identifiers: date of birth, gender and ZIP code

I cross-referencing with publicly available voter lists:
I identical quasi-identifiers!
I on some experiments birth date + ZIP code identify exactly 69 % of

the listed persons

DNA sequence identification (2004)
I DNA sequences can be shared for research (in the USA)
I they are associated to hospital visits, hence to discharge data
I trail matching algorithm
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Well known de-anonymization cases

The AOL fiasco
I search data released in 2006, available a few days only:

I 20 millions search keywords
I 3-month period
I 650 000 users
I queries are associated to users
I users are identified by unique numerical id

I de-anonymization by Barbaro and Zeller from the NY times
I localization keywords (“landscapers in Lilburn, Ga”)
I last name search
I cross-reference with public data (e.g. phonebook listings)

I quasi-identifiers:
I a single search query is seldom a quasi-identifier
I identification become more and more precise with added queries
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Well known de-anonymization cases

The Netflix Prize
I ratings data released in 2006:

I ∼ 100 millions of ratings
I ∼ 480 thousands users
I ∼ 18 thousands movies
I an observation: user ID (pseudonymous), movie ID (non

anonymous), date of grade, grade
I perturbations have been applied: rating deletions, rating insertions,

rating date modifications
I de-anonymization by Narayanan and Shmatikov in 2007:

I similar to AOL case: no quasi-identifier but a collection of
discriminant variables (ratings with dates)

I similarity based search
I works well on sparse databases
I IMDb as an example of auxiliary information source
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The need for data modification

Anonymization is hard
I under a naive attack model (no auxiliary information), removing

direct identifiers is sufficient
I but auxiliary information is always available (now more frequently

than ever!)
I once non-anonymous data are available, quasi-identifiers enables

one to propagate identities

Modifications
I release a modified version of the database
I possible modifications:

I noise
I generalization (e.g. replace a complete 5 digits ZIP code by a

truncated one)
I etc.
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Utility

Trade-off
One cannot at the same time
I maximize the precision of the data
I and minimize the privacy risk

Utility measures
I released databases must remain useful
I utility measures have been proposed to quantify this:

I marginal distribution preservation
I dependency preservation
I machine learning oriented measures (e.g. AUC preservation)
I etc.
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Utility versus Privacy

Utility first
I utility preservation guarantees
I post hoc test of the privacy guarantees (e.g. the probability of

re-identification under some threat model)
I quite common in official statistical institutes

Privacy first
I privacy properties guarantees
I post hoc test of the utility guarantees
I main focus of the privacy research in computer science and

mathematics
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Full data release

Threat model
I a trusted collector wants to release her database at a micro-level:

I the released database is comparable to the private one
I it contains individual data (e.g. “rows” of the database)

I attackers gain access to this database and can do whatever they
want with it, including using auxiliary non-anonymous data

Perturbation based solutions
I stochastic: additive noise, swapping and related methods
I partition based: approximation, recoding and generalization

R package: sdcMicro
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Disclosure risk

Attack model
I linkage attack
I targeted (individual) or global (find someone vulnerable)

Disclosure risk
I Can the attacker identify someone based on a pseudo-identifier?
I standard approach

I compute an “anonymized” data set (protected data set)
I compute disclosure risks on this data set
I possibly using the original data set for reference
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Disclosure risk

Estimating the risk
I Diversity measures:

I count the number of instances that match some given values of the
pseudo-identifier

I e.g.: how many Female between 25 and 35 in the data set?
I k-anonymity, l-diversity, t-closeness, etc.

I Survey theory based:
I probability that a sample unique person is population unique
I more general probability estimation
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Continuous variables

Everybody is unique
I depending on the data precision
I distance based attack

“Continuous” risks
I distance based

I compute k-nearest neighbors of the protected data set in the original
data set

I risk: percentage of protected data whose original observation is
among those k-NN (with a small k)

I interval disclosure
I uni-dimensional queries
I interval around each value
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Utility first methods

Rationale
I statistical point of view
I data released to enable researchers to conduct studies that

involve human beings (sociology, medicine, etc.)
I researchers are implicitly trusted!
I utility first:

I the methods try to preserve some important features (e.g., the
covariance matrix)

I privacy is checked afterward
I typically stochastic methods
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Noise

Simple additive noise
I rather than releasing Xk release Xk + εk where εk is a noise (e.g.

Gaussian noise)
I properties:

straightforward
limited effects on univariate estimates (e.g. mean)
limited to numerical attributes
inconsistent multivariate estimates (e.g. covariance matrix)
low level of protection
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More noise

Correlated additive noise
I generate noise with a covariance matrix proportional to the one of

the data
I solves the covariance estimation issue

I but one might need to use a robust covariance estimation method!
I improves a bit the protection level
I variants preserve more elements

Swapping
I exchange values of attributes between instances
I involve partitioning the attributes into two subsets
I controlled preservation of dependencies is possible
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Post-randomization Method

PRAM
I categorical data
I for each variable

I chose a stochastic matrix
I replace a category by a randomly selected one base on the

stochastic matrix
I full independence model (variables and observations)

I obvious multivariate extension (useful to protect e.g.
dependencies)

I unbiased estimates of category frequencies given the stochastic
matrix

I variables with a large number of categories: group based
stochastic matrix
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Shuffling

Model based approach
I principle

I leverage dependencies between some continuous variables X and
other variables S

I estimate X | S and replace X by a conditional sample
I a possible implementation

I perform a multivariate regression of X over S
I estimate the covariance matrix of the residuals
I generate multivariate noise around the fitted values
I for each dimension replace a generated value by the original value

with the same rank respectively in the generated data set and in the
original one
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Privacy first methods

Privacy first strategy
I identify a privacy threat
I build the perturbation as a protection against the threat
I identity disclosure:

I threat: find a single record in the released database using part of its
content (quasi-identifiers)

I protection: make sure that no combination of quasi-identifiers can be
used to select a single record

I typically deterministic methods from computer science
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K-anonymity

Principle
I proposed by P. Samarati and L. Sweeney in 1998
I consider a database with P variables among which X1, . . . ,XL

form a quasi-identifier
I the database satisfies k anonymity for an integer k if for any value

(x1, . . . ,xL) ∈ X1 × . . .×XL, there are at least k instances in the
database that begin with (x1, . . . ,xL)

I protection: if the attacker knows the quasi-identifier for a person,
she cannot recover less than k compatible persons in the
database
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Example

Ethnicity Birth Gender ZIP Condition
1 Black 1965 M 02141 short breath
2 Black 1965 M 02142 chest pain
3 Black 1965 F 02131 hypertension
4 Black 1965 F 02132 hypertension
5 Black 1964 F 02131 obesity
6 Black 1964 F 02132 chest pain
7 White 1964 M 02131 chest pain
8 White 1964 M 02132 obesity
9 White 1964 M 02133 short breath

10 White 1967 M 02131 chest pain
11 White 1967 M 02132 chest pain

Original database
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Example

Ethnicity Birth Gender ZIP Condition
1 Black 1965 M 0214* short breath
2 Black 1965 M 0214* chest pain
3 Black 1965 F 0213* hypertension
4 Black 1965 F 0213* hypertension
5 Black 1964 F 0213* obesity
6 Black 1964 F 0213* chest pain
7 White 1964 M 0213* chest pain
8 White 1964 M 0213* obesity
9 White 1964 M 0213* short breath

10 White 1967 M 0213* chest pain
11 White 1967 M 0213* chest pain

database with 2-anonymity with respect to the first 4 variables
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Protection and non-protection

Identity protection
I is obvious
I but limited by the value of k

Attribute protection
I is not guaranteed (at all)
I without auxiliary information, the database releases the marginal

distribution of private variables
I with auxiliary information, we have conditional distributions that

might differ from the global one!
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Example

Ethnicity Birth Gender ZIP Condition
1 Black 1965 M 0214* short breath
2 Black 1965 M 0214* chest pain
3 Black 1965 F 0213* hypertension
4 Black 1965 F 0213* hypertension
5 Black 1964 F 0213* obesity
6 Black 1964 F 0213* chest pain
7 White 1964 M 0213* chest pain
8 White 1964 M 0213* obesity
9 White 1964 M 0213* short breath

10 White 1967 M 0213* chest pain
11 White 1967 M 0213* chest pain

Marginal distribution of Condition

chest pain hypertension obesity short breath
0.4545 0.1818 0.1818 0.1818
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Example

Ethnicity Birth Gender ZIP Condition
1 Black 1965 M 0214* short breath
2 Black 1965 M 0214* chest pain
3 Black 1965 F 0213* hypertension
4 Black 1965 F 0213* hypertension
5 Black 1964 F 0213* obesity
6 Black 1964 F 0213* chest pain
7 White 1964 M 0213* chest pain
8 White 1964 M 0213* obesity
9 White 1964 M 0213* short breath

10 White 1967 M 0213* chest pain
11 White 1967 M 0213* chest pain

Marginal distribution of Condition for (White, 1964, M, 02131)

chest pain hypertension obesity short breath
0.3333 0.0000 0.3333 0.3333
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Example

Ethnicity Birth Gender ZIP Condition
1 Black 1965 M 0214* short breath
2 Black 1965 M 0214* chest pain
3 Black 1965 F 0213* hypertension
4 Black 1965 F 0213* hypertension
5 Black 1964 F 0213* obesity
6 Black 1964 F 0213* chest pain
7 White 1964 M 0213* chest pain
8 White 1964 M 0213* obesity
9 White 1964 M 0213* short breath

10 White 1967 M 0213* chest pain
11 White 1967 M 0213* chest pain

Marginal distribution of Condition for (Black, 1965, F, 02131)

chest pain hypertension obesity short breath
0.0000 1.0000 0.0000 0.0000
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Achieving k-anonymity

Generalization
I proposed by P. Samarati and L. Sweeney in 1998
I based on the idea that data can be “generalized”, that is

approximated, to hide identifying values:
I full ZIP code: 5 digits (02141)
I approximation: 4 first digits (0214*)
I progressive approximation

I data are not noisy but imprecise
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Domains and generalization

Domains
I domains are finite set of values
I domains are partially ordered (generality order)
I ground domain: Xl , the most precise/complete description
I a maximal domain (for the partial order) contains only one value
I a domain is more general than another one if it has fewer values
I a domain has at most one direct more general domain
I example:

I ground domain: age in years Xl = {0, 1, 2, . . . , 130}
I direct generalization of Xl : age rounded with 5 years precision
X 5

l = {0, 5, 10, . . . , 130}
I direct generalization of X 5

l : age rounded with 10 years precision
X 10

l = {0, 10, 20, . . . , 130}
I direct generalization of X 10

l : age unreleased X none
l = {unreleased}
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Hierarchical generalization

Hierarchy of values
I values from one domain are mapped to values from its direct more

general domain
I this creates a hierarchy of values from precise values to general

ones

World

Europe

France

Île de France

Paris

75001 ... 75020

Seine-Saint-Denis

93001 ... 93079

...

...

Germany

Bayern

Oberbayern

München ...

...

...
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Achieving k-anonymity

Generalization
I generalization consists in replacing a value by its “generalized”

version at an upper level of the corresponding hierarchy
I generalization is applied:

I uniformly for each variable: all the values of a variable are
generalized at the same level in the hierarchy

I arbitrarily for different variables: two distinct variables can be
generalized to different levels of their respective hierarchy

I the distance between a variable and its generalization is the
number of levels in the hierarchy between the ground domain and
the domain of the generalization (including this one)

I among all the generalizations that achieve k-anonymity, one
prefers the database that is the closest to the original one
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Example

Ethnicity Birth Gender ZIP Condition
1 Black 1965 M 02141 short breath
2 Black 1965 M 02142 chest pain
3 Black 1965 F 02131 hypertension
4 Black 1965 F 02132 hypertension
5 Black 1964 F 02131 obesity
6 Black 1964 F 02132 chest pain
7 White 1964 M 02131 chest pain
8 White 1964 M 02132 obesity
9 White 1964 M 02133 short breath

10 White 1967 M 02131 chest pain
11 White 1967 M 02132 chest pain

Original database
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Example

Ethnicity Birth Gender ZIP Condition
1 Black 1965 M 0214* short breath
2 Black 1965 M 0214* chest pain
3 Black 1965 F 0213* hypertension
4 Black 1965 F 0213* hypertension
5 Black 1964 F 0213* obesity
6 Black 1964 F 0213* chest pain
7 White 1964 M 0213* chest pain
8 White 1964 M 0213* obesity
9 White 1964 M 0213* short breath

10 White 1967 M 0213* chest pain
11 White 1967 M 0213* chest pain

Generalization: (0,0,0,1,0)
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Example

Ethnicity Birth Gender ZIP Condition
1 Black 1965 * 02141 short breath
2 Black 1965 * 02142 chest pain
3 Black 1965 * 02131 hypertension
4 Black 1965 * 02132 hypertension
5 Black 1964 * 02131 obesity
6 Black 1964 * 02132 chest pain
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8 White 1964 * 02132 obesity
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Example

Ethnicity Birth Gender ZIP Condition
1 Black 1965 * 0214* short breath
2 Black 1965 * 0214* chest pain
3 Black 1965 * 0213* hypertension
4 Black 1965 * 0213* hypertension
5 Black 1964 * 0213* obesity
6 Black 1964 * 0213* chest pain
7 White 1964 * 0213* chest pain
8 White 1964 * 0213* obesity
9 White 1964 * 0213* short breath

10 White 1967 * 0213* chest pain
11 White 1967 * 0213* chest pain

Generalization: (0,0,1,1,0)
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Extensions

Outliers suppression
I rare values in a quasi-identifier are difficult to anonymize
I this can lead to over-generalization
I a simple solution consists in removing outliers (within specified

limits)

Multidimensional generalization
I multidimensional generalization function: use contexts to

generalize an instance
I adaptive generalization level
I most well known method: Mondrian
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Mondrian

Partition based approach
I two key principles

I partition the data space
I replace values by statistics over the classes of the partition (mean,

span, etc.)
I proposed solution

I built recursively a partition tree based on
I median cut point for numerical variables
I a given generalization hierarchy for categorical variables

I accept a split only if both leaves contain at least k objects
I possibly chose an optimal splitting variable based on some

additional quality metric
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Optimization

Quality metrics
I minimal generalizations: databases that achieve k-anonymity with

minimal “distance” on each variable
I multiple solutions in some situations
I ad hoc criteria can be used to choose one of the minimal solutions

Complexity
I obtaining minimal generalization is NP-hard in general
I approximation algorithms do not have very good guarantees
I but heuristics give acceptable results (k-anonymity is guaranteed,

minimality is not)
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K-anonymity

Summary

guarantees against identity disclosure
flexible framework
highly dependent to the chosen quasi-identifiers
sub-optimal solutions (NP-hardness)
no attribute protection
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Alternative and extensions

l-diversity
I k-anonymity does not protect individual attributes
I l-diversity fixes this problem:

I proposed in 2006 by Machanavajjhala et al.
I general principle: a database is l-diverse if any group of instances

identified by a quasi-identifier contains at least l “well represented”
values for the sensitive attribute

I several instantiations:
I minimal entropy
I recursive diversity: bound on the ratio between the frequency of the

most frequent value and the frequency of the less frequent values
I variations around non-sensitive values (e.g. healthy) and

sensitive-ones
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Closeness

Limitations of l-diversity
I achievability: the original data could not satisfy l-diversity globally!
I semantic similarity:

I l-diversity does not take into account links between the values of the
variables

I diversity among similar values is not sufficient to protect an attribute

t-closeness
I proposed in 2007 by Li et al. (refined in 2010)
I core principle: ensuring conditional distributions (i.e. in group of

instances) are similar to the marginal distribution
I instantiation via information theoretic measures (such as the

KL-divergence) would only solve the achievability problem
I differences between distributions are measured via optimal

transport (the earth mover distance)
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https://ieeexplore.ieee.org/abstract/document/4221659/
https://sites.google.com/site/litiancheng/tkde09-closeness.pdf


In summary

Protection against linkage attacks
I with respect to specific quasi-identifiers
I identity: k-anonymity
I attribute: closeness and related methods
I generalization/partition based (with help of suppression)

I fast sub-optimal solutions
I induce frequently a significative loss in data quality
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Composition

Independent anonymized releases
I several databases controlled by non coordinating collectors
I some common attributes
I each collector releases an anonymized database (with e.g.

k-anonymity)
I some persons belong to more than one database

Intersection attack
I analyzed by Ganta et al. in 2008
I consists simply in intersecting groups that match a quasi-identifier

in different databases
I leverages the fact sensitive data a kept exact
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https://arxiv.org/abs/0803.0032


Limitations

Quasi-identifiers
I must be specified before data release
I non obvious trade-off:

I minimal set of attributes: low protection, but high quality data
I large set of attributes: high protection, but might be impossible to

reach without a massive loss in data quality
I skewed and long tail distributions:

I typically power law distributed attributes
I the vast majority of persons have the same value: intrinsically

anonymous
I but persons have very atypical values: must be aggressively

modified⇒ destroys marginal distributions

55



Beyond quasi-identifiers

A limited model
I quasi-identifiers are public (non sensitive) data that can be used to

identify a person
I but the attacker might know private (sensitive) data also!
I Netflix Prize:

I private information: movie ratings with dates
I typical skewed distribution: rare movies, compulsive watchers, etc.
I re-identification from private data is very easy: e.g. 99 % of users

are unique given 8 movie ratings and approximate rating dates!
I private data obtained from IMDb, but other sources could be used

(e.g. blog posts, direct interaction, etc.)
I perturbations of the ratings would reduce strongly the interest of the

database
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Social networks

Relational data
I data + graph
I new disclosure risk: link disclosure
I much more complex anonymization problem:

I added value of relational data: the graph structure!
I new identification source: the graph structure!
I typical example:

I degree based identification
I degree anonymity
I obtained by inserting links, deleting links and swapping links
I but the degree follows generally a skewed distribution!

I generalization at the graph level:
I cluster of nodes
I cluster of edges
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Social networks

Correlated neighborhood
I measure the resemblance between two nodes as the agreement

between their connection:
I A: adjacency matrix (Aij = 1⇔ i and j are connected)
I s(i, j) = 1

N

∑
k Aik Ajk − 1

N2

(∑
k Aik

) (∑
k Ajk

)
I characteristic vector of a node:

I vector of agreements, (s(i, 1), . . . , s(i,N))
I very robust to limited random modification of the graph

I re-identification via characteristic vectors
I ordering sensitive and theoretically NP-hard
I efficient heuristics for sparse graphs
I very efficient re-identification scheme, even against protected graphs
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Summary

Solutions...
I a collection of data release methods
I utility oriented (noise)
I privacy oriented (generalization)

with strong limitations!
I quasi-identifiers are naive, anything interesting can be used to

re-identify persons
I k-anonymity (and related constraints) is essentially impossible to

apply in high dimension
I the lack of guaranteed composition properties creates dangerous

future opportunities for attackers
I full data release is inherently dangerous

59



Summary

Solutions...
I a collection of data release methods
I utility oriented (noise)
I privacy oriented (generalization)

with strong limitations!
I quasi-identifiers are naive, anything interesting can be used to

re-identify persons
I k-anonymity (and related constraints) is essentially impossible to

apply in high dimension
I the lack of guaranteed composition properties creates dangerous

future opportunities for attackers
I full data release is inherently dangerous

59



Outline

Models

Full data release

Query answering

60



Query answering

Threat model
I a trusted collector wants to allow requests on her database:

I sql like queries with only aggregate answers
I no direct individual data results

I attackers can issue “arbitrary” queries (within some budget and
other limitations)

Links to full data release
I queries can use quasi-identifiers (QI) to select groups exactly as

in full data release
I aggregate answers can be used to infer attributes via

differentiating attacks (comparing the results of two queries):
I how many persons in the database have aids?
I how many persons expected those with QI x have aids?
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Classical solutions

Query auditing
I verify that a query cannot leak information, taking into account

previous ones
I but refusing to answer can leak valuable information
I and rich query language can lead to undecidable problems

Perturbated data
I execute queries on perturbated but unreleased versions of the

database
I mostly identical to full data release with perturbation!
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Classical solutions

Sampling
I compute the query on a sample of the database
I different samples for different queries

Noisy answers
I compute the exact answer on the original database
I return a noisy version of the answer
I close to sampling in some situations
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Differential privacy

Rationale
I provide strong privacy guarantees (mathematically proven!)
I protection against identity disclosure in a strong sense: the

attacker cannot guess whether a person belongs to a database or
not

I very broad threat model: the attacker can use whatever auxiliary
information she wants

Informal definition
A query mechanism is differentially private if its results do not change
significantly when applied to two databases which differ only by the
inclusion of one person
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Formal definition

Background
I D: a database
I XN , the set of all databases of size at most N
I d(D1,D2): distance between databases, the number of distinct

instances
I randomized algorithm: an algorithm with random outputs

Definition (Dwork, Nissim, McSherry and Smith, 2006)
A randomized algorithmM is (ε, δ)-differentially private if for any
possible solution set S, and any pair of databases D1 and D2 with
d(D1,D2) ≤ 1 we have

P(M(D1) ∈ S) ≤ δ + exp(ε)P(M(D2) ∈ S).

When δ = 0,M is ε-differentially private.
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Why?

Intuitive interpretation
I symmetric definition:

exp(−ε) (P(M(D2) ∈ S)− δ) ≤ P(M(D1) ∈ S) ≤ δ + exp(ε)P(M(D2) ∈ S).

I P(M(D1) ∈ S) ' P(M(D2) ∈ S)

I an attacker cannot decide based onM(D?) whether the database
is D1 or D2

I protects x who is in D1 and not in D2 (or vice versa)
I notice that in practice, ε should be small, so exp(ε) ' 1 + ε
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Why?

Important property
I f a probability distribution depending on the result ofM
I u a function from the support of f to R
I ifM is ε-differentially private

exp(−ε)EA∼f (M(D2))u(A) ≤ EA∼f (M(D1))u(A) ≤ exp(ε)EA∼f (M(D2))u(A)

Interpretation: utilitarian point of view
I A: state-of-the-world
I u: utility function for a given person
I f (M(D)): probability distribution on the states of the world after

releasing the result ofM
I ε-df: no significant effect of a data release on the average utility
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How?

Exact answers?
I arbitrary queries, e.g. M =“how many persons expected those

with QI x are hiv positive?”
I an exact answer cannot be ε-df in a useful way:

I exact answers are deterministic: P(M(Di) = ri) = 1
I if x is hiv positive, with x ∈ D1 and x 6∈ D2, P(M(D1) = r1) = 1 and

P(M(D2) = r1) = 0
I P(M(D1) ∈ S) ≤ exp(ε)P(M(D2) ∈ S) is impossible!

Distortion is mandatory
I we must give approximate answers
I randomized ones are appropriate (unpredictable)
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Randomized response

Embarrassing question
I objective: obtain an accurate estimate of the proportion of

persons engaging in “insert here an embarrassing activity”
I question: “did you engage in ... last week?”
I answering algorithm:

1. flip a coin
2. if Tail, then respond truthfully
3. if Head, flip another coin:

3.1 if Tail, answer Yes
3.2 if Head, answer No

I provides plausible deniability
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Randomized response

Estimating the frequency
I p: true frequency of the activity (that shall not be named)
I P(answer=true) = P(answer=true|Tail as first result) 1

2 +

P(answer=true|Head first result) 1
2

I P(answer=true) = p
2 + 1

4

I thus p = 2P(answer=true)− 1
2

Differential privacy like analysis
I P(answer=true|doing it = true) = 3

4

I P(answer=true|doing it = false) = 1
4

I ratio: 3 (also for answer=false), so we are in a way
ln 3-differentially private

70



Randomized response

Estimating the frequency
I p: true frequency of the activity (that shall not be named)
I P(answer=true) = P(answer=true|Tail as first result) 1

2 +

P(answer=true|Head first result) 1
2

I P(answer=true) = p
2 + 1

4

I thus p = 2P(answer=true)− 1
2

Differential privacy like analysis
I P(answer=true|doing it = true) = 3

4

I P(answer=true|doing it = false) = 1
4

I ratio: 3 (also for answer=false), so we are in a way
ln 3-differentially private

70



Laplace mechanism

Definition (Sensitivity)
Let f be a function from XN to Rk . The sensitivity of f is

∆f = max
d(D1,D2)≤1

‖f (D1)− f (D2)‖1.

Interpretation
I the sensitivity of f is the maximum value by which the output of f

can change by removing someone from the database
I e.g. if f = is “how many persons in the database do this and that”,

then ∆f = 1
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Laplace mechanism

Definition (Laplace distribution)
The centered Laplace distribution with scale b is a continuous
distribution on R with density f (x |b) = 1

2b exp
(
− |x|b

)
. Notation:

Y ∼ Lap(b)

Definition (Laplace mechanism)
Let f be a function from from XN to Rk . The Laplace mechanism
Ml,f ,ε is defined from XN to Rk as the random algorithm that answers
Ml,f ,ε(D) = f (D) + (Z1, . . . ,Zk )T , where the Zj are independent
Laplace distributed random variables with scale ∆f

ε .

Theorem
The Laplace mechanism is ε-differentially private.
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Proof

Comparing densities of the outputsMl,f ,ε(D1) andMl,f ,ε(D2)

pD1 (t)
pD2 (t)

=
k∏

i=1

exp
(
−ε |f (D1)i−ti |

∆f

)
exp

(
−ε |f (D2)i−ti |

∆f

)
=

k∏
i=1

exp

(
ε
|f (D2)i − ti | − |f (D1)i − ti |

∆f

)

≤
k∏

i=1

exp

(
ε
|f (D2)i − f (D1)i |

∆f

)
= exp

(
ε
‖f (D2)i − f (D1)i‖1

∆f

)
≤ exp(ε)

73



Noise of the Laplace Mechanism

Theorem
If f is from XN to Rk , then

P
(
‖f (D)−Ml,f ,ε(D)‖∞ ≥

∆f
ε

ln

(
k
δ

))
≤ δ.

Example
I medical database
I f : counting query of the form “how many persons have medical

condition z?” (k = 1)
I ∆f = 1 (true in general for counting queries!)
I bound with 1% confidence, i.e. δ = 0.01
I in at least 99% of the queries, the count is at most log 100

ε away
from the true count
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Example

Discussion
I ε = 0.01

I guarantees that probabilities with or without any person are within
1% one from another

I induces a noise of at most 460 in 99 % of the cases
I the size of the database has not effect on those values (for counting

queries!)
I this is:

I enormous for small size data and small size answers
I well within margins for large scale data

I Differential privacy is big data oriented
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Repeating queries

An obvious attack
I just repeatedly ask the same query and average the results!
I queries can be carefully crafted to avoid being obviously identical!

Protection is impossible
I theoretical results show that if one allows arbitrary complex

queries, either the answers are very inaccurate or the underlying
database can be recovered using less than a linear number of
queries (with respect to the size of the database)

I in practice one must limit the number of queries that can be
answered

I access control is mandatory!
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Privacy budget

Principle
I allow to each user a total privacy budget
I each query to a ε-dp mechanism reduces the budget by ε
I when the budget is exhausted, the user cannot issue any more

request to the database

Consequences
I access control is mandatory!
I a very important issue is to reduce the noise in the results for a

fixed value of ε: better use of the budget!
I a possible solution when the budget is exhausted is to throw away

the data
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Composing queries

Theorem
letMi be εi -dp for i ∈ {1, . . . , k}. Then

M(D) = (M1(D), . . . ,Mk (D))

is
∑k

i=1 εi -dp.

Discussion
I differential privacy is one of the only framework that guarantees

composition
I explains the issue with repeated queries:

I applying k -times a ε-dp mechanism corresponds to query once a
kε-dp mechanism

I from ε = 0.01 with probabilities with 1% we move to
I k = 10: probabilities within 10 %
I k = 50: probabilities within 65 %!

I budget drain...
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Parallel composition

Theorem
letMi be εi -dp for i ∈ {1, . . . , k}. Let C1, . . . ,Ck be arbitrary disjoint
subsets of a database D. Then

M(D) = (M1(D ∩ C1), . . . ,Mk (D ∩ Ck ))

is maxi∈{1,...,k}εi -dp.

Application
I parallel composition enables non naive extension of the Laplace

framework
I particularly useful for related queries
I efficiently limits the budget spending
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Histogram queries

Setting
I assume given a partition of D into k subsets
I ask for the number of instances in each subset

Naive solution
I apply the Laplace mechanism to k queries, one per subset
I if each query is answered with ε-dp, then the composed query is

kε-dp

Histogram analysis
I consider the k dimensional query that answers the k counts at

once
I its sensitivity is 1 as the subsets are disjoint
I thus using k independent Laplace noise leads to a ε-dp

mechanism!
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Selection queries

Setting
I compute the empirical distribution of some property
I report the most common value (and the number of times it occurs)

Histogram case
I when the values of the property are mutually exclusive
I straightforward application of the histogram query
I the most common value is computed by the analyst after receiving

the histogram
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Non exclusive counts

More general setting
I in some situations, the values are not exclusive, e.g. in case of

repeated measurements over the same persons
I then the histogram case does not apply: the sensitivity is

proportional to the number of values!

Most popular movie
I data set: grades for movies by users
I query: what is the movie that received the most positive grades?
I naive solution

I for each movie compute the number of positive grades
I add independent Laplace noise to each count
I report the counts

I sensitivity: up to the number of movies!
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Report noisy max

Report noisy max mechanism
I compute internally all the counts needed
I add independent Laplace noise with scale 1

ε to each count
I report the winning value based on the noisy counts (and possibly

the winning count)

Report noisy max is ε-differentially private.
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General selection

Generalization
I selecting the “best” something according to some external utility

measure
I applies in particular when the mapping between instances and

utility is very sensitive

Setting
I a set of possible answers R
I a utility measure u from XN ×R to R
I ideal answer: arg maxr∈R u(D, r)
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Exponential mechanism

Sensitivity
I the sensitivity of u is given by

∆u = max
r∈R

max
d(D1,D2)≤1

|u(D1, r)− u(D2, r)|

I notice this is not a sensitivity with respect to r !

Exponential mechanism

I output r with probability proportional to exp

(
εu(D, r)

∆u

)
I somewhat related to the softmax principle

The Exponential mechanism is ε-differentially private.
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Additional topics

Mechanisms
I many other mechanisms have been designed
I the main idea is to exploit the structure of the query to reduce the

budget consumption
I a particular attention has been given to answering to a set of

queries rather than to a single one
I limited by a recent result from Ullman: if we do not restrict the

range of queries or accept exponential running time, the Laplace
mechanism is essentially optimal

Practical implementations
I PINQ and related models
I tools to analyze automatically release mechanisms
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Additional topics

Differentially private data science
I very active field of research
I request based point of view: contradictory with the data science

day to day practice
I dp version of machine learning algorithms:

I decision trees
I general stochastic gradient descent
I k-means and other unsupervised models

Synthetic data release
I an old solution: build a statistical model of the data and release a

sample generated by the model
I ongoing work on relating this approach to differential privacy
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Conclusion

Differential privacy

strong theoretical guarantees
very active field with constant progress
very complex
negative results

Future
I privacy guarantees are here to stay
I more and more large scale adoption (official statistical institutes,

Google, Apple, etc.)
I regulation will probably impose some minimal guarantees in the

future
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Take home message

I k-anonymity and related deterministic methods tend to be phased
out

I full data release is impossible without introducing privacy risks
I privacy breaches propagate and cannot be undone
I the “look first” approach of data science is fundamentally in

contradiction with the request oriented approach of secure
systems

I differential privacy and related concepts are slowly becoming the
main solution for privacy preservation
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Sources

I Captain Obvious image:
https://imgur.com/gallery/PazzF
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Licence

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
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Version

Last git commit: 2021-01-19
By: Fabrice Rossi (Fabrice.Rossi@apiacoa.org)
Git hash: 97cfd0a9975cf193f5790845c00e476c1572a327
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Changelog

I July 2020: added
I inferential disclosure
I disclosure risk calculation
I PRAM and shuffling
I Mondrian

I July 2018: initial version
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