
SQL

Fabrice Rossi

CEREMADE
Université Paris Dauphine

2020



SQL

What is SQL?
I SQL is relational data management language
I Structured Query Language pronounced sequel
I developed initially by IBM as an "implementation" of the relational

model
I SQL is a standard since 1986 (numerous versions)

Implementations
I SQL is “supported” by all relational database management

systems
I many open source solutions (MySQL/MariaDB, PostgreSQL,

SQLite, etc.)
I but many variations in the support level (portability is not

guaranteed)

2



SQL Components

Multiple aspects
I Data Definition/Description Language

I relational model description
I domain definition

I Data Manipulation Language: insertion, suppression and
modification

I Data Query Language
I read only manipulation
I selection, filtering, grouping, etc.

I Data Control Language
I access control to the databases
I users, roles, permissions, etc.

3



Outline

Data Description Language

Data Query Language

Data Manipulation Language

4



SQL Data Description Language

Relation
I a relation is created in SQL by

CREATE TABLE relation_name (column_name domain, ...);

I SQL supports numerous default domains (implementation
dependent!):
I exact numeric values

I INT, SMALLINT, BIGINT
I NUMERIC(p,s) and DECIMAL(p,s)

I approximate numeric: FLOAT, DOUBLE
I DATETIME, DATE and TIME: date and time
I BOOLEAN: true or false
I CHAR(n) and VARCHAR(n): string with maximum size n

I implementation specific extensions

5



Example

Actors
id first_name last_name gender film_count

567368 Olivia Burnette F 1
758314 Beata Pozniak F 1
636385 Joanne Gordon F 1
588101 Suzanne Cox F 1
683913 Melissa Kurtz F 1

IMDB database

Actors(id : N+
, first_name : string,

last_name : string,

gender : {F , M} , film_count : N+)

CREATE TABLE Actors (
id INT, first_name VARCHAR(100),
last_name VARCHAR(100), gender CHAR(1),
film_count INT

);

6



Integrity constraints

Somme constraints
I PRIMARY KEY: self explanatory
I FOREIGN KEY: self explanatory
I UNIQUE: candidate key
I NOT NULL: non nullable

Example
Actors(id, first_name, last_name, gender, film_count)
CREATE TABLE Actors (

id INT PRIMARY KEY, first_name VARCHAR(100),
last_name VARCHAR(100), gender CHAR(1),
film_count INT

);

7



Integrity constraints

Somme constraints
I PRIMARY KEY: self explanatory
I FOREIGN KEY: self explanatory
I UNIQUE: candidate key
I NOT NULL: non nullable

Example
Actors(id, first_name, last_name, gender, film_count)
CREATE TABLE Actors (

id INT, first_name VARCHAR(100),
last_name VARCHAR(100), gender CHAR(1),
film_count INT,
PRIMARY KEY (id)

);

7



Integrity constraints

Somme constraints
I PRIMARY KEY: self explanatory
I FOREIGN KEY: self explanatory
I UNIQUE: candidate key
I NOT NULL: non nullable

Example
Actors(id, first_name, last_name, gender, film_count)
CREATE TABLE Actors (

id INT PRIMARY KEY,
first_name VARCHAR(100) NOT NULL,
last_name VARCHAR(100) NOT NULL,
gender CHAR(1) NOT NULL,
film_count INT NOT NULL

);

7



Keys

Primary keys
I primary keys are not mandatory in SQL
I but they should be specified!
I UNIQUE is useful as a constraint
I a primary key can be made with several columns using

PRIMARY KEY (COL1, COL2, ...)

in the table creation

Foreign keys
I declared as FOREIGN KEY (column) during table creation
I together with a REFERENCES table(column)
I a foreign key can be a set of columns

8



Example

IMDB database simplified
I Actors(id, first_name, last_name)
I Movies(id, name)
I Roles(#actor_id,#movie_id,role)

CREATE TABLE Actors(id INT PRIMARY KEY,
first_name VARCHAR(100) NOT NULL,
last_name VARCHAR(100) NOT NULL);

CREATE TABLE Movies(id INT PRIMARY KEY,
name VARCHAR(100) NOT NULL);

CREATE TABLE Roles(actor_id INT, movie_id INT,
ROLE VARCHAR(100) NOT NULL,
PRIMARY KEY (actor_id, movie_id),
FOREIGN KEY (actor_id) REFERENCES Actors(id),
FOREIGN KEY (movie_id) REFERENCES Movies(id));

9



Referential integrity

Foreign keys
I must reference an existing primary key
I SQL allows one to handle consequences of tuple modifications

I what happens if the primary key of a tuple is modified?
I what happens if a tuple is deleted?

I ON DELETE something and ON UPDATE something
I with something being

I CASCADE: propagate the modification to referring tuples
I RESTRICT: forbid the modification if there are referring tuples
I SET NULL or SET DEFAULT: modify the foreign key in the referring

tuples as described

10



Example

IMDB database simplified
I Actors(id, first_name, last_name)
I Movies(id, name)
I Roles(#actor_id,#movie_id,role)

CREATE TABLE Roles(actor_id INT, movie_id INT,
ROLE VARCHAR(100) NOT NULL,
PRIMARY KEY (actor_id, movie_id),
FOREIGN KEY (actor_id) REFERENCES Actors(id)

ON DELETE RESTRICT ON UPDATE CASCADE,
FOREIGN KEY (movie_id) REFERENCES Movies(id)

ON DELETE RESTRICT ON UPDATE CASCADE);

11



Domains

SQL domains
I domains can be created in SQL
I typical form

CREATE DOMAIN Gender AS CHAR(1)
CHECK (VALUE IN ('F','M'));

I unsupported in many implementations (e.g. MySQL, MariaDB)

Constraints based version
I constraints can be added to the table creation
I CHECK can be used to implement domains
I less elegant (no centralized definition)

12



Example

Actors(id, first_name, last_name, gender, film_count)
CREATE TABLE Actors (

id INT, first_name VARCHAR(100),
last_name VARCHAR(100), gender CHAR(1),
film_count INT,
PRIMARY KEY (id),
CONSTRAINT gender_check CHECK(gender in ('F','M'))

);

13



Additional commands

Modifying the model
I DROP TABLE name;: deletes a table
I DELETE FROM name;: empties a table
I ALTER TABLE ...;: schema modification

I add an attribute:
ALTER TABLE name ADD attribute domain;

I remove an attribute: ALTER TABLE name DROP attribute;
I changing the properties of a column (domain, constraints, etc.)
I etc.

14



Outline

Data Description Language

Data Query Language

Data Manipulation Language

15



SQL Data Query Language

The SELECT command
I the main query command in SQL
I general form

SELECT something FROM somewhere
[WHERE conditions] [GROUP BY grouping]
[HAVING group conditions] [ORDER BY something]

I provides all the manipulations available in the relational algebra:
I subsetting, filtering, transforming
I summarizing
I joining

I but mainly in a declarative form

16



Projection

Column oriented subsetting
I simple SELECT queries can be used to subset a relation on

interesting attributes
I general form SELECT a1, ..., aN FROM relation;

Example Πname(Movies)
SELECT name FROM Movies;

Movies
id name year rank

10920 Aliens 1986 8.20
17173 Animal House 1978 7.50
18979 Apollo 13 1995 7.50
30959 Batman Begins 2005 0.00
46169 Braveheart 1995 8.30

Result
name
Aliens
Animal House
Apollo 13
Batman Begins
Braveheart

17



Transformation

Expression and renaming
I columns may be renamed using orig_name AS new_name in

the SELECT command
I simple calculations may also be performed on columns including

the results as new columns

Example ΠTitle=name,Note=rank+1(Movies)
SELECT name as Title, rank+1 as Note FROM Movies;

Movies
id name year rank

10920 Aliens 1986 8.20
17173 Animal House 1978 7.50
18979 Apollo 13 1995 7.50
30959 Batman Begins 2005 0.00
46169 Braveheart 1995 8.30

Result
Title Note
Aliens 9.20
Animal House 8.50
Apollo 13 8.50
Batman Begins 1.00
Braveheart 9.30

18



Selection

Selecting tuples
I the WHERE clause can be used to select tuples fulfilling some

conditions
I general form

SELECT columns FROM table WHERE conditions;

Example ΠTitle=name,Note=rank+1(σyear=2000(Movies))

SELECT name as Title, rank as Note FROM Movies
WHERE year=2000;

Movies
id name year rank

10920 Aliens 1986 8.20
17173 Animal House 1978 7.50
18979 Apollo 13 1995 7.50
30959 Batman Begins 2005 0.00
46169 Braveheart 1995 8.30

Result
Title Note
Hollow Man 5.30
Memento 8.70
O Brother, Where Art Thou? 7.80
Snatch. 7.90

19



Cartesian product

Multiple relations
I SELECT queries can operate on several relations
I general from

SELECT a_1, ..., a_N FROM r_1, ..., r_P WHERE cond;

I cartesian product semantics

Πa1,...,aN (σcond (r1 × . . .× rP))

I explicit particular cases (such as natural join)
I notice that renaming of the relations with AS is possible and

simplifies writing the conditions

20



Example

IMDB database
SELECT last_name, role, name AS title
FROM Actors AS A, Movies AS M, Roles AS R
WHERE A.id = R.actor_id AND R.movie_id = M.id;

last_name role title
Armstrong Lydecker Aliens
Benedict Russ Jorden Aliens
Biehn Cpl. Dwayne Hicks Aliens
Fairman Doctor Aliens
Henn Timmy Jorden Aliens
Henriksen Bishop Aliens
Hope Lt. Gorman Aliens
Kash Pvt. Spunkmeyer Aliens
Lees Power Loader Operator Aliens
Matthews Sgt. Apone Aliens

Πlast_name,role,title=name(Actors ./id=actors_id Roles ./movie_id=id Movies)

21



Explicit joins

More declarative queries
I general form

SELECT ... FROM r1 something JOIN r2 ON condition;

I type of join (something)
I INNER JOIN
I LEFT [OUTER] JOIN and RIGHT [OUTER] JOIN
I FULL [OUTER] JOIN
I NATURAL JOIN

I CROSS JOIN can be used for cartesian product but does not
support ON

22



Example

Implicit
SELECT last_name, role, name AS title
FROM Actors, Movies, Roles
WHERE Actors.id = Roles.actor_id AND Roles.movie_id = Movies.id;

Explicit
SELECT last_name, role, name AS title
FROM Actors INNER JOIN Roles ON Actors.id = Roles.actor_id

INNER JOIN Movies on Roles.movie_id = Movies.id;

23



Subtleties

WHERE versus ON
I more general form

SELECT ... FROM r1 something JOIN r2 ON cond1 WHERE cond2;

I cond1 applies during the join operation
I cond2 applies to the resulting relation

I compared to
SELECT ... FROM r1, r2 WHERE cond1 AND cond2;

I we start with r1 × r2
I cond1 AND cond2 apply on the cartesian product
I no NULL completion!

I only affects outer joins

24



Example

RA
id txt
1 first
2 second

RB
id ref
1 1
2 2
3 NULL

SELECT * from FROM
RB INNER JOIN RA
ON RB.ref=RA.id;

id ref txt
1 1 first
2 2 second

25



Example

RA
id txt
1 first
2 second

RB
id ref
1 1
2 2
3 NULL

SELECT * FROM
RB, RA
WHERE RB.ref=RA.id;

id ref txt
1 1 first
2 2 second

25



Example

RA
id txt
1 first
2 second

RB
id ref
1 1
2 2
3 NULL

SELECT * FROM
RB LEFT OUTER JOIN RA
ON RB.ref=RA.id;

id ref txt
1 1 first
2 2 second
3 NULL NULL

25



Example

RA
id txt
1 first
2 second

RB
id ref
1 1
2 2
3 NULL

SELECT * FROM
RB LEFT OUTER JOIN RA
ON RB.ref=RA.id
WHERE RB.ref is NULL;

id ref txt
3 NULL NULL

25



Example

RA
id txt
1 first
2 second

RB
id ref
1 1
2 2
3 NULL

SELECT * FROM
RB, RA
WHERE RB.ref=RA.id
AND RB.ref is NULL;

id ref txt

25



Aggregation

Global summaries
I aggregation functions can be used in the result part of the

SELECT command
I they operate at the column level
I some examples:

I COUNT and COUNT(DISTINCT(.))
I MAX, MIN, SUM
I AVG, STD, VARIANCE

Financial database
SELECT COUNT(*) FROM Actors WHERE Gender='F';

count(*)
443

26



Conditional aggregation

Grouped aggregation in SQL
I the GROUP BY clause of the SELECT command provides

conditional analysis
I it splits the relation into groups of tuples on which it applies

chosen aggregation functions
I groups can be further selected based on global properties with the

HAVING clause

General form
SELECT aggregates FROM relation

[WHERE conditions]
GROUP BY columns
[HAVING group conditions]

27



Examples

Count actors per gender

SELECT gender, COUNT(*) AS number
FROM Roles
GROUP BY gender;

gender number
M 1464
F 443

Average rank per year

SELECT year, AVG(rank) AS avg_rank
FROM Movies
GROUP BY year;

year avg_rank
1972 9.00
1977 8.80
1978 7.50
1984 5.80
1986 8.20
1987 7.20
1989 6.95

28



Group selection

Having
I the HAVING clause selects

only certain groups
I groups are selected based

on a predicate which can use
group aggregation

I the SELECT part applies to
selected groups

Example
SELECT year,

AVG(rank) AS avg_rank
FROM Movies GROUP BY year
HAVING AVG(rank)>=8;

year avg_rank
1972 9.00
1977 8.80
1986 8.20
1994 8.85
1996 8.20
2004 8.25

29



Example

Aggregation and join
I Genre relation in IMDB

database
I Genre(movie_id: N+, genre:

string)

movie_id genre
10920 Action
10920 Horror
10920 Sci-Fi
10920 Thriller
17173 Comedy

SELECT genre, COUNT(*) AS count
FROM Movies LEFT JOIN Genres ON id=movie_id
GROUP BY genre;

genre count
Action 8
Adventure 5
Animation 2
Comedy 11
Crime 12

30



Example

Aggregation and join
I Genre relation in IMDB

database
I Genre(movie_id: N+, genre:

string)

movie_id genre
10920 Action
10920 Horror
10920 Sci-Fi
10920 Thriller
17173 Comedy

SELECT genre, COUNT(*) AS count
FROM Movies LEFT JOIN Genres ON id=movie_id
GROUP BY genre;

genre count
Action 8
Adventure 5
Animation 2
Comedy 11
Crime 12

30



Example

SELECT first_name, last_name, COUNT(DISTINCT(genre)) as genres
FROM Actors INNER JOIN Roles ON Actors.id = Roles.actor_id

INNER JOIN Movies ON Roles.movie_id = Movies.id
INNER JOIN Genres ON Movies.id = Genres.movie_id

GROUP BY first_name, last_name;

first_name last_name genres
’Weird Al’ Yankovic 1
A. Ray Ratliff 3
Aaron Sorkin 2
Aaron James Cash 2
Abdul Blackmanwest 5
Abe Vigoda 2
Abraham Aronofsky 2
Ada Nicodemou 3
Adam Fogerty 2
Adam LeGrant 5

31



Example

SELECT first_name, last_name, COUNT(DISTINCT(genre)) as genres
FROM Actors INNER JOIN Roles ON Actors.id = Roles.actor_id

INNER JOIN Movies ON Roles.movie_id = Movies.id
INNER JOIN Genres ON Movies.id = Genres.movie_id

GROUP BY first_name, last_name;

first_name last_name genres
’Weird Al’ Yankovic 1
A. Ray Ratliff 3
Aaron Sorkin 2
Aaron James Cash 2
Abdul Blackmanwest 5
Abe Vigoda 2
Abraham Aronofsky 2
Ada Nicodemou 3
Adam Fogerty 2
Adam LeGrant 5

31



Sorting the results

SELECT ... ORDER BY A1, ..., AK;

I sorting the result using the specified attributes
I lexicographic ordering
I DESC and ASC specify the sorting order

SELECT genre, COUNT(*) AS count
FROM Movies LEFT JOIN Genres ON id=movie_id
GROUP BY genre
ORDER BY count DESC;

genre count
Drama 17
Thriller 17
Crime 12
Comedy 11
Action 8

32



Sorting the results

SELECT ... ORDER BY A1, ..., AK;

I sorting the result using the specified attributes
I lexicographic ordering
I DESC and ASC specify the sorting order

SELECT genre, COUNT(*) AS count
FROM Movies LEFT JOIN Genres ON id=movie_id
GROUP BY genre
ORDER BY count DESC;

genre count
Drama 17
Thriller 17
Crime 12
Comedy 11
Action 8

32



Combining relations

Set operations
I results of SELECT queries can be combined
I three standard operations: UNION, INTERSECT and EXCEPT
I standard use: no duplicates
I multi set version: add the ALL keyword after the operation to keep

duplicates

33



Example

IMDB database
I Directors relation
I Directors(id, first_name, last_name)

All persons
(SELECT first_name, last_name FROM Actors)
UNION
(SELECT first_name, last_name FROM Directors)
ORDER BY last_name, first_name;

first_name last_name
Pamela Abdy
Lewis Abernathy
Andrew Adamson
William Addy
Kelly Adkins

34



Example

IMDB database
I Directors relation
I Directors(id, first_name, last_name)

All persons
(SELECT 'Actor' as role, first_name, last_name FROM Actors)
UNION
(SELECT 'Director' as role, first_name, last_name FROM Directors)
ORDER BY last_name, first_name;

role first_name last_name
Director Pamela Abdy
Director Lewis Abernathy
Actor Andrew Adamson
Director Andrew Adamson
Director William Addy

34



Subqueries

Principle
I SELECT queries can be used as parts of other SELECT queries
I nested subqueries
I typical uses

I complex conditions in the WHERE clause
I new relation in the FROM clause
I attributes computed by a query

35



Example

Above average movies
I aggregates cannot be used in a WHERE clause

-- this is incorrect
SELECT * FROM movies WHERE rank > AVG(rank);

I use a subquery in the WHERE clause
SELECT * FROM movies

WHERE rank > (SELECT AVG(rank) FROM movies)
ORDER BY rank DESC;

id name year rank
130128 Godfather, The 1972 9.00
297838 Shawshank Redemption, The 1994 9.00
313459 Star Wars 1977 8.80
210511 Memento 2000 8.70
267038 Pulp Fiction 1994 8.70

36



Example

Number of roles in each movie
Join based solution
SELECT id, name, year, rank, COUNT(role) AS num_role

FROM movies INNER JOIN roles
ON roles.movie_id = movies.id

GROUP BY id, name, year, rank;

Warning
In general, joins are more efficient than subqueries (especially for
correlated subqueries)

37



Example

Number of roles in each movie
With a (correlated) subquery
SELECT *, (SELECT COUNT(*)

FROM roles WHERE roles.movie_id=movies.id
) AS num_role

FROM movies;

Warning
In general, joins are more efficient than subqueries (especially for
correlated subqueries)

37



Example

Number of roles in each movie
With a (correlated) subquery
SELECT *, (SELECT COUNT(*)

FROM roles WHERE roles.movie_id=movies.id
) AS num_role

FROM movies;

Warning
In general, joins are more efficient than subqueries (especially for
correlated subqueries)

37



Set membership

Testing for set membership
I a subquery returns a relation (a (multi)-set)
I the [NOT] IN operator can be used in a WHERE clause to check

whether a tuple is in the corresponding relation

Actors without no “homonym” in the directors relation
SELECT * FROM Actors

WHERE (first_name, last_name) NOT IN
(SELECT first_name, last_name FROM Directors);

38



Set operations in where clauses

More set oriented operations
WHERE clause can also
I test for emptiness with [NOT] EXISTS
I test for uniqueness with [NOT] UNIQUE (seldom supported)
I compare numerical sets with SOME and ALL

Rank conditions in movies
I better than at least a movie from 1995

SELECT * FROM Movies
WHERE rank > SOME

(SELECT rank FROM Movies WHERE year = 1995);

I better than all movies from 1995
SELECT * FROM Movies

WHERE rank > ALL
(SELECT rank FROM Movies WHERE year = 1995);

39



Examples

Actors who are directors
SELECT * FROM Actors as A

WHERE EXISTS
(SELECT * FROM Directors as D

WHERE A.first_name=D.first_name
AND A.last_name=D.last_name);

Actors who played only one role

40



Examples

Actors who are directors
SELECT * FROM Actors

WHERE (first_name, last_name) NOT IN
(SELECT first_name, last_name FROM Directors);

Actors who played only one role

40



Examples

Actors who are directors
SELECT * FROM Actors

WHERE (first_name, last_name) NOT IN
(SELECT first_name, last_name FROM Directors);

Actors who played only one role
SELECT * FROM actors

WHERE UNIQUE
(SELECT * FROM roles WHERE actors.id = actor_id);

40



Examples

Actors who are directors
SELECT * FROM Actors

WHERE (first_name, last_name) NOT IN
(SELECT first_name, last_name FROM Directors);

Actors who played only one role
SELECT * FROM actors

WHERE
(SELECT COUNT(*) FROM roles WHERE actors.id = actor_id)=1;

40



Examples

Actors who are directors
SELECT * FROM Actors

WHERE (first_name, last_name) NOT IN
(SELECT first_name, last_name FROM Directors);

Actors who played only one role
SELECT actors.* FROM actors INNER JOIN

(SELECT actor_id FROM roles GROUP BY actor_id
HAVING count(*)=1)

AS unique_role
ON id=actor_id;

40



Examples

Actors who are directors
SELECT * FROM Actors

WHERE (first_name, last_name) NOT IN
(SELECT first_name, last_name FROM Directors);

Actors who played only one role
SELECT actors.* FROM actors INNER JOIN roles

ON id=actor_id
GROUP BY id, first_name, last_name, gender, film_count,

actor_id
HAVING count(*)=1;

40



Outline

Data Description Language

Data Query Language

Data Manipulation Language

41



SQL Data Manipulation Language

INSERT
I inserting a tuple into a relation:

INSERT INTO table VALUES (...);

I variants include
INSERT INTO table (columns...) VALUES (...); to
specify the column names (NULL is assigned to missing columns)

DELETE
I deleting is done conditionally, using a WHERE clause
I general syntax

DELETE FROM table WHERE condition;

42



Updating

UPDATE
I used to alter tuples
I general syntax

UPDATE table
SET column = value [,column = value...]
[WHERE condition];

43



Changelog

I November 2020: initial version

44



Licence

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/

45

http://creativecommons.org/licenses/by-sa/4.0/


Version

Last git commit: 2020-11-23
By: Fabrice Rossi (Fabrice.Rossi@apiacoa.org)
Git hash: 312a0636ceb585db2da88a95e73b59651b34a3fb

46


	Data Description Language
	Schemas
	Keys and constraints

	Data Query Language
	Projection and selection
	Joins
	Aggregation
	Set operations
	Subqueries

	Data Manipulation Language

