
A (Far Too) Short Introduction to
Computational Complexity

Fabrice Rossi

CEREMADE
Université Paris Dauphine

2021

Analysis of algorithms

Resources
I running a program uses resources
I two most obvious ones:

1. time
2. memory (as in volatile one)

I less obvious ones:
I permanent memory
I hand drive bandwidth
I network bandwidth
I etc.

Algorithm analysis
I abstract analysis of the resource consumption of an algorithm
I predicts the typical behavior of a program that implements the

algorithm given the characteristics of its inputs

2

Basic example

Python illustration: maximum

import numpy as np
x = np.random.normal(size=(16,))
y = x[0]
for k in range(1,x.shape[0]):

if x[k]>y:
y = x[k]

print(y)

I very sub-optimal Python
code (use x.max()!)

I input: the x vector
I output: the y value
I questions:

I how long will this code
run given the length of
x?

I how much memory will
it use?

Experimental measurements in Python
I time: timeit module
I memory: memory_profile module

3

Example

1 10 100 1000 10000

0.
00

00
05

0.
00

00
50

0.
00

05
00

0.
00

50
00

Running time

input size

tim
e

in
 s

ec
on

ds

loop
max

4

Experimental measurements

Use
I evaluate the platform, the implementation and the algorithm
I profiling:

I validating formal models
I finding hot spots for further optimization

Difficulties
I data size
I measurement precision (especially for small input)
I resource consumption
I environment

Must be done after programming!

5

Theoretical analysis

Advantages
I generic analysis (algorithmic level)
I asymptotic behavior: predicts the complexity for large scale input
I no implementation needed

Limitations
I a bit too abstract in some situations (e.g. most analysis disregard

the memory hierarchy)
I very difficult to conduct in some cases
I mismatch between observed behavior and predicted ones in

complex cases (e.g. simplex algorithm under simple analyses)

6

Principles

Main components
I abstract model of the computer
I worst-case or average-case analysis
I asymptotic analysis

Asbtract model
I theoretical level: Turing machine
I practical level:

I uniform cost model: each instruction has the same cost (one!)
I instructions:

I reading or writing a single value in a variable
I comparing two values
I standard arithmetic operations

I variations: taking into account only floating point operations,
taking care of transcendental functions (e.g. exp), etc.

7

https://en.wikipedia.org/wiki/Turing_machine

Basic example

Find the maximum

import numpy as np
x = np.random.normal(size=(16,))
y = x[0]
for k in range(1,x.shape[0]):

if x[k]>y:
y = x[k]

print(y)

I we disregard the first two
lines: import and input

I we disregard the last line:
output

I outside of the loop: 2
instructions (one
assignment, one read)

I inside the loop: everything
depends on the values!

How to handle this difficulty?

8

Worst-case analysis

Principle
I in general, the exact instructions performed by an algorithm

depend on the input
I this renders the analysis very difficult
I simple solution:

I always consider the worst case: worst-case analysis
I in tests, always chose the most complex branch
I in loops, always assume the loop will run for the maximum time

Average-case analysis
I principle:

I chose a probabilistic distribution on the input space
I compute the cost for each possible input
I average the costs using the distribution

I frequently more realistic but very difficult

9

Basic example

Find the maximum

import numpy as np
x = np.random.normal(size=(16,))
y = x[0]
for k in range(1,x.shape[0]):

if x[k]>y:
y = x[k]

print(y)

I outside of the loop: 2
instructions (1 assignment,
1 read)

I inside the loop:
I always 3 instructions (2

reads, 1 comparison)
I 2 additional ones in

some cases
I the loop runs N − 1 times

for an input of length N

What about the for itself?

10

High level constructs

Problem
I most programming languages feature high level instructions and

data structures
I those might seem opaque on a cost point of view
I specifications and/or documentations are needed to make a

proper cost analysis

In Python
I range(a,b)

I creates an iterable
I the creation cost should be constant

I k in z
I access to all the content: a number of access equal to length z
I moving from one cell to another might take only a fix number of

operations, typically 2: checking if the end is reached and reading a
value

11

Basic example

Find the maximum

import numpy as np
x = np.random.normal(size=(16,))
y = x[0]
for k in range(1,x.shape[0]):

if x[k]>y:
y = x[k]

print(y)

I outside of the loop: 2
instructions (1 assignment,
1 read)

I inside the loop
(worst-case): 5
instructions per iteration

I the loop runs N − 1 times
for an input of length N

I the loop costs 2(N − 1)
operations (creating the
index and browsing it)

Total: 2 + 7(N − 1)

12

Example

1 10 100 1000 10000

0.
00

00
00

1
0.

00
00

10
0

0.
00

10
00

0
Running time

input size

tim
e

in
 s

ec
on

ds

Measurements
Model

13

Asymptotic analysis

Principle
Calculate resource usage formulaes of an algorithm that are valid
when the size of the input goes to infinity.

Motivations
I practical:

I small size inputs drive implementations into very complex zones with
problems of overheads and caches

I benchmarking is easy for small size inputs not for large ones!
I theoretical:

I eases a lot the analysis
I enables one to define classes of comparable algorithm

14

Big O notations

Definitions
Let f and g be functions from N to R
I f is O (g) (f = O (g)) if there are M and n0 such that for all n ≥ n0,
|f (n)| ≤ M|g(n)|

I f is o (g) (f = o (g)) if limn→∞
f (n)
g(n) = 0 (with a natural extension to

g that can take 0 values)
I f is Θ (g) (f = Θ (g)) if there are m, M and n0 such that for all

n ≥ n0, m|g(n)| ≤ f (n)| ≤ M|g(n)|
I f ∼ g if limn→∞

f (n)
g(n) = 1

15

Big O notations

Properties
Numerous interesting properties, such as
I f = Θ (g) if and only if f = O (g) and g = O (f)

I if f is a polynomial of degree d , then f = Θ
(
nd

)
(with n0 = 1)

I if λ is a non zero constant and f = Θ (g), then λf = Θ (g)

I if f1 = O (g1) and f2 = O (g2), then

f1 + f2 = O (|g1|+ |g2|)
f1f2 = O (g1g2)

I if f = Θ (g) and h = o (g) then f + h = Θ (g)

16

Asymptotic analysis

Principle revisited
Given an algorithm with an input of size N, find a function g(N) such
that true resource usage of the algorithm f is O (g) (or better Θ (g))

Practical consequences
I precise instruction counting is generally useless
I on the fly approximation can be used to analyze complex

structures
I documentation/specification need only to give asymptotic

guarantees
I any program with only basic instructions and no loop is Θ (1) in

time!

17

Basic example

Find the maximum

import numpy as np
x = np.random.normal(size=(16,))
y = x[0]
for k in range(1,x.shape[0]):

if x[k]>y:
y = x[k]

print(y)

I outside of the loop: do not
care!

I inside the loop
(worst-case): Θ (1)
instruction

I the loop runs N − 1 times
for an input of length N

I the loop costs Θ (N)
operations (creating the
index and browsing it)

Total: Θ (N)

18

Complexity hierarchy

Important complexity levels

Complexity Name

Θ (1) constant
Θ (log N) logarithmic
Θ
(

N
1
c

)
for c > 1 fractional

Θ (N) linear
Θ (N log N) quasilinear
Θ
(
N2

)
quadratic

Θ
(
N3

)
cubic

Θ (Nc) for c > 1 polynomial
Θ
(
cN

)
for c > 1 exponential

Θ (N!) factorial

19

Analysing an algorithm

Simple cases
I when:

I no high level operations are called
I no recursion is used

I identify the loops
I determine their worst case number of iterations
I for nested loops multiply the costs

Remarks
I mechanisms that handle loops are generally accounted for

implicitly by considering each iteration has a constant
bookkeeping cost associated to those mechanisms

I the input size might be characterized by several parameters (e.g.,
rows and columns for a matrix)

20

Example

Find the maximum

import numpy as np
x = np.random.normal(size=(10,10))
y = x[0,0]
for i in range(0,x.shape[0]):

for j in range(0,x.shape[1]):
if x[i,j] > y:

y = x[i,j]
print(y)

I input size N2 (or N
depending on the point of
view)

I nested loops with N
iteration each: Θ (N × N)

I inside the inner most loop:
Θ (1) (as always!)

I the loop costs are
automatically taken care off

Total: Θ
(
N2

)
I quadratic with respect to N
I but in fact linear with respect to the input size!

21

More complex programs

Recursion
I difficult case
I leads in general to recursive definition of f (N) the resource usage

function
I general theorems help expressing f in closed form (the so-called

Master theorem)
I outside the scope of this introduction

High level operations and API calls
I use documentation/specification for API calls
I rely on general complexity theory results (and hope for the best!)

22

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

Well known results

Problem Complexity

Finding a value in a hash table of size N Θ (1) or Θ (N)
Finding a value in a sorted table of size N Θ (log N)
Sorting N values Θ (N log N)
Multiplying a matrix N × P by a vector P Θ (NP)
Multiplying two matrices of size N × P and P ×Q Θ (NPQ)
Inverting a N × N matrix Θ

(
N3

)
Eigenvalue decomposition of a N×N dense matrix Θ

(
N3

)
Singular value decomposition of a M × N matrix
(M ≥ N)

Θ
(
MN2

)

23

Example

Power method

import numpy as np

def power_method(A, prec=1e-8):
x = np.random.random(A.shape[1])
iterate = True
while(iterate):

nx = A@x
nx /= np.linalg.norm(nx)
delta = np.linalg.norm(x - nx)
x = nx
iterate = delta > prec

eigenvalue = np.dot(x, A@x)
eigenvalue /= np.dot(x, x)
return eigenvalue,x

I problem characteristics: N
(N × N matrix)

I initialization: Θ (N)

I inside the inner loop:
Θ
(
N2

)
I how many iterations?

I need some advanced
mathematical results

I here the convergence is
linear: the precision is
multiplied by a fixed
quantity at each iteration

I loop number O
(
log

(1
ε

))

24

Example

Power method

import numpy as np

def power_method(A, prec=1e-8):
x = np.random.random(A.shape[1])
iterate = True
while(iterate):

nx = A@x
nx /= np.linalg.norm(nx)
delta = np.linalg.norm(x - nx)
x = nx
iterate = delta > prec

eigenvalue = np.dot(x, A@x)
eigenvalue /= np.dot(x, x)
return eigenvalue,x

I problem characteristics: N
(N × N matrix)

I initialization: Θ (N)

I inside the inner loop:
Θ
(
N2

)
I how many iterations?
I need some advanced

mathematical results
I here the convergence is

linear: the precision is
multiplied by a fixed
quantity at each iteration

I loop number O
(
log

(1
ε

))
24

NP problems

Decision problems
I decision problem: a recognition problem in which given an input

the answer is yes or no
I solving the problem consists in building a program that associate

the correct answer to any input
I P class: problems for which an algorithm in O

(
Nk

)
is known

I NP problems:
I NP stands nondeterministic polynomial (for complex reasons)
I a problem is NP if a proof that the correct answer is yes can be

verified in polynomial time

Examples

P is A = BC? for A, B and C matrices
NP does a given graph possess a Hamiltonian cycle?

25

NP-complete and NP-hard

Reduction
I A and B two problems
I A reduces to B if any input for A can be transformed into an input

for B such that the answer for this transformed input is the correct
one for original input

NP-hard
B is NP-hard if any NP problem is reducible to B in polynomial time.

NP-complete
A NP-complete problem is a NP problem that is also NP-hard.

26

NP-hard problems

A complicated class
I NP-hard problem include strictly NP-complete problem
I some problems in NP-hard are not in NP and not even in the class

of decidable problems (e.g. the halting problem)

Optimization problems
I optimization problems are more general than decision problems
I translation to decision problems is straightforward: given an

optimization problem T one can ask a series of yes/no questions
of the form “is there a solution to T with cost below t?”

I iconic NP-hard problems are optimization ones, for instance the
travelling salesman problem

27

P versus NP

In a nutshell
See the wikipedia for details
I in practice, we only know exponential time algorithms for solving

NP-complete problems
I can we either prove either that there are effectively no polynomial

time solutions for NP-complete problem or that P = NP?
I this is one million price problem...

In practice
I if a problem is NP-hard, we cannot currently solve it exactly in

reasonable time
I but many of NP-hard optimization problems admit fast algorithms

that provide approximate results with reasonable quality
guarantees

28

https://en.wikipedia.org/wiki/P_versus_NP_problem

Concluding remarks

What about memory consumption?
I in general this is straightforward
I but in practice one might run into problems, especially with NumPy
I semantics of x = y?

Complexity and machine learning
I machine learning is strongly related to optimization
I many ML optimization problems are NP-hard:

I empirical risk minimization for the binary cost
I k-means criterion optimization
I etc.

I strong reliance on approximate algorithms

29

Licence

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/

30

http://creativecommons.org/licenses/by-sa/4.0/

Version

Last git commit: 2021-01-19
By: Fabrice Rossi (Fabrice.Rossi@apiacoa.org)
Git hash: 97cfd0a9975cf193f5790845c00e476c1572a327

31

Changelog

I Mars 2020: initial Python version

32

