A (Far Too) Short Introduction to
Computational Complexity

Fabrice Rossi

CEREMADE
Université Paris Dauphine

2021

Analysis of algorithms

Resources

> running a program uses resources
» two most obvious ones:

1. time

2. memory (as in volatile one)

» |ess obvious ones:

» permanent memory
» hand drive bandwidth
» network bandwidth
> etc.

Algorithm analysis

» abstract analysis of the resource consumption of an algorithm

» predicts the typical behavior of a program that implements the
algorithm given the characteristics of its inputs

Basic example

Python illustration: maximum

> very sub-optimal Python

import numpy as np
code (use x.max () !)

x = np.random.normal (size=(16,))
y = x[0] > input: the x vector
for k in range(l,x.shape[0]): > output: the y value
if x[k]l>y: .
v = x[k] » questions:
print (y) »> how long will this code
run given the length of
x?
» how much memory will
it use?

Experimental measurements in Python

» time: timeit module
» memory: memory_profile module

Example

time in seconds

0.000050 0.000500 0.005000

0.000005

Running time

— loop
— max

i

100

input size

1000

10000

Experimental measurements

Use
» evaluate the platform, the implementation and the algorithm
» profiling:
» validating formal models
> finding hot spots for further optimization

Difficulties
> data size
» measurement precision (especially for small input)
> resource consumption
> environment

Must be done after programming!

Theoretical analysis

Advantages

» generic analysis (algorithmic level)
» asymptotic behavior: predicts the complexity for large scale input
» no implementation needed

Limitations
> a bit too abstract in some situations (e.g. most analysis disregard
the memory hierarchy)
» very difficult to conduct in some cases

» mismatch between observed behavior and predicted ones in
complex cases (e.g. simplex algorithm under simple analyses)

Main components

» abstract model of the computer
> worst-case or average-case analysis
» asymptotic analysis

Asbtract model

» theoretical level: Turing machine
» practical level:

> uniform cost model: each instruction has the same cost (one!)
> instructions:

> reading or writing a single value in a variable
» comparing two values
> standard arithmetic operations
» variations: taking into account only floating point operations,
taking care of transcendental functions (e.g. exp), etc.

https://en.wikipedia.org/wiki/Turing_machine

Basic example

Find the maximum

> we disregard the first two
lines: import and input

import numpy as np . .
» we disregard the last line:

x = np.random.normal (size=(16,))
y = x[0] output
for k in range(l,x.shape[0]): » outside of the loop: 2
if x[k]>y: instructions (one
v = =[] assignment, one read)
print (y)

> inside the loop: everything
depends on the values!

How to handle this difficulty?

Worst-case analysis

Principle

» in general, the exact instructions performed by an algorithm
depend on the input
» this renders the analysis very difficult
» simple solution:
> always consider the worst case: worst-case analysis

> in tests, always chose the most complex branch
> in loops, always assume the loop will run for the maximum time

Average-case analysis

> principle:
> chose a probabilistic distribution on the input space
> compute the cost for each possible input
> average the costs using the distribution

» frequently more realistic but very difficult

Basic example

Find the maximum

» outside of the loop: 2

import numpy as np . . .
instructions (1 assignment,

x = np.random.normal (size=(16,))
B 1 read)
for k in range(l,x.shape[0]): > inside the loop:
if x[k]>y: > always 3 instructions (2
y = x[k] reads, 1 comparison)
print (y) » 2 additional ones in
some cases

» the loop runs N — 1 times
for an input of length N

What about the for itself?

High level constructs

Problem

» most programming languages feature high level instructions and
data structures

» those might seem opaque on a cost point of view

» specifications and/or documentations are needed to make a
proper cost analysis

In Python

» range(a,b)
> creates an iterable
» the creation cost should be constant
> k in z
> access to all the content: a number of access equal to length z
» moving from one cell to another might take only a fix number of
operations, typically 2: checking if the end is reached and reading a
value

Basic example

Find the maximum

» outside of the loop: 2

import numpy as np . . .
instructions (1 assignment,

x = np.random.normal (size=(16,))

v - x[0] 1 read)
for k in range(l,x.shape[0]): > inside the loop
if x[k]>y: (worst-case): 5
y = x[k] instructions per iteration
print (y)

» the loop runs N — 1 times
for an input of length N

> the loop costs 2(N — 1)
operations (creating the
index and browsing it)

Total: 2 + 7(N — 1)

Example

time in seconds

0.0000100 0.0010000

0.0000001

Running time

—— Measurements
—— Model

10

100

input size

1000

10000

Asymptotic analysis

Principle
Calculate resource usage formulaes of an algorithm that are valid

when the size of the input goes to infinity.

Motivations
» practical:
» small size inputs drive implementations into very complex zones with

problems of overheads and caches
» benchmarking is easy for small size inputs not for large ones!

» theoretical:

> eases a lot the analysis
> enables one to define classes of comparable algorithm

Big O notations

Definitions
Let f and g be functions from N to R
> fis O(g) (f = O(g)) if there are M and ny such that for all n > ny,
|f(n)] < Mig(n)|
> fiso(g) (f=0(9g)) if limpeo % = 0 (with a natural extension to
g that can take 0 values)
> fis ©(g) (f = ©(g)) if there are m, M and ng such that for all
n = no, mlg(n)| < f(n)| < Mig(n)|

B fwgifnmn%o;(f;))ﬂ

Big O notations

Properties
Numerous interesting properties, such as
> f=0(g)ifandonlyif f=0O(g)and g = O (f)
> if f is a polynomial of degree d, then f = © (n9) (with n° = 1)
» if Ais a non zero constant and f = © (g), then \f = ©(g)
> if i =0(g1)and £ = O(g), then

fi+h=0(gl+1gl)
fiftb =01(g192)

> iff=0(g)and h=o0(g)thenf+ h=0(g)

Asymptotic analysis

Principle revisited
Given an algorithm with an input of size N, find a function g(N) such
that true resource usage of the algorithm f is O (g) (or better © (g))

Practical consequences

> precise instruction counting is generally useless

» on the fly approximation can be used to analyze complex
structures

» documentation/specification need only to give asymptotic
guarantees

> any program with only basic instructions and no loop is © (1) in
time!

Basic example

Find the maximum

e BEEY OO » outside of the loop: do not

x = np.random.normal (size=(16,)) care!

y = x[0] > inside the loop

for k in range(l,x.shape[0]): (worst-case): @(1)
if x[k]>y: instruction

y = x[k]

print (y) » the loop runs N — 1 times

for an input of length N
> the loop costs © (N)

operations (creating the

index and browsing it)

Total: © (N)

Important complexity levels

Complexity hierarchy

Complexity Name

o(1) constant

© (log N) logarithmic

e (N%> forc>1 fractional

O (N) linear

© (Nlog N) quasilinear

O (N?) quadratic
O (N?) cubic

© (N°) forc > 1 polynomial

© (cV) forc>1 exponential

O (N!) factorial

Analysing an algorithm

Simple cases

» when:
> no high level operations are called
» no recursion is used

» identify the loops
» determine their worst case number of iterations
» for nested loops multiply the costs

Remarks

» mechanisms that handle loops are generally accounted for
implicitly by considering each iteration has a constant
bookkeeping cost associated to those mechanisms

> the input size might be characterized by several parameters (e.g.,
rows and columns for a matrix)

20

Find the maximum
» input size N2 (or N
depending on the point of

import numpy as np .
X = np.random.normal (size=(10,10)) VIeW)
y = x[0,0] » nested loops with N
for i in range (0,x.shape[0]): iteration each' e (N X N)
for j in range (0, x.shape[1l]): o . '
if x[i,3] > y: » inside the inner most loop:

y = x[1,73] © (1) (as always!)

print (y)
» the loop costs are
automatically taken care off

Total: © (N?)

> quadratic with respect to N
> but in fact linear with respect to the input size!

21

More complex programs

Recursion
» difficult case

> leads in general to recursive definition of f(N) the resource usage
function

» general theorems help expressing f in closed form (the so-called
Master theorem)

» outside the scope of this introduction

High level operations and API calls

» use documentation/specification for API calls
> rely on general complexity theory results (and hope for the best!)

22

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

Well known results

Problem Complexity
Finding a value in a hash table of size N © (1) or ©(N)
Finding a value in a sorted table of size N © (log N)

(
Sorting N values O (
Multiplying a matrix N x P by a vector P SX{
Multiplying two matrices of size N x Pand P x Q ©(
Inverting a N x N matrix O (N?)
Eigenvalue decomposition of a Nx N dense matrix © (
Singular value decomposition of a M x N matrix © (

(M > N)

23

Power method

» problem characteristics: N
(N x N matrix)

import numpy as np

def power_method (A, prec=le-8):

x = np.random.random (A.shape[1]) » initialization: G(N)
iterate = True . . .
A () § » inside the inner loop:
nx = A@x o) (NZ)
nx /= np.linalg.norm(nx)
delta = np.linalg.norm(x nx) » hOW many iterations‘?
X = nx
iterate = delta > prec
eigenvalue = np.dot (x, AGx)
eigenvalue /= np.dot (x, x)

return eigenvalue, x

24

Power method

» problem characteristics: N
(N x N matrix)

import numpy as np

def power_method (A, prec=le-8):

x = np.random.random (A.shape[1]) » initialization: © (N)
iterate = True . . q
while (iterate) : » inside the inner loop:
nx = A@x o) (NZ)
nx /= np.linalg.norm(nx)
delta = np.linalg.norm(x nx) » hOW many iterations‘?
X = nx
iterate = delta > prec » need some advanced
eigenvalue = np.dot (x, AGx) .
cigenvalue /= np.dot (x, x) mathematical results

return eigenvalue,x » here the convergence is
linear: the precision is
multiplied by a fixed
quantity at each iteration

> loop number O (log (1))

24

NP problems

Decision problems
» decision problem: a recognition problem in which given an input
the answer is yes or no

» solving the problem consists in building a program that associate
the correct answer to any input

> P class: problems for which an algorithm in © (N¥) is known
» NP problems:
» NP stands nondeterministic polynomial (for complex reasons)

» aproblem is NP if a proof that the correct answer is yes can be
verified in polynomial time

Examples

P is A= BC? for A, B and C matrices
NP does a given graph possess a Hamiltonian cycle?

25

NP-complete and NP-hard

Reduction

» A and B two problems

» Areduces to B if any input for A can be transformed into an input
for B such that the answer for this transformed input is the correct
one for original input

NP-hard
B is NP-hard if any NP problem is reducible to B in polynomial time.

NP-complete
A NP-complete problem is a NP problem that is also NP-hard.

26

NP-hard problems

A complicated class

» NP-hard problem include strictly NP-complete problem

» some problems in NP-hard are not in NP and not even in the class
of decidable problems (e.g. the halting problem)

Optimization problems

» optimization problems are more general than decision problems

» translation to decision problems is straightforward: given an
optimization problem T one can ask a series of yes/no questions
of the form “is there a solution to T with cost below ¢?”

» iconic NP-hard problems are optimization ones, for instance the
travelling salesman problem

27

In a nutshell
See the wikipedia for details

» in practice, we only know exponential time algorithms for solving
NP-complete problems

» can we either prove either that there are effectively no polynomial
time solutions for NP-complete problem or that P = NP?

» this is one million price problem...

In practice

» if a problem is NP-hard, we cannot currently solve it exactly in
reasonable time

» but many of NP-hard optimization problems admit fast algorithms
that provide approximate results with reasonable quality
guarantees

28

https://en.wikipedia.org/wiki/P_versus_NP_problem

Concluding remarks

What about memory consumption?

» in general this is straightforward
» but in practice one might run into problems, especially with NumPy
» semantics of x = y?

Complexity and machine learning

» machine learning is strongly related to optimization
» many ML optimization problems are NP-hard:

» empirical risk minimization for the binary cost
> k-means criterion optimization
> etc.

» strong reliance on approximate algorithms

29

Licence

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/

30

http://creativecommons.org/licenses/by-sa/4.0/

Version

Last git commit: 2021-01-19
By: Fabrice Rossi (Fabrice.Rossi@apiacoa.org)
Git hash: 97¢fd0a9975c¢f193f5790845¢c00e476¢1572a327

31

Changelog

» Mars 2020: initial Python version

32

