A (Far Too) Short Introduction to Computational Complexity

Fabrice Rossi

CEREMADE Université Paris Dauphine

2021

Analysis of algorithms

Resources

- running a program uses *resources*
- two most obvious ones:
 - 1. time
 - 2. memory (as in volatile one)
- less obvious ones:
 - permanent memory
 - hand drive bandwidth
 - network bandwidth
 - etc.

Algorithm analysis

- abstract analysis of the resource consumption of an algorithm
- predicts the typical behavior of a program that implements the algorithm given the characteristics of its inputs

Basic example

Python illustration: maximum

```
import numpy as np
x = np.random.normal(size=(16,))
y = x[0]
for k in range(1,x.shape[0]):
    if x[k]>y:
        y = x[k]
print(y)
```

- very sub-optimal Python code (use x.max()!)
- input: the x vector
- output: the y value
- questions:
 - how long will this code run given the length of x?
 - how much memory will it use?

Experimental measurements in Python

- ▶ time: timeit module
- ► memory: memory_profile module

Example

Experimental measurements

Use

- evaluate the platform, the implementation and the algorithm
- profiling:
 - validating formal models
 - finding hot spots for further optimization

Difficulties

- data size
- measurement precision (especially for small input)
- resource consumption
- environment

Must be done after programming!

Theoretical analysis

Advantages

- generic analysis (algorithmic level)
- asymptotic behavior: predicts the complexity for large scale input
- no implementation needed

Limitations

- a bit too abstract in some situations (e.g. most analysis disregard the memory hierarchy)
- very difficult to conduct in some cases
- mismatch between observed behavior and predicted ones in complex cases (e.g. simplex algorithm under simple analyses)

Principles

Main components

- abstract model of the computer
- worst-case or average-case analysis
- asymptotic analysis

Asbtract model

- ► theoretical level: Turing machine
- practical level:
 - uniform cost model: each instruction has the same cost (one!)
 - instructions:
 - reading or writing a single value in a variable
 - comparing two values
 - standard arithmetic operations
- variations: taking into account only floating point operations, taking care of transcendental functions (e.g. exp), etc.

7

Basic example

Find the maximum

```
import numpy as np
x = np.random.normal(size=(16,))
y = x[0]
for k in range(1,x.shape[0]):
    if x[k]>y:
        y = x[k]
print(y)
```

- we disregard the first two lines: import and input
- we disregard the last line: output
- outside of the loop: 2 instructions (one assignment, one read)
- inside the loop: everything depends on the values!

How to handle this difficulty?

Worst-case analysis

Principle

- in general, the exact instructions performed by an algorithm depend on the input
- this renders the analysis very difficult
- simple solution:
 - always consider the worst case: worst-case analysis
 - in tests, always chose the most complex branch
 - ▶ in loops, always assume the loop will run for the maximum time

Average-case analysis

- principle:
 - chose a probabilistic distribution on the input space
 - compute the cost for each possible input
 - average the costs using the distribution
- frequently more realistic but very difficult

Basic example

Find the maximum

```
import numpy as np
x = np.random.normal(size=(16,))
y = x[0]
for k in range(1,x.shape[0]):
    if x[k]>y:
        y = x[k]
print(y)
```

- outside of the loop: 2 instructions (1 assignment, 1 read)
- inside the loop:
 - always 3 instructions (2 reads, 1 comparison)
 - 2 additional ones in some cases
- ▶ the loop runs N − 1 times for an input of length N

What about the for itself?

High level constructs

Problem

- most programming languages feature high level instructions and data structures
- those might seem opaque on a cost point of view
- specifications and/or documentations are needed to make a proper cost analysis

In Python

- ► range(a,b)
 - creates an iterable
 - the creation cost should be constant
- ▶ k in z
 - access to all the content: a number of access equal to length z
 - moving from one cell to another might take only a fix number of operations, typically 2: checking if the end is reached and reading a value

Basic example

Find the maximum

```
import numpy as np
x = np.random.normal(size=(16,))
y = x[0]
for k in range(1,x.shape[0]):
    if x[k]>y:
        y = x[k]
print(y)
```

- outside of the loop: 2 instructions (1 assignment, 1 read)
- inside the loop (worst-case): 5 instructions per iteration
- ▶ the loop runs N − 1 times for an input of length N
- ▶ the loop costs 2(N − 1) operations (creating the index and browsing it)

Total: 2 + 7(N - 1)

Example

Asymptotic analysis

Principle

Calculate resource usage formulaes of an algorithm that are valid when the size of the input goes to infinity.

Motivations

- practical:
 - small size inputs drive implementations into very complex zones with problems of overheads and caches
 - benchmarking is easy for small size inputs not for large ones!
- theoretical:
 - eases a lot the analysis
 - enables one to define classes of comparable algorithm

Big O notations

Definitions

Let f and g be functions from \mathbb{N} to \mathbb{R}

- ▶ f is $\mathcal{O}(g)$ ($f = \mathcal{O}(g)$) if there are M and n_0 such that for all $n \ge n_0$, $|f(n)| \le M|g(n)|$
- ► f is o(g) (f = o(g)) if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$ (with a natural extension to g that can take 0 values)
- ▶ f is $\Theta(g)$ ($f = \Theta(g)$) if there are m, M and n_0 such that for all $n \ge n_0$, $m|g(n)| \le f(n)| \le M|g(n)|$
- $f \sim g \text{ if } \lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$

Big O notations

Properties

Numerous interesting properties, such as

- ▶ $f = \Theta(g)$ if and only if $f = \mathcal{O}(g)$ and $g = \mathcal{O}(f)$
- ▶ if *f* is a polynomial of degree *d*, then $f = \Theta(n^d)$ (with $n^0 = 1$)
- ▶ if λ is a non zero constant and $f = \Theta(g)$, then $\lambda f = \Theta(g)$
- ▶ if $f_1 = \mathcal{O}(g_1)$ and $f_2 = \mathcal{O}(g_2)$, then

$$f_1 + f_2 = \mathcal{O}(|g_1| + |g_2|)$$

 $f_1 f_2 = \mathcal{O}(g_1 g_2)$

▶ if $f = \Theta(g)$ and h = o(g) then $f + h = \Theta(g)$

Asymptotic analysis

Principle revisited

Given an algorithm with an input of size N, find a function g(N) such that true resource usage of the algorithm f is $\mathcal{O}(g)$ (or better $\Theta(g)$)

Practical consequences

- precise instruction counting is generally useless
- on the fly approximation can be used to analyze complex structures
- documentation/specification need only to give asymptotic guarantees
- ▶ any program with only basic instructions and no loop is Θ (1) in time!

Basic example

Find the maximum

```
import numpy as np
x = np.random.normal(size=(16,))
y = x[0]
for k in range(1,x.shape[0]):
    if x[k]>y:
        y = x[k]
print(y)
```

- outside of the loop: do not care!
- inside the loop (worst-case): ⊖ (1) instruction
- ▶ the loop runs N − 1 times for an input of length N
- the loop costs Θ (N) operations (creating the index and browsing it)

Total: $\Theta(N)$

Complexity hierarchy

Important complexity levels

Complexity	Name
Complexity	name
⊖(1)	constant
$\Theta(\log N)$	logarithmic
$\Theta\left(N^{\frac{1}{c}}\right)$ for $c>1$	fractional
$\Theta(N)$	linear
$\Theta(N \log N)$	quasilinear
$\Theta\left(N^2\right)$	quadratic
$\Theta(N^3)$	cubic
$\Theta(N^c)$ for $c > 1$	polynomial
$\Theta(c^N)$ for $c>1$	exponential
$\Theta(N!)$	factorial

Analysing an algorithm

Simple cases

- when:
 - no high level operations are called
 - no recursion is used
- ▶ identify the loops
- determine their worst case number of iterations
- for nested loops multiply the costs

Remarks

- mechanisms that handle loops are generally accounted for implicitly by considering each iteration has a constant bookkeeping cost associated to those mechanisms
- the input size might be characterized by several parameters (e.g., rows and columns for a matrix)

Example

Find the maximum

```
import numpy as np
x = np.random.normal(size=(10,10))
y = x[0,0]
for i in range(0,x.shape[0]):
    for j in range(0,x.shape[1]):
        if x[i,j] > y:
            y = x[i,j]
print(y)
```

- input size N² (or N depending on the point of view)
- nested loops with N iteration each: Θ (N × N)
- inside the inner most loop: Θ(1) (as always!)
- the loop costs are automatically taken care off

Total: $\Theta(N^2)$

- quadratic with respect to N
- but in fact linear with respect to the input size!

More complex programs

Recursion

- difficult case
- leads in general to recursive definition of f(N) the resource usage function
- general theorems help expressing f in closed form (the so-called Master theorem)
- outside the scope of this introduction

High level operations and API calls

- use documentation/specification for API calls
- rely on general complexity theory results (and hope for the best!)

Well known results

Problem	Complexity
Finding a value in a hash table of size N	Θ (1) or Θ (N)
Finding a value in a sorted table of size N	$\Theta(\log N)$
Sorting N values	$\Theta(N \log N)$
Multiplying a matrix $N \times P$ by a vector P	$\Theta(NP)$
Multiplying two matrices of size $N \times P$ and $P \times Q$	$\Theta(NPQ)$
Inverting a $N \times N$ matrix	$\Theta(N^3)$
Eigenvalue decomposition of a $N \times N$ dense matrix	$\Theta(N^3)$
Singular value decomposition of a $M \times N$ matrix	$\Theta (MN^2)$
$(M \geq N)$,

Example

Power method

```
import numpy as np

def power_method(A, prec=le-8):
    x = np.random.random(A.shape[1])
    iterate = True
    while(iterate):
        nx = A@x
        nx /= np.linalg.norm(nx)
        delta = np.linalg.norm(x - nx)
        x = nx
        iterate = delta > prec
    eigenvalue = np.dot(x, A@x)
    eigenvalue /= np.dot(x, x)
    return eigenvalue,x
```

- problem characteristics: N (N × N matrix)
- ▶ initialization: $\Theta(N)$
- inside the inner loop: $\Theta(N^2)$
- how many iterations?

Example

Power method

```
import numpy as np

def power_method(A, prec=1e-8):
    x = np.random.random(A.shape[1])
    iterate = True
    while(iterate):
        nx = A@x
        nx /= np.linalg.norm(nx)
        delta = np.linalg.norm(x - nx)
        x = nx
        iterate = delta > prec
    eigenvalue = np.dot(x, A@x)
    eigenvalue /= np.dot(x, x)
    return eigenvalue,x
```

- problem characteristics: N (N × N matrix)
- ▶ initialization: $\Theta(N)$
- inside the inner loop: $\Theta(N^2)$
- how many iterations?
- need some advanced mathematical results
- here the convergence is linear: the precision is multiplied by a fixed quantity at each iteration
- ▶ loop number $\mathcal{O}\left(\log\left(\frac{1}{\epsilon}\right)\right)$

NP problems

Decision problems

- decision problem: a recognition problem in which given an input the answer is yes or no
- solving the problem consists in building a program that associate the correct answer to any input
- ▶ P class: problems for which an algorithm in $\mathcal{O}(N^k)$ is known
- ▶ NP problems:
 - ► NP stands nondeterministic polynomial (for complex reasons)
 - a problem is NP if a proof that the correct answer is yes can be verified in polynomial time

Examples

P is A = BC? for A, B and C matrices

NP does a given graph possess a Hamiltonian cycle?

NP-complete and NP-hard

Reduction

- ► A and B two problems
- ➤ A reduces to B if any input for A can be transformed into an input for B such that the answer for this transformed input is the correct one for original input

NP-hard

B is NP-hard if any NP problem is reducible to *B* in polynomial time.

NP-complete

A NP-complete problem is a NP problem that is also NP-hard.

NP-hard problems

A complicated class

- ▶ NP-hard problem include strictly NP-complete problem
- some problems in NP-hard are not in NP and not even in the class of decidable problems (e.g. the halting problem)

Optimization problems

- optimization problems are more general than decision problems
- translation to decision problems is straightforward: given an optimization problem T one can ask a series of yes/no questions of the form "is there a solution to T with cost below t?"
- iconic NP-hard problems are optimization ones, for instance the travelling salesman problem

P versus NP

In a nutshell

See the wikipedia for details

- in practice, we only know exponential time algorithms for solving NP-complete problems
- riangleright can we either prove either that there are effectively no polynomial time solutions for NP-complete problem or that P = NP?
- ▶ this is one million price problem...

In practice

- ▶ if a problem is NP-hard, we cannot currently solve it exactly in reasonable time
- but many of NP-hard optimization problems admit fast algorithms that provide approximate results with reasonable quality guarantees

Concluding remarks

What about memory consumption?

- in general this is straightforward
- but in practice one might run into problems, especially with NumPy
- semantics of x = y?

Complexity and machine learning

- machine learning is strongly related to optimization
- many ML optimization problems are NP-hard:
 - empirical risk minimization for the binary cost
 - k-means criterion optimization
 - etc.
- strong reliance on approximate algorithms

Licence

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/

Version

Last git commit: 2021-01-19

By: Fabrice Rossi (Fabrice.Rossi@apiacoa.org)

Git hash: 97cfd0a9975cf193f5790845c00e476c1572a327

Changelog

► Mars 2020: initial Python version