Regularization and Capacity Control

Fabrice Rossi

SAMM Université Paris 1 Panthéon Sorbonne

2018

Capacity control

Regularization

General setting

Data

- $\blacktriangleright \ \mathcal{X}$ the "input" space and $\mathcal Y$ the "output" space
- *D* a fixed and unknown distribution on $\mathcal{X} \times \mathcal{Y}$

Loss function

A loss function I is

- a function from $\mathcal{Y} \times \mathcal{Y}$ to \mathbb{R}^+
- such that $\forall \mathbf{Y} \in \mathcal{Y}$, $I(\mathbf{Y}, \mathbf{Y}) = 0$

Model, loss and risk

- a model g is a function from \mathcal{X} to \mathcal{Y}
- ► given a loss function *I* the risk of *g* is $R_I(g) = \mathbb{E}_{(\mathbf{X},\mathbf{Y})\sim D}(I(g(\mathbf{X}),\mathbf{Y}))$
- optimal risk $R_l^* = \inf_g R_l(g)$

Supervised learning

Data set

- $\blacktriangleright \mathcal{D} = ((\mathbf{X}_i, \mathbf{Y}_i))_{1 \le i \le N}$
- $(\mathbf{X}_i, \mathbf{Y}_i) \sim D$ (i.i.d.)
- $\mathcal{D} \sim D^N$ (product distribution)

Empirical risk minimization

empirical risk

$$\widehat{R}_{l}(g, \mathcal{D}) = \frac{1}{N} \sum_{i=1}^{N} l(g(\mathbf{X}_{i}), \mathbf{Y}_{i}) = \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} l(g(\mathbf{x}), \mathbf{y})$$

▶ given a class G define

$$R_{l,\mathcal{G}}^* = \inf_{g\in\mathcal{G}} R_l(g) ext{ and } g_{\textit{ERM},l,\mathcal{G},\mathcal{D}} = rg\min_{g\in\mathcal{G}} \widehat{R}_l(g,\mathcal{D})$$

ERM Conundrum

What went wrong?

if VCdim(G) < ∞
☺ R_l(g_{ERM,l,G,D}) → R^{*}_{l,G} (estimation: OK)
☺ R^{*}_{l,G} - R^{*}_l can be large (approximation: KO)
if VCdim(G) = ∞
≅ R_l(g_{ERM,l,G,D}) - R^{*}_{l,G} can be large (estimation: KO)
☺ R^{*}_{l,G} ≃ R^{*}_l is possible (approximation: OK)

ERM Conundrum

What went wrong?

Can we solve this?

Capacity control

Regularization

General idea

- the VC-dimension gives an idea of the capacity of a class of models
- ► to reach $R_{l,G}^*$ with ϵ with certainty 1δ , we need $\Theta\left(\frac{VCdim(G) + \log \frac{1}{\delta}}{\epsilon^2}\right)$ data points
- \blacktriangleright we could let the class grow with the data size in such a way that both ϵ and δ could go to zero

Increasing capacity

Hypotheses

- infinite data set with $\mathcal{D}_n = ((\mathbf{X}_i, \mathbf{Y}_i))_{1 \le i \le n}$
- $\mathcal{Y} = \{-1, 1\}$ and $I_b(p, t) = \mathbf{1}_{p \neq t}$
- ▶ growing (G_j)_{j≥1} classes of increasing but finite VC dimension VCdim(G_j) < ∞</p>
- asymptotically perfect: $\lim_{j\to\infty} R^*_{l_b,\mathcal{G}_j} = R^*_{l_b}$

•
$$k_n \to \infty$$
 et $\frac{VCdim(\mathcal{G}_{k_n})\log n}{n} \to 0$

Result

• define
$$g_n = g_{ERM, I, \mathcal{G}_{k_n}, \mathcal{D}_n}$$

• then
$$R_{l_b}(g_n) \xrightarrow[n \to \infty]{a.s.} R_{l_b}^*$$

Are the hypotheses realistic?

- yes! There are such model classes!
- simple example with $\mathcal{X} = [0, 1]$:

$$\mathcal{G}_j = \left\{ g \Big| g(X) = \operatorname{sign} \left(a_0 + \sum_{k=1}^j (a_k \cos 2k\pi X + b_k \sin 2k\pi X) \right) \right\}$$

- $VCdim(G_j) \le 2j + 1$ (underlying vector space)
- use $k_n = n^{\alpha}$ with $0 < \alpha < 1$
- many other solutions (radial basis function networks, one hidden layer perceptrons, etc.)

Extensions and limitations

Extensions

- \blacktriangleright can be adapted to e.g. $\mathcal{Y}=\mathbb{R}$ with other loss functions
- bounds on the target values can also be lifted with a similar approach

Limitations

- classes are data independent: they must be chosen beforehand
- no data adaptation: if the problem is simple, the approximation part might converge too slowly, for instance
- worst case analysis: the VC-dimension generally overestimates (a lot) the actual capacity of a class of models for the data distribution under study

Central idea

Optimize a compromise between the empirical risk and the complexity of the class

SRM

- similar hypotheses as before: binary case, infinite data set and asymptotically perfect series of classes
- global capacity control: $\sum_{j=1}^{\infty} e^{-VCdim(\mathcal{G}^j)} < \infty$

• capacity penalty:
$$r(j, n) = \sqrt{\frac{8 VCdim(G^j) \log(en)}{n}}$$

►
$$j(g) = \inf \{k \mid g \in \mathcal{G}^k\}$$

► define $g_{SRM,n} = \arg \min_{g \in \bigcup_j \mathcal{G}^j} \left(\widehat{R}_{l_b}(g, \mathcal{D}_n) + r(j(g), n) \right)$

• then
$$R_{l_b}(g_{SRM,n}) \xrightarrow[n \to \infty]{a.s.} R_{l_b}^*$$

AIC and BIC

- ► AIC: 2k 2 log L, where L is the likelihood and k the number of parameters
- ▶ BIC: $k \log n 2 \log \mathcal{L}$
- ► notice that the log-likelihood is in general of the form n × log L, where L is the likelihood for a simple data point
- thus the per data point penalties are in k/n for AIC and in klog n/n for BIC
- in SRM the penalty is in $\frac{\sqrt{k \log n}}{\sqrt{n}}$

In practice

- hypotheses are realistic
- the trade off between empirical risk and model complexity is now data dependant
- the model is searched into an class with infinite VC-dimension

but

- classes are still data independent
- worst case analysis: the penalty is generally too strong $(\sqrt{n} \text{ versus } n)$
- this is very costly on a computational point of view
- the VC-dimension is quite difficult to compute (frequently bounded above only)
- take home message: replacing ERM by the optimization of a compromise between empirical risk and a capacity measure seems to work

Validation

A basic learning framework

- 1. split the data into $\mathcal D$ (learning) and $\mathcal D'$ (validation)
- 2. for each machine learning algorithm $\ensuremath{\mathcal{A}}$ under study
 - 2.1 for each value θ of the parameters of the algorithm
 - 2.1.1 compute the model using θ on \mathcal{D} , $g_{\mathcal{A},\theta,\mathcal{D}}$

2.1.2 compute $\widehat{R}_{l}(g_{\mathcal{A},\theta,\mathcal{D}},\mathcal{D}')$

3. chose the best model g^* among all the models according to $\widehat{R}_l(.,\mathcal{D}')$

ERM view

- \blacktriangleright the nested loops build a finite class of models $\mathcal{G}_{\mathcal{D}}$
- g^* is chosen in $\mathcal{G}_{\mathcal{D}}$ by ERM on \mathcal{D}'
- ► works because the class is finite and does not depend on D'!
- ► target risk: R^{*}_{I,GD}

Capacity control

Regularization

Regularized Loss Minimization (RLM)

 many algorithms select a model g in a class G by minimizing a Regularized Loss as follows

$$rg\min_{oldsymbol{g}\in\mathcal{G}}(\widehat{\mathcal{A}}(oldsymbol{g},\mathcal{D})+\lambda \mathbf{C}(oldsymbol{g}))$$

- ► $\widehat{A}(g, \mathcal{D})$ is a loss (not to be confused with a loss function) which plays a similar role as $\widehat{R}(g, \mathcal{D})$
- C(g) is a measure of the regularity of the model g
- λ is a trade off parameter

Examples

CART

- $\widehat{A}(g_T, \mathcal{D}) = \widehat{R}_I(g_T, \mathcal{D})$
- $\mathbf{C}(g_T) = |T|$ (number of leaves)

Structural Risk Minimization

$$\blacktriangleright \widehat{A}(g,\mathcal{D}) = \widehat{R}_{l_b}(g,\mathcal{D})$$

▶
$$\mathbf{C}(g) = \sqrt{VCdim(\mathcal{G})}$$
 with $g \in \mathcal{G}$ and $\lambda = \sqrt{\frac{8 \log(en)}{n}}$

Ridge regression

- $\widehat{A}(g,\mathcal{D}) = \widehat{R}_{l_2}(g,\mathcal{D}) \text{ with } l_2(p,t) = (p-t)^2 \text{ and } g(\mathbf{X}) = \beta_0 + \beta^T \mathbf{X}$
- ► $\mathbf{C}(g) = \|\boldsymbol{\beta}\|^2$

With SRM

- RLM can be seen as an extended SRM
- the empirical risk can be replaced by an empirical loss
- the VC-dim based penalty can be replaced by an ad hoc one
- ► one specifies directly *G* (no need for a structured class of models)

With ERM

- ► assume g^{*} = arg min_{g∈G}(Â(g, D) + λC(g)) with μ = C(g^{*}) then g^{*} is also solution of arg min_{g∈G|C(g)≤μ}Â(g, D)
- ► if both and C are convex functionals RLM is equivalent to minimizing the loss under a constraint on C: regularization corresponds to reduced model classes

Impact of the loss

- in general $\widehat{A}(g, D)$ is not the empirical risk
- can we still provide guarantees with respect to R^{*}_l for some loss function *l*?

Impact of the regularization

- ▶ is the regularization sufficient to ensure some form of learnability?
- how can we choose λ ?
 - data size based approaches (as in SRM, AIC, BIC)?
 - data based approaches (validation)?

Why using a loss?

- ► the binary loss function l_b(p, t) = 1_{p≠t} leads to a very complex optimization problem
- more generally some loss functions are important from a practical point of view but lead to empirical risks that are more difficult to optimize than others

Consistency

- in general Â(g, D) = Â_{l'}(g, D) for some loss function l' ≠ l (frequently up to a transformation of the problem)
- ▶ then we can sometimes ensure that $\widehat{A}(g, D)$ is close to $R_{l'}(g)$
- ▶ but what about R₁(g)?

Quadratic relaxation of the binary loss function

- $\mathcal{Y} = \{-1, 1\}$ and I_b standard binary loss function
- G a class of real valued functions
- ► empirical risk $\widehat{R}_{l_b}(g, D) = \frac{1}{|D|} \sum_{(\mathbf{x}, \mathbf{y}) \in D} \mathbf{1}_{\text{sign}(g(\mathbf{x})) \neq \mathbf{y}}$
- empirical loss

$$\widehat{\mathsf{A}}(g,\mathcal{D}) = \widehat{\mathsf{R}}_{l_2}(g,\mathcal{D}) = \sum_{(\mathbf{x},\mathbf{y})\in\mathcal{D}} \left(g(\mathbf{x})-\mathbf{y}
ight)^2$$

Margin based loss

- $\mathcal{Y} = \{-1, 1\}$ and I_b standard binary loss function
- G a class of real valued functions
- ► consider $I_{\phi}(p, t) = \phi(pt)$ for some function ϕ and $\widehat{A}_{\phi}(g, D) = \widehat{R}_{l_{\phi}}(g, D)$
- examples
 - $I_{logi}(p, t) = \log(1 + \exp(-pt))$ (logistic loss)
 - $I_{per}(p, t) = \max(0, -pt)$ (perceptron loss)
 - $I_{hinge}(p, t) = \max(0, 1 pt)$ (hinge loss)
 - $I_{exp}(p, t) = \exp(-pt)$ (exponential loss)
 - ► $l_2(p,t) = (pt)^2 2pt + 1$ (because $t \in \{-1,1\}$
- margin interpretation when the decision is $sign(g(\mathbf{x}))$
 - $g(\mathbf{x})\mathbf{y} > 0$: correct decision, robust when the product is large
 - $g(\mathbf{x})\mathbf{y} < 0$: wrong decision, with a "magnitude" proportional to $|g(\mathbf{x})|$

Convex case

- If φ is convex, then minimizing R
 _{l_φ}(g, D) + λC(g) is probably easier than minimizing R
 _{l_b}(g, D)
- ▶ φ is calibrated iif
 - *φ* is convex
 - *φ* has a derivative in 0
- can be extended to the non convex case

Result

- ▶ if ϕ is calibrated then $R_{l_{\phi}}(g) \to R^*_{l_{\phi}}$ implies that $R_{l_b}(g) \to R^*_{l_b}$
- in plain English: if we manage to learn with a calibrated surrogate loss, then we learn with respect to the binary loss!

- is difficult on a computational point of view
- but the binary loss function can be replaced by any calibrated convex loss: this is the de facto standard
- no adverse consequences asymptotically
- however on a fixed size data set there are differences between loss functions

Consistency

- using a calibrated convex loss solves the computational aspect
- ▶ but in order to ensure R^{*}_{l_φ} can be reached we need G to be a class of infinite VC-dimension
- thus we need:
 - ► to ensure that sets of the form {g ∈ G | C(g) ≤ µ} have finite VC-dim
 - λ can be handled efficiently
- such results are available for some models, e.g. support vector machines

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/

Last modification: 2018-02-12 By: Fabrice Rossi (Fabrice.Rossi@apiacoa.org) Git hash: 84cc73324656974258ddb3bf4e54a97ffaa561c3