Regularization and Capacity Control

Fabrice Rossi

SAMM Université Paris 1 Panthéon Sorbonne

2018

Outline

Capacity control

Regularization

General setting

Data

- $ightharpoonup \mathcal{X}$ the "input" space and \mathcal{Y} the "output" space
- ▶ *D* a fixed and unknown distribution on $X \times Y$

Loss function

A loss function / is

- ▶ a function from $\mathcal{Y} \times \mathcal{Y}$ to \mathbb{R}^+
- ▶ such that \forall **Y** \in \mathcal{Y} , I(**Y**, **Y**) = 0

Model, loss and risk

- ▶ a model g is a function from X to Y
- ▶ given a loss function / the risk of g is $R_l(g) = \mathbb{E}_{(\mathbf{X}, \mathbf{Y}) \sim D}(I(g(\mathbf{X}), \mathbf{Y}))$
- optimal risk $R_l^* = \inf_g R_l(g)$

3

Supervised learning

Data set

- $\triangleright \mathcal{D} = ((\mathbf{X}_i, \mathbf{Y}_i))_{1 < i < N}$
- ightharpoonup ($\mathbf{X}_i, \mathbf{Y}_i$) $\sim D$ (i.i.d.)
- $ightharpoonup \mathcal{D} \sim \mathcal{D}^N$ (product distribution)

Empirical risk minimization

empirical risk

$$\widehat{R}_{l}(g,\mathcal{D}) = \frac{1}{N} \sum_{i=1}^{N} l(g(\mathbf{X}_{i}), \mathbf{Y}_{i}) = \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} l(g(\mathbf{x}), \mathbf{y})$$

▶ given a class G define

$$R_{l,\mathcal{G}}^* = \inf_{g \in \mathcal{G}} R_l(g) \text{ and } g_{\textit{ERM},l,\mathcal{G},\mathcal{D}} = \arg\min_{g \in \mathcal{G}} \widehat{R}_l(g,\mathcal{D})$$

4

ERM Catch-22

What went wrong?

- ▶ if $VCdim(\mathcal{G}) < \infty$
 - \bigcirc $R_{l}(g_{ERM,l,\mathcal{G},\mathcal{D}}) \rightarrow R_{l,\mathcal{G}}^{*}$ (estimation: OK)
 - $\ominus R_{I,\mathcal{G}}^* R_I^*$ can be large (approximation: KO)
- if $VCdim(\mathcal{G}) = \infty$
 - \otimes $R_l(g_{ERM,l,\mathcal{G},\mathcal{D}}) R_{l,\mathcal{G}}^*$ can be large (estimation: KO)
 - $\Theta R_{I,\mathcal{G}}^* \simeq R_I^*$ is possible (approximation: OK)

ERM Catch-22

What went wrong?

- if $VCdim(\mathcal{G}) < \infty$
 - \bigcirc $R_{l}(g_{ERM,l,\mathcal{G},\mathcal{D}}) \rightarrow R_{l,\mathcal{G}}^{*}$ (estimation: OK)
 - \ominus $R_{l,\mathcal{G}}^* R_l^*$ can be large (approximation: KO)
- if $VCdim(\mathcal{G}) = \infty$
 - $\mathfrak{S}(g_{ERM,I,\mathcal{G},\mathcal{D}}) R_{I,\mathcal{G}}^*$ can be large (estimation: KO)
 - \bigcirc $R_{l,\mathcal{G}}^* \simeq R_l^*$ is possible (approximation: OK)

Can we solve this?

Outline

Capacity control

Regularization

Capacity control

General idea

- the VC-dimension gives an idea of the capacity of a class of models
- ▶ to reach $R_{l,\mathcal{G}}^*$ with ϵ with certainty 1 $-\delta$, we need $\Theta\left(\frac{\mathit{VCdim}(\mathcal{G}) + \log \frac{1}{\delta}}{\epsilon^2}\right)$ data points
- we could let the class grow with the data size in such a way that both ϵ and δ could go to zero

7

Increasing capacity

Hypotheses

- ▶ infinite data set with $\mathcal{D}_n = ((\mathbf{X}_i, \mathbf{Y}_i))_{1 \leq i \leq n}$
- ▶ $\mathcal{Y} = \{-1, 1\}$ and $I_b(p, t) = \mathbf{1}_{p \neq t}$
- growing $(\mathcal{G}_j)_{j\geq 1}$ classes of increasing but finite VC dimension $VCdim(\mathcal{G}_j)<\infty$
- lacktriangledown asymptotically perfect: $\lim_{j o \infty} R_{l_b,\mathcal{G}_j}^* = R_{l_b}^*$
- $k_n \to \infty$ et $\frac{\textit{VCdim}(\mathcal{G}_{k_n}) \log n}{n} \to 0$

Result

- lacksquare define $g_n = g_{ERM,I,\mathcal{G}_{k_n},\mathcal{D}_n}$
- then $R_{l_b}(g_n) \xrightarrow[n \to \infty]{a.s.} R_{l_b}^*$

В

In practice?

Are the hypotheses realistic?

- yes! There are such model classes!
- simple example with $\mathcal{X} = [0, 1]$:

$$G_j = \left\{ g \middle| g(X) = \operatorname{sign} \left(a_0 + \sum_{k=1}^j (a_k \cos 2k\pi X + b_k \sin 2k\pi X) \right) \right\}$$

- ▶ $VCdim(G_i) \le 2j + 1$ (underlying vector space)
- use $k_n = n^{\alpha}$ with $0 < \alpha < 1$
- many other solutions (radial basis function networks, one hidden layer perceptrons, etc.)

١

Extensions and limitations

Extensions

- ightharpoonup can be adapted to e.g. $\mathcal{Y} = \mathbb{R}$ with other loss functions
- bounds on the target values can also be lifted with a similar approach

Limitations

- classes are data independent: they must be chosen beforehand
- no data adaptation: if the problem is simple, the approximation part might converge too slowly, for instance
- worst case analysis: the VC-dimension generally overestimates (a lot) the actual capacity of a class of models for the data distribution under study

Structural Risk Minimization

Central idea

Optimize a compromise between the empirical risk and the complexity of the class

SRM

- similar hypotheses as before: binary case, infinite data set and asymptotically perfect series of classes
- ▶ global capacity control: $\sum_{j=1}^{\infty} e^{-VCdim(\mathcal{G}^j)} < \infty$
- capacity penalty: $r(j, n) = \sqrt{\frac{8VCdim(\mathcal{G}^j)\log(en)}{n}}$
- ▶ $j(g) = \inf\{k \mid g \in \mathcal{G}^k\}$
- $\blacktriangleright \ \ \mathsf{define} \ g_{\mathit{SRM},n} = \mathsf{arg} \ \mathsf{min}_{g \in \bigcup_j \mathcal{G}^j} \left(\widehat{R}_{l_b}(g,\mathcal{D}_n) + r(j(g),n) \right)$
- then $R_{l_b}(g_{SRM,n}) \xrightarrow[n \to \infty]{a.s.} R_{l_b}^*$

Links to other frameworks

AIC and BIC

- ▶ AIC: $2k 2 \log \mathcal{L}$, where \mathcal{L} is the likelihood and k the number of parameters
- ▶ BIC: $k \log n 2 \log \mathcal{L}$
- ▶ notice that the log-likelihood is in general of the form n × log L, where L is the likelihood for a simple data point
- ► thus the per data point penalties are in $\frac{k}{n}$ for AIC and in $\frac{k \log n}{n}$ for BIC
- ▶ in SRM the penalty is in $\frac{\sqrt{k \log n}}{\sqrt{n}}$

In practice

- hypotheses are realistic
- the trade off between empirical risk and model complexity is now data dependant
- the model is searched into an class with infinite VC-dimension
- but
 - classes are still data independent
 - worst case analysis: the penalty is generally too strong (\sqrt{n} versus n)
 - this is very costly on a computational point of view
 - the VC-dimension is quite difficult to compute (frequently bounded above only)
- take home message: replacing ERM by the optimization of a compromise between empirical risk and a capacity measure seems to work

Validation

A basic learning framework

- 1. split the data into \mathcal{D} (learning) and \mathcal{D}' (validation)
- 2. for each machine learning algorithm A under study
 - 2.1 for each value θ of the parameters of the algorithm 2.1.1 compute the model using θ on \mathcal{D} , $g_{\mathcal{A},\theta,\mathcal{D}}$
 - 2.1.2 compute $\widehat{R}_l(g_{A,\theta,\mathcal{D}},\mathcal{D}')$
- 3. chose the best model g^* among all the models according to $\widehat{R}_l(.,\mathcal{D}')$

ERM view

- the nested loops build a finite class of models \(\mathcal{G}_{D} \)
- g^* is chosen in $\mathcal{G}_{\mathcal{D}}$ by ERM on \mathcal{D}'
- ▶ works because the class is finite and does not depend on D'!
- ▶ target risk: R^{*}_{I,GD}

Outline

Capacity control

Regularization

Regularization

Regularized Loss Minimization (RLM)

▶ many algorithms select a model g in a class G by minimizing a Regularized Loss as follows

$$\arg\min_{g\in\mathcal{G}}(\widehat{A}(g,\mathcal{D})+\lambda\mathbf{C}(g))$$

- $\widehat{A}(g,\mathcal{D})$ is a loss (not to be confused with a loss function) which plays a similar role as $\widehat{R}(g,\mathcal{D})$
- ▶ **C**(g) is a measure of the regularity of the model g
- $ightharpoonup \lambda$ is a trade off parameter

Examples

CART

- $\blacktriangleright \ \widehat{A}(g_T, \mathcal{D}) = \widehat{R}_l(g_T, \mathcal{D})$
- ▶ $\mathbf{C}(g_T) = |T|$ (number of leaves)

Structural Risk Minimization

- $ightharpoonup \widehat{A}(g,\mathcal{D}) = \widehat{R}_{l_b}(g,\mathcal{D})$
- ▶ $\mathbf{C}(g) = \sqrt{\textit{VCdim}(\mathcal{G})}$ with $g \in \mathcal{G}$ and $\lambda = \sqrt{\frac{8 \log(en)}{n}}$

Ridge regression

- $ightharpoonup \widehat{A}(g,\mathcal{D}) = \widehat{R}_{l_2}(g,\mathcal{D})$ with $l_2(p,t) = (p-t)^2$ and $g(\mathbf{X}) = \beta_0 + \beta^T \mathbf{X}$
- $\triangleright \mathbf{C}(g) = \|\beta\|^2$

Links with ERM and SRM

With SRM

- RLM can be seen as an extended SRM
- the empirical risk can be replaced by an empirical loss
- ▶ the VC-dim based penalty can be replaced by an ad hoc one
- ightharpoonup one specifies directly $\mathcal G$ (no need for a structured class of models)

With ERM

- ▶ assume $g^* = \arg\min_{g \in \mathcal{G}} (\widehat{A}(g, \mathcal{D}) + \lambda \mathbf{C}(g))$ with $\mu = \mathbf{C}(g^*)$ then g^* is also solution of $\arg\min_{\{g \in \mathcal{G} \mid \mathbf{C}(g) \leq \mu\}} \widehat{A}(g, \mathcal{D})$
- ▶ if both \widehat{A} and \mathbf{C} are convex functionals RLM is equivalent to minimizing the loss \widehat{A} under a constraint on \mathbf{C} : regularization corresponds to reduced model classes

Difficulties

Impact of the loss

- ▶ in general $\widehat{A}(g, \mathcal{D})$ is not the empirical risk
- can we still provide guarantees with respect to R_i* for some loss function I?

Impact of the regularization

- is the regularization sufficient to ensure some form of learnability?
- ▶ how can we choose λ ?
 - data size based approaches (as in SRM, AIC, BIC)?
 - data based approaches (validation)?

Surrogate losses

Why using a loss?

- ▶ the binary loss function $l_b(p, t) = \mathbf{1}_{p\neq t}$ leads to a very complex optimization problem
- more generally some loss functions are important from a practical point of view but lead to empirical risks that are more difficult to optimize than others

Consistency

- ▶ in general $\widehat{A}(g, \mathcal{D}) = \widehat{R}_{l'}(g, \mathcal{D})$ for some loss function $l' \neq l$ (frequently up to a transformation of the problem)
- ▶ then we can sometimes ensure that $\widehat{A}(g, \mathcal{D})$ is close to $R_{l'}(g)$
- ▶ but what about $R_l(g)$?

Simple example

Quadratic relaxation of the binary loss function

- ▶ $\mathcal{Y} = \{-1, 1\}$ and I_b standard binary loss function
- G a class of real valued functions
- $lackbox{empirical risk }\widehat{R}_{l_b}(g,\mathcal{D})=rac{1}{|\mathcal{D}|}\sum_{(\mathbf{x},\mathbf{y})\in\mathcal{D}}\mathbf{1}_{\mathrm{sign}(g(\mathbf{x}))
 eq \mathbf{y}}$
- empirical loss

$$\widehat{\mathsf{A}}(g,\mathcal{D}) = \widehat{\mathsf{R}}_{l_2}(g,\mathcal{D}) = \sum_{(\mathbf{x},\mathbf{y})\in\mathcal{D}} (g(\mathbf{x})-\mathbf{y})^2$$

General relaxation for binary classification

Margin based loss

- ▶ $\mathcal{Y} = \{-1, 1\}$ and I_b standard binary loss function
- G a class of real valued functions
- consider $I_{\phi}(p,t)=\phi(pt)$ for some function ϕ and $\widehat{A}_{\phi}(g,\mathcal{D})=\widehat{R}_{I_{\phi}}(g,\mathcal{D})$
- examples
 - $I_{logi}(p, t) = \log(1 + \exp(-pt))$ (logistic loss)
 - ► $I_{per}(p, t) = \max(0, -pt)$ (perceptron loss)
 - $I_{hinge}(p, t) = \max(0, 1 pt) \text{ (hinge loss)}$
 - $I_{exp}(p, t) = \exp(-pt)$ (exponential loss)
 - ► $l_2(p, t) = (pt)^2 2pt + 1$ (because $t \in \{-1, 1\}$
- ightharpoonup margin interpretation when the decision is $sign(g(\mathbf{x}))$
 - $g(\mathbf{x})\mathbf{y} > 0$: correct decision, robust when the product is large
 - $g(\mathbf{x})\mathbf{y} < 0$: wrong decision, with a "magnitude" proportional to $|g(\mathbf{x})|$

Calibrated loss

Convex case

- if ϕ is convex, then minimizing $\widehat{R}_{l_{\phi}}(g, \mathcal{D}) + \lambda \mathbf{C}(g)$ is probably easier than minimizing $\widehat{R}_{l_{b}}(g, \mathcal{D})$
- φ is calibrated iif
 - $ightharpoonup \phi$ is convex

 - φ′(0) < 0
 </p>
- can be extended to the non convex case

Result

- lacktriangleright if ϕ is calibrated then $R_{l_\phi}(g) o R_{l_\phi}^*$ implies that $R_{l_b}(g) o R_{l_b}^*$
- in plain English: if we manage to learn with a calibrated surrogate loss, then we learn with respect to the binary loss!

ERM in the binary case

- is difficult on a computational point of view
- but the binary loss function can be replaced by any calibrated convex loss: this is the de facto standard
- no adverse consequences asymptotically
- however on a fixed size data set there are differences between loss functions

Remaining theoretical work

Consistency

- using a calibrated convex loss solves the computational aspect
- but in order to ensure $R_{l_{\phi}}^{*}$ can be reached we need \mathcal{G} to be a class of infinite VC-dimension
- thus we need:
 - ▶ to ensure that sets of the form $\{g \in \mathcal{G} \mid \mathbf{C}(g) \leq \mu\}$ have finite VC-dim
 - \blacktriangleright λ can be handled efficiently
- such results are available for some models, e.g. support vector machines

Licence

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/

Version

Last git commit: 2019-01-12

By: Fabrice Rossi (Fabrice.Rossi@apiacoa.org)

Git hash: baad66f7da2766a14d7a9df74cf06ed054c5d003