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General setting

Data
I X the “input” space and Y the “output” space
I D a fixed and unknown distribution on X × Y

Loss function
A loss function l is

I a function from Y × Y to R+

I such that ∀Y ∈ Y, l(Y,Y) = 0

Model, loss and risk
I a model g is a function from X to Y
I given a loss function l the risk of g is Rl (g) = E(X,Y)∼D(l(g(X),Y))

I optimal risk R∗l = infg Rl (g)
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Supervised learning

Data set
I D = ((Xi ,Yi ))1≤i≤N
I (Xi ,Yi ) ∼ D (i.i.d.)
I D ∼ DN (product distribution)

Empirical risk minimization
I empirical risk

R̂l (g,D) =
1
N

N∑
i=1

l(g(Xi ),Yi ) =
1
|D|

∑
(x,y)∈D

l(g(x),y)

I given a class G define

R∗l,G = inf
g∈G

Rl (g) and gERM,l,G,D = arg min
g∈G

R̂l (g,D)
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ERM Catch-22

What went wrong?
I if VCdim(G) <∞

Rl(gERM,l,G,D)→ R∗l,G (estimation: OK)
R∗l,G − R∗l can be large (approximation: KO)

I if VCdim(G) =∞
Rl(gERM,l,G,D)− R∗l,G can be large (estimation: KO)
R∗l,G ' R∗l is possible (approximation: OK)

Can we solve this?
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Capacity control

General idea
I the VC-dimension gives an idea of the capacity of a class of

models
I to reach R∗l,G with ε with certainty 1− δ, we need

Θ
(

VCdim(G)+log 1
δ

ε2

)
data points

I we could let the class grow with the data size in such a way that
both ε and δ could go to zero
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Increasing capacity

Hypotheses
I infinite data set with Dn = ((Xi ,Yi ))1≤i≤n

I Y = {−1,1} and lb(p, t) = 1p 6=t

I growing (Gj )j≥1 classes of increasing but finite VC dimension
VCdim(Gj ) <∞

I asymptotically perfect: limj→∞ R∗lb,Gj
= R∗lb

I kn →∞ et VCdim(Gkn ) log n
n → 0

Result
I define gn = gERM,l,Gkn ,Dn

I then Rlb (gn)
a.s.−−−→

n→∞
R∗lb
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In practice?

Are the hypotheses realistic?
I yes! There are such model classes!
I simple example with X = [0,1]:

Gj =

{
g
∣∣∣g(X ) = sign

(
a0 +

j∑
k=1

(ak cos 2kπX + bk sin 2kπX )

)}

I VCdim(Gj) ≤ 2j + 1 (underlying vector space)
I use kn = nα with 0 < α < 1

I many other solutions (radial basis function networks, one hidden
layer perceptrons, etc.)
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Extensions and limitations

Extensions
I can be adapted to e.g. Y = R with other loss functions
I bounds on the target values can also be lifted with a similar

approach

Limitations
I classes are data independent: they must be chosen beforehand
I no data adaptation: if the problem is simple, the approximation

part might converge too slowly, for instance
I worst case analysis: the VC-dimension generally overestimates (a

lot) the actual capacity of a class of models for the data
distribution under study
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Structural Risk Minimization

Central idea
Optimize a compromise between the empirical risk and the complexity
of the class

SRM
I similar hypotheses as before: binary case, infinite data set and

asymptotically perfect series of classes
I global capacity control:

∑∞
j=1 e−VCdim(G j ) <∞

I capacity penalty: r(j ,n) =
√

8VCdim(G j ) log(en)
n

I j(g) = inf
{

k | g ∈ Gk
}

I define gSRM,n = arg ming∈
⋃

j G j

(
R̂lb (g,Dn) + r(j(g),n)

)
I then Rlb (gSRM,n)

a.s.−−−→
n→∞

R∗lb
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Links to other frameworks

AIC and BIC
I AIC: 2k − 2 logL, where L is the likelihood and k the number of

parameters
I BIC: k log n − 2 logL
I notice that the log-likelihood is in general of the form n × log L,

where L is the likelihood for a simple data point
I thus the per data point penalties are in k

n for AIC and in k log n
n for

BIC

I in SRM the penalty is in
√

k log n√
n
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In practice

I hypotheses are realistic
I the trade off between empirical risk and model complexity is now

data dependant
I the model is searched into an class with infinite VC-dimension
I but

I classes are still data independent
I worst case analysis: the penalty is generally too strong (

√
n versus

n)
I this is very costly on a computational point of view
I the VC-dimension is quite difficult to compute (frequently bounded

above only)
I take home message: replacing ERM by the optimization of a

compromise between empirical risk and a capacity measure
seems to work
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Validation

A basic learning framework

1. split the data into D (learning) and D′ (validation)
2. for each machine learning algorithm A under study

2.1 for each value θ of the parameters of the algorithm
2.1.1 compute the model using θ on D, gA,θ,D
2.1.2 compute R̂l (gA,θ,D,D′)

3. chose the best model g∗ among all the models according to
R̂l (.,D′)

ERM view
I the nested loops build a finite class of models GD
I g∗ is chosen in GD by ERM on D′

I works because the class is finite and does not depend on D′!
I target risk: R∗l,GD
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Regularization

Regularized Loss Minimization (RLM)
I many algorithms select a model g in a class G by minimizing a

Regularized Loss as follows

arg min
g∈G

(Â(g,D) + λC(g))

I Â(g,D) is a loss (not to be confused with a loss function) which
plays a similar role as R̂(g,D)

I C(g) is a measure of the regularity of the model g
I λ is a trade off parameter
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Examples

CART
I Â(gT ,D) = R̂l (gT ,D)

I C(gT ) = |T | (number of leaves)

Structural Risk Minimization
I Â(g,D) = R̂lb (g,D)

I C(g) =
√

VCdim(G) with g ∈ G and λ =
√

8 log(en)
n

Ridge regression
I Â(g,D) = R̂l2 (g,D) with l2(p, t) = (p − t)2 and g(X) = β0 + βT X
I C(g) = ‖β‖2
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Links with ERM and SRM

With SRM
I RLM can be seen as an extended SRM
I the empirical risk can be replaced by an empirical loss
I the VC-dim based penalty can be replaced by an ad hoc one
I one specifies directly G (no need for a structured class of models)

With ERM
I assume g∗ = arg ming∈G(Â(g,D) + λC(g)) with µ = C(g∗) then

g∗ is also solution of arg min{g∈G|C(g)≤µ} Â(g,D)

I if both Â and C are convex functionals RLM is equivalent to
minimizing the loss Â under a constraint on C: regularization
corresponds to reduced model classes
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Difficulties

Impact of the loss
I in general Â(g,D) is not the empirical risk
I can we still provide guarantees with respect to R∗l for some loss

function l?

Impact of the regularization
I is the regularization sufficient to ensure some form of learnability?
I how can we choose λ?

I data size based approaches (as in SRM, AIC, BIC)?
I data based approaches (validation)?
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Surrogate losses

Why using a loss?
I the binary loss function lb(p, t) = 1p 6=t leads to a very complex

optimization problem
I more generally some loss functions are important from a practical

point of view but lead to empirical risks that are more difficult to
optimize than others

Consistency
I in general Â(g,D) = R̂l′(g,D) for some loss function l ′ 6= l

(frequently up to a transformation of the problem)
I then we can sometimes ensure that Â(g,D) is close to Rl′(g)

I but what about Rl (g)?
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Simple example

Quadratic relaxation of the binary loss function
I Y = {−1,1} and lb standard binary loss function
I G a class of real valued functions
I empirical risk R̂lb (g,D) = 1

|D|
∑

(x,y)∈D 1sign(g(x)) 6=y

I empirical loss

Â(g,D) = R̂l2 (g,D) =
∑

(x,y)∈D

(g(x)− y)2
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General relaxation for binary classification

Margin based loss
I Y = {−1,1} and lb standard binary loss function
I G a class of real valued functions
I consider lφ(p, t) = φ(pt) for some function φ and

Âφ(g,D) = R̂lφ(g,D)

I examples
I llogi(p, t) = log(1 + exp(−pt)) (logistic loss)
I lper (p, t) = max(0,−pt) (perceptron loss)
I lhinge(p, t) = max(0, 1− pt) (hinge loss)
I lexp(p, t) = exp(−pt) (exponential loss)
I l2(p, t) = (pt)2 − 2pt + 1 (because t ∈ {−1, 1}

I margin interpretation when the decision is sign(g(x))
I g(x)y > 0: correct decision, robust when the product is large
I g(x)y < 0: wrong decision, with a “magnitude” proportional to |g(x)|
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Calibrated loss

Convex case
I if φ is convex, then minimizing R̂lφ(g,D) + λC(g) is probably

easier than minimizing R̂lb (g,D)

I φ is calibrated iif
I φ is convex
I φ has a derivative in 0
I φ′(0) < 0

I can be extended to the non convex case

Result
I if φ is calibrated then Rlφ(g)→ R∗lφ implies that Rlb (g)→ R∗lb
I in plain English: if we manage to learn with a calibrated surrogate

loss, then we learn with respect to the binary loss!
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ERM in the binary case

I is difficult on a computational point of view
I but the binary loss function can be replaced by any calibrated

convex loss: this is the de facto standard
I no adverse consequences asymptotically
I however on a fixed size data set there are differences between

loss functions
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Remaining theoretical work

Consistency
I using a calibrated convex loss solves the computational aspect
I but in order to ensure R∗lφ can be reached we need G to be a class

of infinite VC-dimension
I thus we need:

I to ensure that sets of the form {g ∈ G | C(g) ≤ µ} have finite
VC-dim

I λ can be handled efficiently
I such results are available for some models, e.g. support vector

machines
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