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General setting

Data
» X the “input” space and ) the “output” space
» D a fixed and unknown distribution on X x Y

Loss function
A loss function / is

» afunction from ) x Y to R™
» suchthatv¥Y ey, [(Y,Y)=0

Model, loss and risk
» a model g is a function from X to
» given a loss function / the risk of g is Ri(g) = Ex v)~o(/(9(X),Y))
» optimal risk R} = infg Ri(9)



Supervised learning

Data set

> D= ((Xi,Yi)i<i<n
> (X;,Y;) ~ D (iid.)
» D ~ DN (product distribution)

Empirical risk minimization

» empirical risk

N
9,D Z |1@| > I(g(x),y)

» given a class G define

Rig = g're‘fg Ri(g) and germ,i,g,p = arg gﬂelg ﬁ/(g, D)



ERM Catch-22

What went wrong?

» if VCdim(G) < oo
© Ri(geam,,9.0) — Ri'g (estimation: OK)
© R;g — Ry can be large (approximation: KO)
> if VCdim(G) = oo
© Ri(geam,,0,0) — R g can be large (estimation: KO)
© Ryg ~ Ry is possible (approximation: OK)
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Can we solve this?
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Capacity control

General idea

» the VC-dimension gives an idea of the capacity of a class of
models

» to reach R}, with e with certainty 1 — 4, we need
o ( VCdim(G)+log 1 )

2

data points

» we could let the class grow with the data size in such a way that
both ¢ and § could go to zero



Increasing capacity

Hypotheses

» infinite data set with D, = ((X;, Yi))1<i<n
» Y ={-1,1}and lp(p, t) = 1px

» growing (G;);>1 classes of increasing but finite VC dimension
VCdim(G;) < oo
» asymptotically perfect: lim;_, RIZ,Q,- =Ry}

VCdim(Gy,) log n
n

> Kk, — oo et —0

Result
» define gn = germ,i.6,, . Ds

» then Ry, (gn) % Ry



In practice?

Are the hypotheses realistic?

» yes! There are such model classes!
» simple example with X = [0, 1]:

i
g = {g’g(X) = sign (ao + Z(ak cos 2km X + by sin 2k7rX)> }

k=1

» VCdim(G;) < 2j + 1 (underlying vector space)
» use kn=n*with0 < a <1
» many other solutions (radial basis function networks, one hidden
layer perceptrons, etc.)



Extensions and limitations

Extensions

» can be adapted to e.g. ) = R with other loss functions

» bounds on the target values can also be lifted with a similar
approach

Limitations
» classes are data independent: they must be chosen beforehand

» no data adaptation: if the problem is simple, the approximation
part might converge too slowly, for instance

» worst case analysis: the VC-dimension generally overestimates (a

lot) the actual capacity of a class of models for the data
distribution under study



Structural Risk Minimization

Central idea
Optimize a compromise between the empirical risk and the complexity
of the class

SRM

» similar hypotheses as before: binary case, infinite data set and
asymptotically perfect series of classes

global capacity control: 3, e~ vedim(d') < oo

v

8 VCd/m(g/ ) log(en)

v

capacity penalty: r(j, n) =
j(g) = inf{k| g e gk}
define gsau,» = arg minge g (R,b(g, Dn) + r(j(9), ”))

v

v

v

then Ry,(9sau,n) % R



Links to other frameworks

AlIC and BIC

» AIC: 2k — 2log L, where L is the likelihood and k the number of
parameters

» BIC: klogn —2log L

» notice that the log-likelihood is in general of the form n x log L,
where L is the likelihood for a simple data point

> thus the per data point penalties are in & for AIC and in 4997 for

BIC !

» in SRM the penalty is in ¥ Ii/k%g"




In practice

» hypotheses are realistic

» the trade off between empirical risk and model complexity is now
data dependant
» the model is searched into an class with infinite VC-dimension
» but
» classes are still data independent
» worst case analysis: the penalty is generally too strong (v/n versus
n)
» this is very costly on a computational point of view

» the VC-dimension is quite difficult to compute (frequently bounded
above only)

» take home message: replacing ERM by the optimization of a

compromise between empirical risk and a capacity measure
seems to work



Validation

A basic learning framework

1. split the data into D (learning) and D’ (validation)

2. for each machine learning algorithm A under study
2.1 for each value 6 of the parameters of the algorithm
2.1.1 compute the model using 6 on D, g4,¢,p
2.1.2 compute ﬁ,(gAﬂ,D,D’)

3. chose the best model g* among all the models according to
RI('& Dl)

ERM view

» the nested loops build a finite class of models Gp

» g* is chosen in Gp by ERM on D’

» works because the class is finite and does not depend on D’!
» target risk: Rj'g_



Regularization



Regularization

Regularized Loss Minimization (RLM)

» many algorithms select a model g in a class G by minimizing a
Regularized Loss as follows

arg min(74(g, D) + AC(9))
geg

> 7\(g7 D) is a loss (not to be confused with a loss function) which
plays a similar role as R(g, D)

» C(g) is a measure of the regularity of the model g

» )\ is a trade off parameter



CART

> A(gr,D) = Ri(gr. D)
» C(g71) = |T| (number of leaves)

Structural Risk Minimization
> A(g,D) = Ry, (g,D)

» C(g) = /VCdim(G) with g e Gand \ = B'Ln(e”)

Ridge regression

> A(g,D) = Ry(g, D) with k(p,t) = (p — )2 and g(X) = o + B'X
> C(g) = |82



Links with ERM and SRM

With SRM

» RLM can be seen as an extended SRM

» the empirical risk can be replaced by an empirical loss

» the VC-dim based penalty can be replaced by an ad hoc one

» one specifies directly G (no need for a structured class of models)

With ERM
» assume g* = arg minycg(A(g, D) + AC(g)) with 1 = C(g*) then
g* is also solution of arg mingycgic(g)<uy A(9; D)
» if both A and C are convex functionals RLM is equivalent to

minimizing the loss A under a constraint on C: regularization
corresponds to reduced model classes



Difficulties

Impact of the loss

> in general 7\(g, D) is not the empirical risk

» can we still provide guarantees with respect to R} for some loss
function /?

Impact of the regularization

» is the regularization sufficient to ensure some form of learnability?
» how can we choose \?

» data size based approaches (as in SRM, AIC, BIC)?
» data based approaches (validation)?



Surrogate losses

Why using a loss?
» the binary loss function Iy(p, ) = 1, leads to a very complex
optimization problem

» more generally some loss functions are important from a practical
point of view but lead to empirical risks that are more difficult to
optimize than others

Consistency

> in general 7\(g, D) = AR,,(g, D) for some loss function /" # |
(frequently up to a transformation of the problem)

» then we can sometimes ensure that 7\(g, D) is close to R/ (9)
» but what about R(g)?
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Simple example

Quadratic relaxation of the binary loss function

» Y ={-1,1} and |, standard binary loss function
» G aclass of real valued functions

» empirical risk R, (g, D) = ﬁ > xy)en Tsion(a(o)y
» empirical loss

A(g.D)=R,(g.D)= > (g(x)-y)
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General relaxation for binary classification

Margin based loss

» ¥ ={-1,1} and |, standard binary loss function
» G a class of real valued functions
consider I,(p, t) = ¢(pt) for some function ¢ and
Ay(9,D) = Ry, (g, D)
examples

> logi(p, t) = log(1 + exp(—pt)) (logistic loss)

> Ier(p, t) = max(0, —pt) (perceptron loss)

> lhinge(p, t) = max(0, 1 — pt) (hinge loss)

> lexp(p, t) = exp(—pt) (exponential loss)

» hb(p,t) = (pt)® — 2pt + 1 (because t € {—1,1}
margin interpretation when the decision is sign(g(x))

» g(x)y > 0: correct decision, robust when the product is large
» g(x)y < 0: wrong decision, with a “magnitude” proportional to |g(x)|

v

v

v
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Calibrated loss

Convex case
» if ¢ is convex, then minimizing I?f,qb(g,D) + AC(g) is probably
easier than minimizing R, (g, D)

» ¢ is calibrated iif
> ¢ is convex
» ¢ has a derivative in 0
> ¢/(0) <0

» can be extended to the non convex case

Result
» if ¢ is calibrated then R, (g) — R;, implies that R,(9) — R;

» in plain English: if we manage to learn with a calibrated surrogate
loss, then we learn with respect to the binary loss!
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ERM in the binary case

» is difficult on a computational point of view

» but the binary loss function can be replaced by any calibrated
convex loss: this is the de facto standard

» no adverse consequences asymptotically

» however on a fixed size data set there are differences between
loss functions
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Remaining theoretical work

Consistency

» using a calibrated convex loss solves the computational aspect
» but in order to ensure R,*(; can be reached we need G to be a class
of infinite VC-dimension
» thus we need:
» to ensure that sets of the form {g € G | C(g) < u} have finite
VC-dim
» X can be handled efficiently
» such results are available for some models, e.g. support vector
machines
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