Exam (2h)

April 3, 2018

Exercises are independent and have roughly the same importance in the final grade. Please try to allocate half of your time to each part.

Exercise 1

We consider a random graph model with n vertices. Each vertex i is first associated with a latent vector Z_i assumed to be sampled from a multinomial:

$$Z_i \sim \mathcal{M}(1, \pi),$$

where $\pi^\top = (\pi_1, \ldots, \pi_K), 0 < \pi_k < 1, \forall k \in \{1, \ldots, K\}$ and $\sum_{k=1}^K \pi_k = 1$. By definition, $Z_i \in \{0, 1\}^K$ such that $\sum_{k=1}^K Z_{ik} = 1, \forall i \in \{1, \ldots, n\}$. Moreover, all vectors Z_i are iid. Then, given Z_i and Z_j, an edge is generated with probability λ if $Z_i = Z_j$, and with probability ϵ if $Z_i \neq Z_j$. Thus, considering a directed graph without self loops, characterised by the adjacency matrix $X = (X_{ij})_{ij} (\forall i \neq j)$, we have:

$$X_{ij}|Z_i, Z_j \sim \mathcal{B}(\mu(Z_i, Z_j)),$$

where $\mu(Z_i, Z_j) = \lambda$ if $Z_i = Z_j$ and $\mu(Z_i, Z_j) = \epsilon$ otherwise. Finally, given $Z = (Z_i)_i$ the set of all latent vectors, all edges in X are assumed to be independent.

Question 1 Draw the graphical model associated with this random graph model, for the (oriented) pair (i,j) of vertices.

Question 2 Explain the type of clusters of vertices that is modelled here. Give some of its properties.

Question 3 Give a R code to simulate a network according to this random graph model.

Question 4 Explain why the posterior $p(Z|X, \pi, \lambda, \epsilon)$ does not allow the use of the EM algorithm to estimate the model parameters π, λ, and ϵ.

Question 5 Considering the functional $r(Z)$, approximation of $p(Z|X, \pi, \lambda, \epsilon)$, for π, λ, and ϵ, give the variational decomposition of the observed data log-likelihood $\log p(X|\pi, \lambda, \epsilon)$ as a lower bound and a Kullback-Leibler divergence term.

Question 6 Assuming $r(Z) = \prod_{i=1}^n r(Z_i) = \prod_{i=1}^n \prod_{k=1}^K \tau_{ik}^{Z_{ik}}$, give the complete expression of the lower bound.

Question 7 Give the M-step of the variational EM algorithm maximizing the lower bound to estimate π.

Question 8 Give the M-step of the variational EM algorithm maximizing the lower bound to estimate the probabilities λ and ϵ.

1
Exercise 2

We study the following directed graphical model:

![Directed Graphical Model](image)

Question 1 Write the factorization condition that has to be fulfilled by any distribution on the random variables \(A, B, C, D \) and \(E \) that is compatible with the directed graphical model.

Question 2 Justify the truth or the falseness of each of the following (conditional) independence properties for distributions compatible with the directed graphical model.

\[
A \independent E \mid B \quad (1)
\]

\[
B \independent D \quad (2)
\]

Question 3 Are there groups of variables that are conditionally independent given \(E \) for a distribution compatible with the directed graphical model?

Question 4 Express the conditional distribution \(p(e \mid a, d) \) for a distribution compatible with the directed graphical model as a sum over \(b \) and \(c \) of products of conditional distributions that naturally appear in compatible distributions.

Question 5 Draw a factor graph that represents distributions compatible with the directed graphical model.

We introduce now the following undirected graphical model:

![Undirected Graphical Model](image)

Question 6 Write the factored form of a distribution on \(A, B, C, D \) and \(E \) that is compatible with the undirected graphical model.

We assume now on that the random variables \(A, B, C, D \) and \(E \) are binary. We denote \(q(x, p) \) the likelihood of observation \(x \) for a Bernoulli distribution with parameter \(p \) (that is \(q(x, p) = p^x(1-p)^{1-x} \)).

Question 7 Give an example of a simple distribution on \(A, B, C, D \) and \(E \) that is compatible with the directed graphical model but not with the undirected graphical model.
Question 8 Add the minimal number of edges needed to the undirected graphical model such that any distribution compatible with the directed graphical model is also compatible with the modified undirected graphical model.

Question 9 Write the factored form of a distribution on A, B, C, D and E that is compatible with the modified undirected graphical model.

Question 10 Give an example of two variables that are conditionally independent given a third one for distributions that are compatible with the directed graphical model but for which there are distributions compatible with the modified undirected graphical model under which that are not independent regardless of the conditioning set. In other words find X_1, X_2 and X_3 (among A, B, C, D and E) such that for any distribution compatible with the directed graphical model $X_1 \perp\!\!\!\!\perp X_2 \mid X_3$ and such that a distribution in which $X_1 \perp\!\!\!\!\perp X_2 \mid S$ is false (for any S subset of $\{A, B, C, D, E\} \setminus \{X_1, X_2\}$) can be compatible with the modified undirected graphical model.

Question 11 Using the directed graphical model, we assume that A and E are observed and that B, C, and D are latent. What conditional distribution would be needed if we were to apply the EM algorithm to maximize the likelihood of (a, e) with respect to the parameters of a distribution compatible with the directed graphical model.

Question 12 Write $p(a, e)$ using only the conditional distributions that naturally appear in distributions compatible with the directed graphical model in a way that is maximally factored (i.e. which corresponds to the most efficient evaluation strategy).