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Common concepts

Something-able objects

> Python objects share some capabilities, such as being iterable

> high level operations available on data structures are linked to
those capabilities
> important categories:
iterable: can be used in for loops
subscriptable:
» can be used with the [] operator
> indexable: [k] where k is an integer
> sliceable: [b:e:t]
mutable: objects that can be modified (as opposed to immutable)
callable: can be called (e.g. functions)
hashable: to be discussed

>
>

vvyy
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Grouping values
> apython 1ist is a group of values arranged in a certain order
» literal value [vall, val2, ..., valn]
> mixed types are accepted

Example

The program

my_list = [1, 2, -5]
my_other_list = [True, 'foo', 2.5]

print (my_list)
print (my_other_list)
prints

(1, 2, -5]
[True, 'foo', 2.5]



Global operations

> literal values [ comma separated values]
> empty list []

> length: 1en function

>

concatenation of 2 lists: 11 + 12 returns a list made of the
elements of |1 followed by the elements of 12, e.g.

[1, True, 'bob'] + [2, Falsel is

[1, True, 'bob', 2, False]

> replication of 1 list: 11 « nb returns a list made of |1
concatenated with itself nb times, e.g.
[1.5, False] * 3is
[1.5, False, 1.5, False, 1.5, False]



Example

The program

print (4 = [-1, 2]

x =2 % [0, 1] + [True, False]
print (len(x))

print (x)

prints

(=i, 8, =i, 8, =i, 3, =i, 2]
6

[0, 1, 0, 1, True, False]



Content access

Iterable Indexable

> lists are iterable > |ists are indexable

» the program > values are numbered from 0
x = [True, 'abcd', 2, -1.4, 4] to len(list) -1
for t in x:

print (t) » bracket based access
prints list[k]
True
o > the program
2 x = [True, 'abcd', 2, -1.4, 4]
-1.4 print (x[1])
4 for k in range(2,len(x)):
print (k)
prints

abcd
2
3
4



Changing content

List modification

> lists are mutable: a given list object may be modified
> several possibilities:

» changing the value at a given position with 1ist [k]=t
» modifying the structure of the list via methods

> appending elements
> inserting elements
> removing elements

> reorganizing the content (sorting)
» complex consequences: the object is modified!



Content modification

Example Interpretation

Thf program L > x[0] = 3 sets the first
s e e object referenced by the list
x[0] = 3 x1t03

print (y)

y[1] - True > x and y are two names for a
e single object

prints o » some operations modify the
T b SR A L JEU content of the object

» modifications made via x are
visible through y (and vice
versa)



Methods

Element level modifications
> 1:alist, x: an object, i: an integer
> 1.append (x): adds x at the end of 1
> 1.insert (i, x):inserts x at position 1 in 1
> 1.pop (1): removes the element at position 1 and returns it
> 1.remove (x): removes the first instance of x in 1

Global level modifications
> 1.sort():sorts1
> 1.reverse (): puts 1 in the reserve of the original order
> 1l.clear (): empties 1



Example

Code

my_list = []

for k in range(5):
my_list.append(k//2)
if k%2==0:

my_list.append('a

print (my_list)
my_list.insert (1, 4)
print (my_list)

print (my_list.pop(3))
print (my_list)
my_list.remove (1)
print (my_list)
my_list.reverse()
print (my_list)
my_list.clear ()
print (my_list)

*

k)

(o, *, o, 1, 'aa', 1,
(o, 4, '*, o, 1, ‘aa',
0

(o, 4, '', 1, 'aa', 1,
o, 4, ', ‘taa', 1, 2,
['aaaa', 2, 1, 'aa', '

2, 'aaaa']
1, 2, 'aaaa']

2, 'aaaa'l
'aaaa']
, 4, 0]



Methods and functions

Search and count
> 1: alist, x: an object
» 1.count (x): returns the number of times x occurs in 1

> 1.index (x): returns the first position of x in 1 (raises an
exception if x does not appear in 1)

Summary functions (work on any iterable)

> max (1)

> min(l)

» sum (1)

> any (1): True is at least one element of 1 is True

> 211(1): Falseis atleast one element of 1 is False



Operators and statement

Membership
> in and not in are operators which test whether an object is a
member of another object
> apply to many types, including all iterable objects
> 1: alist, x: an object

> x in 1: evaluates to True if x appears in 1 and to False if it
does not

> x not in 1listhe negationof x in 1

Deletion

> the del instruction can be used to delete something

> if 1isalist,del 1[k] removes the element of position k from
the list, shifting all the rest



Slices

Sliceable

> lists are sliceables
» standard read semantics
» generalform 1 [first:last:step]
> exactly the same interpretation as in strings
> new independent list with content taken in 1
> write semantics
» 1[first:last:step] = a_list
> replaces the slice by the new list, regardless of their respective sizes

Example Result
my_list = [1, 2, 3, 4] (2, 3, 4]
[4, 3, 2, 1]

print (my_list[1:
print (my_list[::
my_list[1:3] = [
print (my_list)

my_list[1:]
print (my_list)

1)
1 1, 5, 4]
5] (11

[



Comprehensions

Efficient list construction

» comprehensions create lists in a concise way from another
iterable object
> general form [expression for var in iterable]
> any iterable can be used
> expression is generally based on the var variable
> semantics
» for each value in the iterable

> var is set to the value
> expression is evaluated

» the result is the list of all the values of expression



Comprehension

ml = [expression for var in iterable]
Program

print ([x for x in 'ABCD'])

ml = [xxx2 for x in range(5)]

print (ml)

print([2 * x - 1 for x in ml])

Equivalent code

ml = []
for var in iterable:
ml.append (expression)

Output



Filtered comprehensions

Comprehensions can be filtered to include only some of the values of

the expression/variable

Comprehension

ml = [expression for var in iterable
if condition]

Program
print ([ x + 1 for x in range (6)
if x%2 == 11)
print ([ a for a in 'AbCdDe' if a.isupper()])
print([ 2 » y + 1 for y in [1, -2, 4, 5]

ify >= 0 1)

Equivalent code

ml = []
for var in iterable:
if condition:
ml.append (expression)

Output

(2, 4, 6]
['A', 'C', 'D']
[8p 9p il]



Nested comprehensions

Comprehensions can be created using nested loops

Comprehension

ml = [expression for x in x_iterable
for y in y_iterable]
Program
print ([x + 2+« y for x in range(3)
for y in range(1,4)])
print ([2% x - y for x in range(3)
for y in range(x + 1)])

Equivalent code

ml = []
for x in x_iterable:
for y in y_iterable:
ml.append (expression)

Output

(2, 4, 6,
o, 2, 1,

Nested loops and conditions can be combined arbitrarily



Tuples
Core aspects
Implicit uses

20



Grouping values

» apython tuple is a group of values arranged in a certain order
» literal value (vall, wval2, ..., wvaln)
> mixed types are accepted

21



Grouping values

v

a python tuple is a group of values arranged in a certain order
literal value (vall, wval2, ..., wvaln)

mixed types are accepted

Isn’t that a list?

vvyy
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Grouping values

» apython tuple is a group of values arranged in a certain order
» literal value (vall, wval2, ..., wvaln)

> mixed types are accepted

> Isn’t that a list?

Immutable

> once created a tuple cannot change (neither globally, nor locally)
> atype of immutable object
> tuples can be seen as immutable lists

21



Tuple values

Literal values
» parenthesis are optional for tuples with at least two elements
> () is the empty tuple
> tuple () creates also the empty tuple

» for a tuple with only one element, a comma is mandatory: (1, ) or
5, are such tuples

Example Output
x =1, 2, 3 (1, 2, 3)
print (x) 2

y = (2) # not a tuple (1,)
print (y)

z =1,

print (z)

22



Working with tuples

Supported operations

> tuples are iterable, indexable and sliceable
> they support the common sequence operations

> inand not in statements
> + and » operators

» Jlen, min and max functions
» index and count methods

> as well as the standard iterable functions sum, any and a11
> tuples can be created from any iterable using tuple (iterable)

23



Program Output

x = tuple(range (4)) @, 1, 2, 3)
y = (2,3) = 3 @By, 8y 2, 8y 2, 3)
print (x) 0
print (y) False
for k in x: i\
print (k) False
print (k in y) 2
print (sum(y)) True
for i in range(0,len(y),2): 3
print(i, yI[i]l) True
15
02
2 2
4 2

24



Unpacking

Sequence/iterable unpacking

> Python supports ways to unpack a sequence into several variables
> general format

varl, var2, ..., varn = sequence/iterable
» constraint: exactly the same number of variables as there are
elements in the sequence/iterable

> varl names the first value of the sequence, var2 the second,
and so on

Example Result

2
3
4

X, ¥y, z = [2, 3, 4]
print (x)
print (y)
print (z)

25



Tuple packing

> creating a tuple can be seen as tuple packing, a.k.a. assembling
values into a tuple

> eg.inx =1, -2, 4thevalues 1, -2 and 4 are packedin a
tuple (1, -2, 4)

Implictly use with unpacking

Example Result
3

a =2 2

b = 3

a, b =D>b, a

print (a)

print (b)

26



Tuple packing

> creating a tuple can be seen as tuple packing, a.k.a. assembling
values into a tuple

> eg.inx =1, -2, 4thevalues 1, -2 and 4 are packedin a
tuple (1, -2, 4)

Implictly use with unpacking

Example Explanation

a=2 > b, ais atuple packing
S,Zb - b, a > equivalentto (b, a)
e > the tuple resulting tuple is

(3, 2)
> (3, 2) isunpackedina
and b

26



Multiple values in one return

Packing results

> tuple packing is very useful to return several values in a single
return instruction

> sequence unpacking can be used to split the result into several

variables
Example Result
def plusminus(x, y): (7, 5)

7

return x +y, x -y
1

t = plusminus (6, 1)
print (t)

a, b = plusminus (4, 3)
print (a)

print (b)

27



Enumerating an iterable

enumerate
> the built in enumerate function constructs a new iterable object
from another one

> when one iterates using this new object, each run of the loop is
given both the index in the original iterable and the corresponding
value, packed into a tuple

> unpacking is convenient here

Example Result

foo = [1, -2, True, 'abcd'l] (0, 1)

for t in enumerate (foo) : (1, -2)
print (t) (2, True)

(3, 'abcd')

28



Enumerating an iterable

enumerate
> the built in enumerate function constructs a new iterable object
from another one

> when one iterates using this new object, each run of the loop is
given both the index in the original iterable and the corresponding
value, packed into a tuple

> unpacking is convenient here

Example Result

foo = [1, -2, True, 'abcd']
for index, value in enumerate (foo) :
print (index, value)

28



Function calls

Packing parameters
» a function call needs as many arguments as there are parameters
(up to default parameters)
> the arguments can be unpacked from a tuple
» specific unpacking operator «
> unpacking must be explicit

Example Result

def foo(a, b): 5

return a + b

x =2, 3
print (foo (xx))

29



Sets
Hashing functions
Python sets

30



Hashing function

Fixed size representation

> a hashing function maps objects of arbitrary size to hash values of
a fixed size (typical a n bit integer)

> hash values are also named hash codes, digests or hashes

> basic example
» division hashing
> the binary representation of an object o is interpreted as a (possibly
very large) integer i(0)
> h(o) =i(0) mod 2" (remainder of the Euclidean division)

Applications

> Many!
» Hash tables
> signature and other cryptographic application

31


https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Cryptographic_hash_function

Hashable objects

hash

> built-in python function
> gives the hash code of any hashable object

> must have a constant hash code once created
» must be comparable to other objects (with hash consistency)

> in general
> immutable base objects are hashable

> mutable objects are not hashable
» immutable containers such as tuples are hashable if their content is

32



Representing sets

» mathematical sets are represented by python set

> a set contains only hashable objects

> literal value {vall, ..., valn} with set () for an empty set
> {} is not an empty set

Use

> sets are fast structures: testing whether an object belongs to a set
takes on average a constant time regardless of the size of the set

» useful for computing e.g. the set of words used in a document

33



Working with sets

Supported operations

> sets are iterable but they are neither indexable nor sliceable

> sets support some of the sequence operations (but they are not
sequences!)

» inand not in statements
» Jlen, min and max functions

> as well as the standard iterable functions sum, any and a11

Set operations

> |, s, ~, —: respectively union, intersection, symmetric difference
and difference

> <, <=, ==, >=, >: testing for inclusion

34



Example

Program

A= {'a', 'b',
qr,

B={'c",
print (A | B)
print (A & B)
print (B - A)
print (A ~ B)

print (len(a))
print ('d' in A)

print ({'b',
for x in B:
print (x)

e}

<= A)

ter, 'd', 'b’ TE)
TEr)
"B, odr, TE'}

35



Modifiying sets

Mutable sets

> sets are mutable
> they provide element oriented modification methods:
> s a set and x any hashable object

> s.add(x):adds xto s
> s.remove (x):removes x from s if x in s and raises a

KeyError exception if x not in s
> s.discard(x):removes x from s if x in s (no error in the other

case)
> s.pop (): removes and returns an arbitrary element from s

> s.clear (): removes everything from s

> sets can also be updated using other sets with operations of the
form s op= t where op is one of the set operators. For instance

s |= t updates s to the union of s and t

36



Program Output
A = set() {0, 1, 2}
for x in range (5) : {0, 2}

A.add((x + 1) // 2) (0, 2, 'b', 'e', 'f', 'c', 'a', 'd'}
print (A) {0, 2, 'e' ‘£, 'd'}
B =2A
A.discard(1l)
print (B)
for t in 'abcdef':

A.add(t)
print (A)

A -= {'a', 'b', 'c'}
print (B)

37



Program Output

A = set () {0, 1, 2}

for x in range (5): {0, 2}
A.add((x + 1) // 2) {0, 2, '"b', 'e', 'f', 'c', 'a', 'd'}

print (A) 0, 2, ‘@9, 9%8%, U}

B = A

A.discard (1)

print (B) 0

for t in 'abcdef': Notice the reference effects!
A.add(t)

print (4)

A -= {'a', 'b', 'c'}

print (B)

37



Immutable Sets

Sets in sets

» Sets are mutable and thus not hashable

»> One cannot put a set in a set. The program
A {1y, {3, 41}

fails with an error

File "setinset.py", line 1, in <module>
A = { {1}, {3, 4} }

TypeError: unhashable type: 'set'

> Notice this is also true for e.g. lists

frozenset
> A frozenset is a set that cannot be modified
> it supports all the non modification methods of set
» created via frozenset (iterable)
> hashable

38



x for x in range (3)]
frozenset (4),
frozenset (B),
tuple (C) }

print (D)

A.add(3)

B.add (5)

C.append (A)

print (A, B, C)

print (D)

A= {
B={3, 4}
€ [
D = {

Output

{frozenset ({3, 4}), (0, 1, 2),¢
frozenset ({1, 2})}

{1, 2, 3} {3, 4, 5} [0, 1, 2, {1, 2, 3}]

{frozenset ({3, 4}), (0, 1, 2),d
frozenset ({1, 2})}

39



x for x in range (3)]
frozenset (34),
frozenset (B),
tuple (C) }

print (D)

A.add(3)

B.add (5)

C.append (A)

print (A, B, C)

print (D)

A= {
B={3, 4}
€ [
D = {

Output

{frozenset ({3, 4}), (0, 1, 2),&
frozenset ({1, 2})}

{1, 2, 3} {3, 4, 5} [0, 1, 2, {1, 2, 3}]

{frozenset ({3, 4}), (0, 1, 2),d
frozenset ({1, 2})}

Immutable

> set - frozenset

> list - tuple

39



Set comprehensions

Creating sets

» comprehensions can be used to create sets

> similar syntax to the one of list comprehension but with curly
braces
{ expression for variable in iterable }

> exactly the same principles as for lists except for the hashability
constraint

40



Program Output
print ({x % 2 for x in range(5)}) {0, 1}
print ( {x + y for x in range(5) {0, 2, 4, 6, 8}
for y in range (x+1) {(1, 8, 27), (1, 4, 9), (1, 2, 3)}

if (x-y) %2==0})
print ( { tuple([y**x for y in range(1,4)])
for x in range(1l,4)})

41



Program Output
print ({x % 2 for x in range(5)}) {0, 1}
print ( {x + y for x in range(5) {0, 2, 4, 6, 8}
for y in range (x+1) {(, 8, 27), (1, 4, 9), (1, 2, 3)}

if (x-y) %2==0})
print ( { tuple([y**x for y in range(1,4)])
for x in range(1l,4)})

Immutable
Notice the use of tuple to
circumvent list mutability

41



Dictionaries

42



Dictionaries

Principle

> lists are limited by the integer based indexing scheme
> dictionaries replace integers by arbitrary keys

» adictionary contains (key, value) pairs
> Kkeys are unique (they form a set)
> values are accessed through keys

Literal values

> {1} is an empty dictionary (also with dict ())

> general form
{ keyl: valuel, key2: value2, ...}

> keys must be hashable

43



Accessing a dictionary

Keys as indices

> dictionaries are indexable
> ifdisadict, d[key] returns the value associated to the key
> raises a KeyError is the key does not exist in d

> d.get (key) returns either the value associated to key or None
if the key is not in the dictionary

Example Output Note

D = {1: 'foo', foo > keys are completely
N one arbitrary hashable values

E::E g[;]el ((3,9))) - > values and keys are

print (D.get ('foo')) completely separated

print (D['bar'])

44



Using dictionaries

Supported operations

> dictionaries are iterable
» default iteration operates on keys
» one can also iterate over values and (key, value) pairs
» dictionaries support some default operations all interpreted on
the keys
» inandnot in
» len, min and max
» sum, any and all
> notice that most of those operations do not make much sense on
dictionaries as generally keys are not numeric!

45



Views and lteration

Dictionary views

» dictionaries provide dynamic views of their content:
> d.keys () a“set” of the keys in d
> d.values () a“list” of the values in d
> d.item() a “collection” of the (key, value) pairs in d
> the views support a minimal set of operations

> they are iterable
» len is supported
» the in operator is supported

> any modification of the dictionary is reflected in all its views

46



Example

Code Output

D={'a'":+ 1, 'b': -3, 4
'c': 7, 'd': 4} d
print (len (D)) False False
print (max (D)) a
print('e' in D, 4 in D) b
for k in D: c
print (k) d
for val in D.values(): 1
print (val) -3
for k, val in D.items () : 7
print (k, '->"',val) 4
print (('b', -3) in D.items()) a -—> 1
b > -3
e == 7
d -—> 4
True

47



Modifying dictionaries

Mutable dictionaries

> dictionaries are mutable
» some element oriented operations:
> dadict, k a hashable key, v any value
> d[k] = v eitherinserts a new key k with the v value or update the
value associated to k to v
> del d[k] removes k from d (raises KeyError if k is not in d)
> d.pop (k) returns the value associated to k and removes the pair
from d (raises KeyError)
> d.pop(k, wval) behaves as d.pop (k) if kisin d and return val
is this is not the case

> d.clear () removes everything from d
> notice Python does not provide a frozen dictionary

48



Code

D = {} # empty

for k in range(5):
D[k] = k#*x2

print (D)

H=D

del H[2]

H[5] = 5%%2

print (D.pop (6, None))

print (D)

49



Code

D = {} # empty

for k in range(5):
D[k] = k#*x2

print (D)

H=D

del H[2]

H[5] = 5%%2

print (D.pop (6, None))

print (D)

Notice the reference effects!

49



Creating dictionaries

Dictionary comprehension

» comprehensions can be used to create dictionaries

> similar syntax to the one of list comprehension but with curly
braces

{ key expr: value expr for variable in iterable }

> exactly the same principles as for lists except for the hashability
constraint

50



Code Output

print ({k: k+%x2 for k in range(4)}) {(0: 0, 1: 1, 2: 4, 3: 9}
print ({k*«x2: k for k in range(l, 5)}) {(1: 1, 4: 2, 9: 3, 16: 4}
D = {k: { 1 for 1 in range(3, k) 9 -> {3}
if k%1==0} 12 -> {3, 4, 6}
for k in range(9, 30, 3)} 15 -> {3, 5}
for k,v in D.items () : 18 -> {9, 3, 6}
print (k, '->',v) 21 —> {3, 7}

51



Creating dictionaries

Zipping iterables

> zip(iterl, iter2) returns a new iterable object whoe
content is made of pairs obtained by iterating iterl and iter2
simultaneously

> elements of zip (...) are tuples
» works with more than two iterators

> dict (zip(iterl,iter2)) creates a dictionary with elements
of iterl as keys and elements of iter2 as values (in their
respective order)

52



Code Output

k = list ('abcdefgh') a -—> 1
v = [x xx 2 for x in range(l, 9)] b -> 4
D = dict(zip(k, Vv)) c -> 9
for x, y in D.items(): d -> 16
print(x, '->', y) e -> 25
f -> 36
g —> 49

h -> 64

53



Dictionary unpacking

Function calls
> positional matching for function calls: tuple unpacking
> keyword matching for function calls: dictionary unpacking!
> principle:
» a function with parameters f (a, b, c, .. .)
a dictionary d with the parameters as keys

>
» unpacking calls: £ (++d)
» equivalentto f (a=d[al,b=d[b],c=d[c],...)

Example Output

def f(a, b): 8
return ax*b

54



NumPy
Introduction
Linear algebra
Broadcasting and reshaping
Indexing and iterating

55



Rationale

> built-in Python structures have some limitations
> memory usage is large
» mathematical operations can be slow
» standard numerical algorithms are not supported
» NumPy solves those problems

» memory efficient
> fast
» feature rich

56



Main type

» NumPy’s main type is ndarray

> it represents a multidimensional
array

>
>

>

vy

uniform content (e.g. real numbers)
dimensions are called axis in
NumPy

one dimension : vector

two dimensions : matrix

more dimensions : tensor

Example

import numpy as np

x = np.array([1l, 2, 31)

print (x)

y = np.array([[3, 4], [-1, 6]])
print (y)

Output

[1 2 3]
[r3 4]
[-1 6]]

57



Main attributes

» ndim: number of axis

> shape: size of the array
along each axis

> size: number of values in
the array

> dtype: type of the elements

Attributes

Example

import numpy as np

x = np.array([1l, 2, 3]
print (x.ndim, x.shape)
print (x.size, x.dtype)

y = np.array([[3.5, 4.11,
print (y.ndim, y.shape)
print (y.size, y.dtype)

[-1.25, 611

Output

1 (3,)

3 inte4

2 (2, 2)
4 floaté4d
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Creating arrays

Creation functions

> array: froma list or
nested lists
» filling with constants:
» ones and zeros
> full
» random values
random.random
» vector ranges:
»> arange (similar to range)
> linspace
> matrices:
> cye (identity)
> diag

Example

import numpy as np
print (np.ones((2,2)))
print (np.zeros ((2,3)))
print (np.full((2,), 4))
print (np.random. random( (
print (np.linspace (0, 1,
print (np.eye(2))

print (np.diag(np.arange (0, 3, 1)))

Output

3.)))
5))

4
.94470698 0.77223689 0.4571132 ]
0.25 0.5 0.75 1. ]

. 0.
o do

0
0
2
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Elementwise operations

> standard arithmetic operators
> between two ndarray (off the
same shapes)
> between a single value and a
ndarray

> boolean operations

> comparison operators
> boolean operators & and |
» avoid using and and or

Calculation

Example

import numpy as np

X = np.ones(4)

y = np.linspace (0, 3, 4)
print (x + y)

print(x * y)

print ((2 * x) *x* y)

print ((x - 1) < y)

print ((x > y) | (y > 1)
Output

[1. 2. 3. 4.]

[@c Lo Bo o]

[1. 2. 4. 8.]

[False True True True]
[ True False True True]
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In-place calculation

Modifying arrays Example

» for efficiency reasons import numpy as np

x = np.linspace(-1, 1, 5)

> especially with large arrays Pl ()

y = X

> modifications are done by o ey
some specific methods, €.9.  +:nc ()
reshaping methods print Ey;

> in-place operators (e.g. +=) i
modify the calling object Output

> copies are obtained via the
copy method
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Calculation

Universal functions (ufunc) Example

» functions that operate import numpy as np
x = np.linspace(-1, 1, 3)
element by element on y = np.linspace(0, 2, 3)
print (x, y)
arrays w = np.add(x, y)
» standardized options and L mese
| print (w
behaviors print (z)
print (np.rint (z))
> backend for operators (€.9. +  rint (np maximum(x, y))
is add)
Output
[-1 0. 1.] [0. 1. 2.]
[-1. 1. 3.]
[ 0.36787944 2.71828183 20.08553692]
[ O
[
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Aggregations

(Semi)Global operations Axes
» numpy includes global > all of those
operations (as opposed to methods/functions accept an
element by element ones) optional axis parameter
> some examples (methods) > axis refers to a dimension of
» sumand prod the array, the one over which
> min and max the aggregation is carried
> mean, std and var » dimensions are numbered
> function examples starting from 0
> median

> guantile and
percentile
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Aggregations

import numpy as np

x = np.linspace(0, 2, 5)

print (x)

print (x.sum())

print (np.median (x))

A = np.array([[1, 21,13, 411)

print (A)

print (A.max (axis=0))

print (A.sum(axis=1))

C = np.array ([[[1, 2],
[, 21,1

print (C)

print (C.sum(axis=2))

print (C.sum(axis=1))

print (C.sum(axis=0))

AN DWW —

[e I e R IR IS
[t s S O Y
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Vectors and matrices

Vector space operations
> summing vectors or matrices
via + or add

> multiplying by a scalar via =
Oormultiply

Products

> inner product using dot

> matrix/matrix and
matrix/vector product via @ or
matmul

> normvia linalg.norm

Example

import numpy as np
import math as m

x = np.array([1l, 2, 31)
A = np.array([[1,0.2,0]
[0.2,1,0.1],

[0,0.1,111)
print (np.dot (x, X))
print (m.sqgrt (np.dot (x, x)))
print (np.linalg.norm(x))
print (A@x)

Output

14
3.7416573867739413
3.7416573867739413
[1.4 2.5 3.2]
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Power method

> A a diagonalizable matrix

» we search for its dominant
eigenvalue A

» can be obtained via the
power method
’

> it iterates Xk 1 = mAxk

until convergence

Application example

function POWER(A, ¢)
choose a random vector x
repeat
X « "A‘—X”Ax
0« [IX" —x]|
X« X

until 9 <¢
_ xTAx
A= xTx

return (A x)
end function
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https://en.wikipedia.org/wiki/Power_iteration

Application example

Implementation Result

1.2236067977499787

import numpy as np
[0.63245555 0.70710678 0.31622773]

def power_method (A, prec=le-8):
x = np.random.random (A.shape[l])
iterate = True
while (iterate) :

nx = Alx
nx /= np.linalg.norm(nx)
delta = np.linalg.norm(x - nx)
X = nx
iterate = delta > prec
eigenvalue = (np.dot(x, A@x))/(np.dot(x, x)

return eigenvalue, x

A = np.array([[1,0.2,0],
[0.2;1;001],
[0,0.1,111)

result = power_method (A)

print (result[0])

print (result[1])
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Linear algebra

Numerous high level operations

» most of them in the submobule numpy.linalg
> matrix decompositions

> cholesky
> gr

eigenvalues eig

singular values svd

determinant det

equation solution and inversion solve, inv
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Broadcasting

Adapting shapes

» arrays with different shapes cannot be combined directly
> atypical case: np.array ([1, 2]) + 2
> strict interpretation is limiting

> eg.2 » np.array([1, 2]) would be rejected

> matrix/vector combinations would be harder to implement
> broadcasting to the rescue

> key idea: interpret low dimensional arrays as high dimensional ones
with a size one on each “missing” dimension
> replicate the values on this missing dimension
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Broadcasting

Principles Examples
> stretching > a scalar can be broadcasted
> elements are copied along into a constant array of any
a dimension shape
= el RIIE 1 SO > (1,2,3) can be broadcasted
dimension is one int‘o ’
> extending 1 2 3
> arrays with k dimensions (1 2 3)
can be extended into k + p .
dimensions but not into
> the sizes of the additional 11
dimensions are one
> new dimensions come “in 2 2
front” of the others \3 3

70



import numpy as np
X = np.array([1l, 2

y =x+1# 1 -> az

print (y)

A = np.diag(x)
print (4)
B=A+y #y —>
print (B)
C=A-1#-1 —>
print (C)

u = np.array ([[1,

# dc e bz
D=mu+v
print (D)

v = np.array ([[1],

[2 3 4]
[[1 0 0]
[0 2 0]
[0 0 3]]
LS & 41
[2 5 4]
[2 3 711
[[0-1-1]
-1 1 -1]
-1 -1 2]]
[[2 3]

[3 411
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Example: normalizing a matrix

import numpy as np [ 7.10542736e-16 -1.88737914e-16+
A = random.random( (10, 3)) 4.44089210e-17]

# ace cal tion [Lo do Ao

A —= mean (axis=0)

A.mean (axis=0))

A.
A /= A.std(axis=0)
= (
print (A.std(axis=0))
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Reshaping

Principle

>

modifying the shape without
changing the data

typical example:
transposition (T attribute)
general case
» reshape function/method
> the array is read in a given
order
» and written in a similar
order into a new shape

default order: last axis varies
faster

Example

import numpy as np

A = np.random.random( (2, 3))
A = A.round(decimals=2)
print (A)

print (A.T)

print (A.reshape((3,2)))

Output
[[0.56 0.06 0.07]
[0.54 0.04 0.53]]
[[0.56 0.54]
[0.06 0.04]
[0.07 0.531]1]
[[0.56 0.06]
[0.07 0.54]
[0.04 0.53]]
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Stacking

Combining arrays

> “gluing” arrays
» simple semantics for up to 3
dimensions
» vstack: concatenation on
the first axis
> hstack: concatenation on
the second axis

> stack: concatenation on a
new axis

» concatenate:
concatenation on a given
axis

Example

import numpy as np

x = np.array([1l, 2, 31)
A = np.vstack ((x,x))
print (A)

B = np.stack([x,x],1)
print (B)

print (np.hstack ((x,x)))

Output
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Direct access

> accessing directly to the
content of an array is
generally not a good idea for
efficiency reasons

> supported by indexing (and
slicing) facilities

> ndarrays are indexable
and sliceable

» multidimensional extension

» missing dimensions use :
> ellipsis . ..

Example

import numpy as np

A = np.random.random( (2, 3))
A = A.round(decimals=2)
print (A)

print (A[1] All,:]

print ( p
print ( o

) #
Al:,2])
A[1,1:3])

Output

[[1. 0.06 0.83]
[0.97 0.28 0.76]]
[0.97 0.28 0.76]
[0.83 0.76]

[0.28 0.76]

75



Indexing with arrays

> arrays can be used to index
other arrays
> two modes
» one indexing array of
integers per dimension to
index
» or one boolean array of the
same shape as the index
array

> many subtleties

Advanced indexing

Example

import numpy as np

A = np.array([[1, 2], [3, 41, [5, 6]]
print (A)

b = np.array
c = np.array
print (A[b,c]

(o, 21
(
)
B = np. array(
(
]
3]

[0, 11)
, 11, 10,2 11)
C = np.array 01)
pri V)t(A[B C
print (A[A

[[1
1,
)
)

Output
[[1 2]
3 4]
5 6]]

[
[

GO wW— o N

[

[

[
16
[4 3]
[2 511
3 5

4

[ 6]
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Copies versus views

> aview is an array that shares its data with another array:
modifying one changes the other
> pro: saves memory and processing time
> con: aliases
> views are created
> explicitly with the view method
> Dy slicing
> by some reshaping operations
> aview has a base attribute which contains its original array
» the shares_memory function can be used to test whether to
arrays are related
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import numpy as np [[1 2]
A = np.array([[1l, 2], (3 41]

[3, 41, True

[5, 611) True
B = A[0:2,:] [[1 2]
print (B) [3 0]
print (A.base is None) [5 6]]
print (B.base is A) [1 3 5]
B[1,1] =0 (r1r 2]
print (A) [-1 0]
C =A.T [ 5 6]]
x = C[0,:] [[ 1 2]
print (x) [-1 0]]
x[1] = -1 (r1-1 5]
print (&) [ 2 0 611
print (B)
print (C)

78



lterating over an array

> is generally not very useful
> but can be done

> ndarrays are iterable (over the first dimension)
» the flat attribute is an element level iterator
» the nditer function can be used for advanced iteration

import numpy as np
A = np.array([[1l, 2, 31,
[4, 5, 611

e
[G200 8]
o W

for x in A:
print (x)

for x in A.flat:
print (x)

oUW N

79



Types in NumPy

> python is rather limited in terms of numerical types

» scientific applications need precise control

» NumPy provides a large collection of types and automatic ways of
handling them

> types are described by dt ype objects complemented by a set of
fundamental types of scalars

» when an array is created, a dt ype parameter can be used to
specified the type of the content
> default types

> float64 for decimals
> int64 for integers
> bool for logical values
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Numerous other concepts

» NumPy is a very rich library
> missing aspects
> alot!
proper use of types
dozens functions and methods
interactions between ufunc and other concepts (e.g. broadcasting
and types)
memory layout
advanced aspects of iteration, indexing, etc.

vvyy

vy
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Licence

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/

82


http://creativecommons.org/licenses/by-sa/4.0/

Version

Last git commit: 2020-02-19
By: Fabrice Rossi (Fabrice.Rossi@apiacoa.org)
Git hash: 9e2d57088730bd3a349bda83bc9f96dde98391f8
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Changelog

> February 2020: added NumPy
» December 2019:

» added dictionaries
> added tuples
» added sets

» November 2019: initial version
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