Python Data Structures

Fabrice Rossi

CEREMADE
Université Paris Dauphine

2020

Lists

Tuples

Sets
Dictionaries

NumPy

Common concepts

Something-able objects

> Python objects share some capabilities, such as being iterable

> high level operations available on data structures are linked to
those capabilities
> important categories:
iterable: can be used in for loops
subscriptable:
» can be used with the [] operator
> indexable: [k] where k is an integer
> sliceable: [b:e:t]
mutable: objects that can be modified (as opposed to immutable)
callable: can be called (e.g. functions)
hashable: to be discussed

>
>

vvyy

Lists
Core aspects
Methods
Slices
Comprehensions

Grouping values
> apython 1ist is a group of values arranged in a certain order
» literal value [vall, val2, ..., valn]
> mixed types are accepted

Example

The program

my_list = [1, 2, -5]
my_other_list = [True, 'foo', 2.5]

print (my_list)
print (my_other_list)
prints

(1, 2, -5]
[True, 'foo', 2.5]

Global operations

> literal values [comma separated values]
> empty list []

> length: 1en function

>

concatenation of 2 lists: 11 + 12 returns a list made of the
elements of |1 followed by the elements of 12, e.g.

[1, True, 'bob'] + [2, Falsel is

[1, True, 'bob', 2, False]

> replication of 1 list: 11 « nb returns a list made of |1
concatenated with itself nb times, e.g.
[1.5, False] * 3is
[1.5, False, 1.5, False, 1.5, False]

Example

The program

print (4 = [-1, 2]

x =2 % [0, 1] + [True, False]
print (len(x))

print (x)

prints

(=i, 8, =i, 8, =i, 3, =i, 2]
6

[0, 1, 0, 1, True, False]

Content access

Iterable Indexable

> lists are iterable > |ists are indexable

» the program > values are numbered from 0
x = [True, 'abcd', 2, -1.4, 4] to len(list) -1
for t in x:

print (t) » bracket based access
prints list[k]
True
o > the program
2 x = [True, 'abcd', 2, -1.4, 4]
-1.4 print (x[1])
4 for k in range(2,len(x)):
print (k)
prints

abcd
2
3
4

Changing content

List modification

> lists are mutable: a given list object may be modified
> several possibilities:

» changing the value at a given position with 1ist [k]=t
» modifying the structure of the list via methods

> appending elements
> inserting elements
> removing elements

> reorganizing the content (sorting)
» complex consequences: the object is modified!

Content modification

Example Interpretation

Thf program L > x[0] = 3 sets the first
s e e object referenced by the list
x[0] = 3 x1t03

print (y)

y[1] - True > x and y are two names for a
e single object

prints o » some operations modify the
T b SR A L JEU content of the object

» modifications made via x are
visible through y (and vice
versa)

Methods

Element level modifications
> 1:alist, x: an object, i: an integer
> 1.append (x): adds x at the end of 1
> 1.insert (i, x):inserts x at position 1 in 1
> 1.pop (1): removes the element at position 1 and returns it
> 1.remove (x): removes the first instance of x in 1

Global level modifications
> 1.sort():sorts1
> 1.reverse (): puts 1 in the reserve of the original order
> 1l.clear (): empties 1

Example

Code

my_list = []

for k in range(5):
my_list.append(k//2)
if k%2==0:

my_list.append('a

print (my_list)
my_list.insert (1, 4)
print (my_list)

print (my_list.pop(3))
print (my_list)
my_list.remove (1)
print (my_list)
my_list.reverse()
print (my_list)
my_list.clear ()
print (my_list)

*

k)

(o, *, o, 1, 'aa', 1,
(o, 4, '*, o, 1, ‘aa',
0

(o, 4, '', 1, 'aa', 1,
o, 4, ', ‘taa', 1, 2,
['aaaa', 2, 1, 'aa', '

2, 'aaaa']
1, 2, 'aaaa']

2, 'aaaa'l
'aaaa']
, 4, 0]

Methods and functions

Search and count
> 1: alist, x: an object
» 1.count (x): returns the number of times x occurs in 1

> 1.index (x): returns the first position of x in 1 (raises an
exception if x does not appear in 1)

Summary functions (work on any iterable)

> max (1)

> min(l)

» sum (1)

> any (1): True is at least one element of 1 is True

> 211(1): Falseis atleast one element of 1 is False

Operators and statement

Membership
> in and not in are operators which test whether an object is a
member of another object
> apply to many types, including all iterable objects
> 1: alist, x: an object

> x in 1: evaluates to True if x appears in 1 and to False if it
does not

> x not in 1listhe negationof x in 1

Deletion

> the del instruction can be used to delete something

> if 1isalist,del 1[k] removes the element of position k from
the list, shifting all the rest

Slices

Sliceable

> lists are sliceables
» standard read semantics
» generalform 1 [first:last:step]
> exactly the same interpretation as in strings
> new independent list with content taken in 1
> write semantics
» 1[first:last:step] = a_list
> replaces the slice by the new list, regardless of their respective sizes

Example Result
my_list = [1, 2, 3, 4] (2, 3, 4]
[4, 3, 2, 1]

print (my_list[1:
print (my_list[::
my_list[1:3] = [
print (my_list)

my_list[1:]
print (my_list)

1)
1 1, 5, 4]
5] (11

[

Comprehensions

Efficient list construction

» comprehensions create lists in a concise way from another
iterable object
> general form [expression for var in iterable]
> any iterable can be used
> expression is generally based on the var variable
> semantics
» for each value in the iterable

> var is set to the value
> expression is evaluated

» the result is the list of all the values of expression

Comprehension

ml = [expression for var in iterable]
Program

print ([x for x in 'ABCD'])

ml = [xxx2 for x in range(5)]

print (ml)

print([2 * x - 1 for x in ml])

Equivalent code

ml = []
for var in iterable:
ml.append (expression)

Output

Filtered comprehensions

Comprehensions can be filtered to include only some of the values of

the expression/variable

Comprehension

ml = [expression for var in iterable
if condition]

Program
print ([x + 1 for x in range (6)
if x%2 == 11)
print ([a for a in 'AbCdDe' if a.isupper()])
print([2 » y + 1 for y in [1, -2, 4, 5]

ify >= 0 1)

Equivalent code

ml = []
for var in iterable:
if condition:
ml.append (expression)

Output

(2, 4, 6]
['A', 'C', 'D']
[8p 9p il]

Nested comprehensions

Comprehensions can be created using nested loops

Comprehension

ml = [expression for x in x_iterable
for y in y_iterable]
Program
print ([x + 2+« y for x in range(3)
for y in range(1,4)])
print ([2% x - y for x in range(3)
for y in range(x + 1)])

Equivalent code

ml = []
for x in x_iterable:
for y in y_iterable:
ml.append (expression)

Output

(2, 4, 6,
o, 2, 1,

Nested loops and conditions can be combined arbitrarily

Tuples
Core aspects
Implicit uses

20

Grouping values

» apython tuple is a group of values arranged in a certain order
» literal value (vall, wval2, ..., wvaln)
> mixed types are accepted

21

Grouping values

v

a python tuple is a group of values arranged in a certain order
literal value (vall, wval2, ..., wvaln)

mixed types are accepted

Isn’t that a list?

vvyy

21

Grouping values

» apython tuple is a group of values arranged in a certain order
» literal value (vall, wval2, ..., wvaln)

> mixed types are accepted

> Isn’t that a list?

Immutable

> once created a tuple cannot change (neither globally, nor locally)
> atype of immutable object
> tuples can be seen as immutable lists

21

Tuple values

Literal values
» parenthesis are optional for tuples with at least two elements
> () is the empty tuple
> tuple () creates also the empty tuple

» for a tuple with only one element, a comma is mandatory: (1,) or
5, are such tuples

Example Output
x =1, 2, 3 (1, 2, 3)
print (x) 2

y = (2) # not a tuple (1,)
print (y)

z =1,

print (z)

22

Working with tuples

Supported operations

> tuples are iterable, indexable and sliceable
> they support the common sequence operations

> inand not in statements
> + and » operators

» Jlen, min and max functions
» index and count methods

> as well as the standard iterable functions sum, any and a11
> tuples can be created from any iterable using tuple (iterable)

23

Program Output

x = tuple(range (4)) @, 1, 2, 3)
y = (2,3) = 3 @By, 8y 2, 8y 2, 3)
print (x) 0
print (y) False
for k in x: i\
print (k) False
print (k in y) 2
print (sum(y)) True
for i in range(0,len(y),2): 3
print(i, yI[i]l) True
15
02
2 2
4 2

24

Unpacking

Sequence/iterable unpacking

> Python supports ways to unpack a sequence into several variables
> general format

varl, var2, ..., varn = sequence/iterable
» constraint: exactly the same number of variables as there are
elements in the sequence/iterable

> varl names the first value of the sequence, var2 the second,
and so on

Example Result

2
3
4

X, ¥y, z = [2, 3, 4]
print (x)
print (y)
print (z)

25

Tuple packing

> creating a tuple can be seen as tuple packing, a.k.a. assembling
values into a tuple

> eg.inx =1, -2, 4thevalues 1, -2 and 4 are packedin a
tuple (1, -2, 4)

Implictly use with unpacking

Example Result
3

a =2 2

b = 3

a, b =D>b, a

print (a)

print (b)

26

Tuple packing

> creating a tuple can be seen as tuple packing, a.k.a. assembling
values into a tuple

> eg.inx =1, -2, 4thevalues 1, -2 and 4 are packedin a
tuple (1, -2, 4)

Implictly use with unpacking

Example Explanation

a=2 > b, ais atuple packing
S,Zb - b, a > equivalentto (b, a)
e > the tuple resulting tuple is

(3, 2)
> (3, 2) isunpackedina
and b

26

Multiple values in one return

Packing results

> tuple packing is very useful to return several values in a single
return instruction

> sequence unpacking can be used to split the result into several

variables
Example Result
def plusminus(x, y): (7, 5)

7

return x +y, x -y
1

t = plusminus (6, 1)
print (t)

a, b = plusminus (4, 3)
print (a)

print (b)

27

Enumerating an iterable

enumerate
> the built in enumerate function constructs a new iterable object
from another one

> when one iterates using this new object, each run of the loop is
given both the index in the original iterable and the corresponding
value, packed into a tuple

> unpacking is convenient here

Example Result

foo = [1, -2, True, 'abcd'l] (0, 1)

for t in enumerate (foo) : (1, -2)
print (t) (2, True)

(3, 'abcd')

28

Enumerating an iterable

enumerate
> the built in enumerate function constructs a new iterable object
from another one

> when one iterates using this new object, each run of the loop is
given both the index in the original iterable and the corresponding
value, packed into a tuple

> unpacking is convenient here

Example Result

foo = [1, -2, True, 'abcd']
for index, value in enumerate (foo) :
print (index, value)

28

Function calls

Packing parameters
» a function call needs as many arguments as there are parameters
(up to default parameters)
> the arguments can be unpacked from a tuple
» specific unpacking operator «
> unpacking must be explicit

Example Result

def foo(a, b): 5

return a + b

x =2, 3
print (foo (xx))

29

Sets
Hashing functions
Python sets

30

Hashing function

Fixed size representation

> a hashing function maps objects of arbitrary size to hash values of
a fixed size (typical a n bit integer)

> hash values are also named hash codes, digests or hashes

> basic example
» division hashing
> the binary representation of an object o is interpreted as a (possibly
very large) integer i(0)
> h(o) =i(0) mod 2" (remainder of the Euclidean division)

Applications

> Many!
» Hash tables
> signature and other cryptographic application

31

https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Cryptographic_hash_function

Hashable objects

hash

> built-in python function
> gives the hash code of any hashable object

> must have a constant hash code once created
» must be comparable to other objects (with hash consistency)

> in general
> immutable base objects are hashable

> mutable objects are not hashable
» immutable containers such as tuples are hashable if their content is

32

Representing sets

» mathematical sets are represented by python set

> a set contains only hashable objects

> literal value {vall, ..., valn} with set () for an empty set
> {} is not an empty set

Use

> sets are fast structures: testing whether an object belongs to a set
takes on average a constant time regardless of the size of the set

» useful for computing e.g. the set of words used in a document

33

Working with sets

Supported operations

> sets are iterable but they are neither indexable nor sliceable

> sets support some of the sequence operations (but they are not
sequences!)

» inand not in statements
» Jlen, min and max functions

> as well as the standard iterable functions sum, any and a11

Set operations

> |, s, ~, —: respectively union, intersection, symmetric difference
and difference

> <, <=, ==, >=, >: testing for inclusion

34

Example

Program

A= {'a', 'b',
qr,

B={'c",
print (A | B)
print (A & B)
print (B - A)
print (A ~ B)

print (len(a))
print ('d' in A)

print ({'b',
for x in B:
print (x)

e}

<= A)

ter, 'd', 'b’ TE)
TEr)
"B, odr, TE'}

35

Modifiying sets

Mutable sets

> sets are mutable
> they provide element oriented modification methods:
> s a set and x any hashable object

> s.add(x):adds xto s
> s.remove (x):removes x from s if x in s and raises a

KeyError exception if x not in s
> s.discard(x):removes x from s if x in s (no error in the other

case)
> s.pop (): removes and returns an arbitrary element from s

> s.clear (): removes everything from s

> sets can also be updated using other sets with operations of the
form s op= t where op is one of the set operators. For instance

s |= t updates s to the union of s and t

36

Program Output
A = set() {0, 1, 2}
for x in range (5) : {0, 2}

A.add((x + 1) // 2) (0, 2, 'b', 'e', 'f', 'c', 'a', 'd'}
print (A) {0, 2, 'e' ‘£, 'd'}
B =2A
A.discard(1l)
print (B)
for t in 'abcdef':

A.add(t)
print (A)

A -= {'a', 'b', 'c'}
print (B)

37

Program Output

A = set () {0, 1, 2}

for x in range (5): {0, 2}
A.add((x + 1) // 2) {0, 2, '"b', 'e', 'f', 'c', 'a', 'd'}

print (A) 0, 2, ‘@9, 9%8%, U}

B = A

A.discard (1)

print (B) 0

for t in 'abcdef': Notice the reference effects!
A.add(t)

print (4)

A -= {'a', 'b', 'c'}

print (B)

37

Immutable Sets

Sets in sets

» Sets are mutable and thus not hashable

»> One cannot put a set in a set. The program
A {1y, {3, 41}

fails with an error

File "setinset.py", line 1, in <module>
A = { {1}, {3, 4} }

TypeError: unhashable type: 'set'

> Notice this is also true for e.g. lists

frozenset
> A frozenset is a set that cannot be modified
> it supports all the non modification methods of set
» created via frozenset (iterable)
> hashable

38

x for x in range (3)]
frozenset (4),
frozenset (B),
tuple (C) }

print (D)

A.add(3)

B.add (5)

C.append (A)

print (A, B, C)

print (D)

A= {
B={3, 4}
€ [
D = {

Output

{frozenset ({3, 4}), (0, 1, 2),¢
frozenset ({1, 2})}

{1, 2, 3} {3, 4, 5} [0, 1, 2, {1, 2, 3}]

{frozenset ({3, 4}), (0, 1, 2),d
frozenset ({1, 2})}

39

x for x in range (3)]
frozenset (34),
frozenset (B),
tuple (C) }

print (D)

A.add(3)

B.add (5)

C.append (A)

print (A, B, C)

print (D)

A= {
B={3, 4}
€ [
D = {

Output

{frozenset ({3, 4}), (0, 1, 2),&
frozenset ({1, 2})}

{1, 2, 3} {3, 4, 5} [0, 1, 2, {1, 2, 3}]

{frozenset ({3, 4}), (0, 1, 2),d
frozenset ({1, 2})}

Immutable

> set - frozenset

> list - tuple

39

Set comprehensions

Creating sets

» comprehensions can be used to create sets

> similar syntax to the one of list comprehension but with curly
braces
{ expression for variable in iterable }

> exactly the same principles as for lists except for the hashability
constraint

40

Program Output
print ({x % 2 for x in range(5)}) {0, 1}
print ({x + y for x in range(5) {0, 2, 4, 6, 8}
for y in range (x+1) {(1, 8, 27), (1, 4, 9), (1, 2, 3)}

if (x-y) %2==0})
print ({ tuple([y**x for y in range(1,4)])
for x in range(1l,4)})

41

Program Output
print ({x % 2 for x in range(5)}) {0, 1}
print ({x + y for x in range(5) {0, 2, 4, 6, 8}
for y in range (x+1) {(, 8, 27), (1, 4, 9), (1, 2, 3)}

if (x-y) %2==0})
print ({ tuple([y**x for y in range(1,4)])
for x in range(1l,4)})

Immutable
Notice the use of tuple to
circumvent list mutability

41

Dictionaries

42

Dictionaries

Principle

> lists are limited by the integer based indexing scheme
> dictionaries replace integers by arbitrary keys

» adictionary contains (key, value) pairs
> Kkeys are unique (they form a set)
> values are accessed through keys

Literal values

> {1} is an empty dictionary (also with dict ())

> general form
{ keyl: valuel, key2: value2, ...}

> keys must be hashable

43

Accessing a dictionary

Keys as indices

> dictionaries are indexable
> ifdisadict, d[key] returns the value associated to the key
> raises a KeyError is the key does not exist in d

> d.get (key) returns either the value associated to key or None
if the key is not in the dictionary

Example Output Note

D = {1: 'foo', foo > keys are completely
N one arbitrary hashable values

E::E g[;]el ((3,9))) - > values and keys are

print (D.get ('foo')) completely separated

print (D['bar'])

44

Using dictionaries

Supported operations

> dictionaries are iterable
» default iteration operates on keys
» one can also iterate over values and (key, value) pairs
» dictionaries support some default operations all interpreted on
the keys
» inandnot in
» len, min and max
» sum, any and all
> notice that most of those operations do not make much sense on
dictionaries as generally keys are not numeric!

45

Views and lteration

Dictionary views

» dictionaries provide dynamic views of their content:
> d.keys () a“set” of the keys in d
> d.values () a“list” of the values in d
> d.item() a “collection” of the (key, value) pairs in d
> the views support a minimal set of operations

> they are iterable
» len is supported
» the in operator is supported

> any modification of the dictionary is reflected in all its views

46

Example

Code Output

D={'a'":+ 1, 'b': -3, 4
'c': 7, 'd': 4} d
print (len (D)) False False
print (max (D)) a
print('e' in D, 4 in D) b
for k in D: c
print (k) d
for val in D.values(): 1
print (val) -3
for k, val in D.items () : 7
print (k, '->"',val) 4
print (('b', -3) in D.items()) a -—> 1
b > -3
e == 7
d -—> 4
True

47

Modifying dictionaries

Mutable dictionaries

> dictionaries are mutable
» some element oriented operations:
> dadict, k a hashable key, v any value
> d[k] = v eitherinserts a new key k with the v value or update the
value associated to k to v
> del d[k] removes k from d (raises KeyError if k is not in d)
> d.pop (k) returns the value associated to k and removes the pair
from d (raises KeyError)
> d.pop(k, wval) behaves as d.pop (k) if kisin d and return val
is this is not the case

> d.clear () removes everything from d
> notice Python does not provide a frozen dictionary

48

Code

D = {} # empty

for k in range(5):
D[k] = k#*x2

print (D)

H=D

del H[2]

H[5] = 5%%2

print (D.pop (6, None))

print (D)

49

Code

D = {} # empty

for k in range(5):
D[k] = k#*x2

print (D)

H=D

del H[2]

H[5] = 5%%2

print (D.pop (6, None))

print (D)

Notice the reference effects!

49

Creating dictionaries

Dictionary comprehension

» comprehensions can be used to create dictionaries

> similar syntax to the one of list comprehension but with curly
braces

{ key expr: value expr for variable in iterable }

> exactly the same principles as for lists except for the hashability
constraint

50

Code Output

print ({k: k+%x2 for k in range(4)}) {(0: 0, 1: 1, 2: 4, 3: 9}
print ({k*«x2: k for k in range(l, 5)}) {(1: 1, 4: 2, 9: 3, 16: 4}
D = {k: { 1 for 1 in range(3, k) 9 -> {3}
if k%1==0} 12 -> {3, 4, 6}
for k in range(9, 30, 3)} 15 -> {3, 5}
for k,v in D.items () : 18 -> {9, 3, 6}
print (k, '->',v) 21 —> {3, 7}

51

Creating dictionaries

Zipping iterables

> zip(iterl, iter2) returns a new iterable object whoe
content is made of pairs obtained by iterating iterl and iter2
simultaneously

> elements of zip (...) are tuples
» works with more than two iterators

> dict (zip(iterl,iter2)) creates a dictionary with elements
of iterl as keys and elements of iter2 as values (in their
respective order)

52

Code Output

k = list ('abcdefgh') a -—> 1
v = [x xx 2 for x in range(l, 9)] b -> 4
D = dict(zip(k, Vv)) c -> 9
for x, y in D.items(): d -> 16
print(x, '->', y) e -> 25
f -> 36
g —> 49

h -> 64

53

Dictionary unpacking

Function calls
> positional matching for function calls: tuple unpacking
> keyword matching for function calls: dictionary unpacking!
> principle:
» a function with parameters f (a, b, c, .. .)
a dictionary d with the parameters as keys

>
» unpacking calls: £ (++d)
» equivalentto f (a=d[al,b=d[b],c=d[c],...)

Example Output

def f(a, b): 8
return ax*b

54

NumPy
Introduction
Linear algebra
Broadcasting and reshaping
Indexing and iterating

55

Rationale

> built-in Python structures have some limitations
> memory usage is large
» mathematical operations can be slow
» standard numerical algorithms are not supported
» NumPy solves those problems

» memory efficient
> fast
» feature rich

56

Main type

» NumPy’s main type is ndarray

> it represents a multidimensional
array

>
>

>

vy

uniform content (e.g. real numbers)
dimensions are called axis in
NumPy

one dimension : vector

two dimensions : matrix

more dimensions : tensor

Example

import numpy as np

x = np.array([1l, 2, 31)

print (x)

y = np.array([[3, 4], [-1, 6]])
print (y)

Output

[1 2 3]
[r3 4]
[-1 6]]

57

Main attributes

» ndim: number of axis

> shape: size of the array
along each axis

> size: number of values in
the array

> dtype: type of the elements

Attributes

Example

import numpy as np

x = np.array([1l, 2, 3]
print (x.ndim, x.shape)
print (x.size, x.dtype)

y = np.array([[3.5, 4.11,
print (y.ndim, y.shape)
print (y.size, y.dtype)

[-1.25, 611

Output

1 (3,)

3 inte4

2 (2, 2)
4 floaté4d

58

Creating arrays

Creation functions

> array: froma list or
nested lists
» filling with constants:
» ones and zeros
> full
» random values
random.random
» vector ranges:
»> arange (similar to range)
> linspace
> matrices:
> cye (identity)
> diag

Example

import numpy as np
print (np.ones((2,2)))
print (np.zeros ((2,3)))
print (np.full((2,), 4))
print (np.random. random((
print (np.linspace (0, 1,
print (np.eye(2))

print (np.diag(np.arange (0, 3, 1)))

Output

3.)))
5))

4
.94470698 0.77223689 0.4571132]
0.25 0.5 0.75 1.]

. 0.
o do

0
0
2

59

Elementwise operations

> standard arithmetic operators
> between two ndarray (off the
same shapes)
> between a single value and a
ndarray

> boolean operations

> comparison operators
> boolean operators & and |
» avoid using and and or

Calculation

Example

import numpy as np

X = np.ones(4)

y = np.linspace (0, 3, 4)
print (x + y)

print(x * y)

print ((2 * x) *x* y)

print ((x - 1) < y)

print ((x > y) | (y > 1)
Output

[1. 2. 3. 4.]

[@c Lo Bo o]

[1. 2. 4. 8.]

[False True True True]
[True False True True]

60

In-place calculation

Modifying arrays Example

» for efficiency reasons import numpy as np

x = np.linspace(-1, 1, 5)

> especially with large arrays Pl ()

y = X

> modifications are done by o ey
some specific methods, €.9. +:nc ()
reshaping methods print Ey;

> in-place operators (e.g. +=) i
modify the calling object Output

> copies are obtained via the
copy method

61

Calculation

Universal functions (ufunc) Example

» functions that operate import numpy as np
x = np.linspace(-1, 1, 3)
element by element on y = np.linspace(0, 2, 3)
print (x, y)
arrays w = np.add(x, y)
» standardized options and L mese
| print (w
behaviors print (z)
print (np.rint (z))
> backend for operators (€.9. + rint (np maximum(x, y))
is add)
Output
[-1 0. 1.] [0. 1. 2.]
[-1. 1. 3.]
[0.36787944 2.71828183 20.08553692]
[O
[

62

Aggregations

(Semi)Global operations Axes
» numpy includes global > all of those
operations (as opposed to methods/functions accept an
element by element ones) optional axis parameter
> some examples (methods) > axis refers to a dimension of
» sumand prod the array, the one over which
> min and max the aggregation is carried
> mean, std and var » dimensions are numbered
> function examples starting from 0
> median

> guantile and
percentile

63

Aggregations

import numpy as np

x = np.linspace(0, 2, 5)

print (x)

print (x.sum())

print (np.median (x))

A = np.array([[1, 21,13, 411)

print (A)

print (A.max (axis=0))

print (A.sum(axis=1))

C = np.array ([[[1, 2],
[, 21,1

print (C)

print (C.sum(axis=2))

print (C.sum(axis=1))

print (C.sum(axis=0))

AN DWW —

[e I e R IR IS
[t s S O Y

64

Vectors and matrices

Vector space operations
> summing vectors or matrices
via + or add

> multiplying by a scalar via =
Oormultiply

Products

> inner product using dot

> matrix/matrix and
matrix/vector product via @ or
matmul

> normvia linalg.norm

Example

import numpy as np
import math as m

x = np.array([1l, 2, 31)
A = np.array([[1,0.2,0]
[0.2,1,0.1],

[0,0.1,111)
print (np.dot (x, X))
print (m.sqgrt (np.dot (x, x)))
print (np.linalg.norm(x))
print (A@x)

Output

14
3.7416573867739413
3.7416573867739413
[1.4 2.5 3.2]

65

Power method

> A a diagonalizable matrix

» we search for its dominant
eigenvalue A

» can be obtained via the
power method
’

> it iterates Xk 1 = mAxk

until convergence

Application example

function POWER(A, ¢)
choose a random vector x
repeat
X « "A‘—X”Ax
0« [IX" —x]|
X« X

until 9 <¢
_ xTAx
A= xTx

return (A x)
end function

66

https://en.wikipedia.org/wiki/Power_iteration

Application example

Implementation Result

1.2236067977499787

import numpy as np
[0.63245555 0.70710678 0.31622773]

def power_method (A, prec=le-8):
x = np.random.random (A.shape[l])
iterate = True
while (iterate) :

nx = Alx
nx /= np.linalg.norm(nx)
delta = np.linalg.norm(x - nx)
X = nx
iterate = delta > prec
eigenvalue = (np.dot(x, A@x))/(np.dot(x, x)

return eigenvalue, x

A = np.array([[1,0.2,0],
[0.2;1;001],
[0,0.1,111)

result = power_method (A)

print (result[0])

print (result[1])

67

Linear algebra

Numerous high level operations

» most of them in the submobule numpy.linalg
> matrix decompositions

> cholesky
> gr

eigenvalues eig

singular values svd

determinant det

equation solution and inversion solve, inv

68

Broadcasting

Adapting shapes

» arrays with different shapes cannot be combined directly
> atypical case: np.array ([1, 2]) + 2
> strict interpretation is limiting

> eg.2 » np.array([1, 2]) would be rejected

> matrix/vector combinations would be harder to implement
> broadcasting to the rescue

> key idea: interpret low dimensional arrays as high dimensional ones
with a size one on each “missing” dimension
> replicate the values on this missing dimension

69

Broadcasting

Principles Examples
> stretching > a scalar can be broadcasted
> elements are copied along into a constant array of any
a dimension shape
= el RIIE 1 SO > (1,2,3) can be broadcasted
dimension is one int‘o ’
> extending 1 2 3
> arrays with k dimensions (1 2 3)
can be extended into k + p .
dimensions but not into
> the sizes of the additional 11
dimensions are one
> new dimensions come “in 2 2
front” of the others \3 3

70

import numpy as np
X = np.array([1l, 2

y =x+1# 1 -> az

print (y)

A = np.diag(x)
print (4)
B=A+y #y —>
print (B)
C=A-1#-1 —>
print (C)

u = np.array ([[1,

dc e bz
D=mu+v
print (D)

v = np.array ([[1],

[2 3 4]
[[1 0 0]
[0 2 0]
[0 0 3]]
LS & 41
[2 5 4]
[2 3 711
[[0-1-1]
-1 1 -1]
-1 -1 2]]
[[2 3]

[3 411

7

Example: normalizing a matrix

import numpy as np [7.10542736e-16 -1.88737914e-16+
A = random.random((10, 3)) 4.44089210e-17]

ace cal tion [Lo do Ao

A —= mean (axis=0)

A.mean (axis=0))

A.
A /= A.std(axis=0)
= (
print (A.std(axis=0))

72

Reshaping

Principle

>

modifying the shape without
changing the data

typical example:
transposition (T attribute)
general case
» reshape function/method
> the array is read in a given
order
» and written in a similar
order into a new shape

default order: last axis varies
faster

Example

import numpy as np

A = np.random.random((2, 3))
A = A.round(decimals=2)
print (A)

print (A.T)

print (A.reshape((3,2)))

Output
[[0.56 0.06 0.07]
[0.54 0.04 0.53]]
[[0.56 0.54]
[0.06 0.04]
[0.07 0.531]1]
[[0.56 0.06]
[0.07 0.54]
[0.04 0.53]]

73

Stacking

Combining arrays

> “gluing” arrays
» simple semantics for up to 3
dimensions
» vstack: concatenation on
the first axis
> hstack: concatenation on
the second axis

> stack: concatenation on a
new axis

» concatenate:
concatenation on a given
axis

Example

import numpy as np

x = np.array([1l, 2, 31)
A = np.vstack ((x,x))
print (A)

B = np.stack([x,x],1)
print (B)

print (np.hstack ((x,x)))

Output

74

Direct access

> accessing directly to the
content of an array is
generally not a good idea for
efficiency reasons

> supported by indexing (and
slicing) facilities

> ndarrays are indexable
and sliceable

» multidimensional extension

» missing dimensions use :
> ellipsis . ..

Example

import numpy as np

A = np.random.random((2, 3))
A = A.round(decimals=2)
print (A)

print (A[1] All,:]

print (p
print (o

) #
Al:,2])
A[1,1:3])

Output

[[1. 0.06 0.83]
[0.97 0.28 0.76]]
[0.97 0.28 0.76]
[0.83 0.76]

[0.28 0.76]

75

Indexing with arrays

> arrays can be used to index
other arrays
> two modes
» one indexing array of
integers per dimension to
index
» or one boolean array of the
same shape as the index
array

> many subtleties

Advanced indexing

Example

import numpy as np

A = np.array([[1, 2], [3, 41, [5, 6]]
print (A)

b = np.array
c = np.array
print (A[b,c]

(o, 21
(
)
B = np. array(
(
]
3]

[0, 11)
, 11, 10,2 11)
C = np.array 01)
pri V)t(A[B C
print (A[A

[[1
1,
)
)

Output
[[1 2]
3 4]
5 6]]

[
[

GO wW— o N

[

[

[
16
[4 3]
[2 511
3 5

4

[6]

76

Copies versus views

> aview is an array that shares its data with another array:
modifying one changes the other
> pro: saves memory and processing time
> con: aliases
> views are created
> explicitly with the view method
> Dy slicing
> by some reshaping operations
> aview has a base attribute which contains its original array
» the shares_memory function can be used to test whether to
arrays are related

77

import numpy as np [[1 2]
A = np.array([[1l, 2], (3 41]

[3, 41, True

[5, 611) True
B = A[0:2,:] [[1 2]
print (B) [3 0]
print (A.base is None) [5 6]]
print (B.base is A) [1 3 5]
B[1,1] =0 (r1r 2]
print (A) [-1 0]
C =A.T [5 6]]
x = C[0,:] [[1 2]
print (x) [-1 0]]
x[1] = -1 (r1-1 5]
print (&) [2 0 611
print (B)
print (C)

78

lterating over an array

> is generally not very useful
> but can be done

> ndarrays are iterable (over the first dimension)
» the flat attribute is an element level iterator
» the nditer function can be used for advanced iteration

import numpy as np
A = np.array([[1l, 2, 31,
[4, 5, 611

e
[G200 8]
o W

for x in A:
print (x)

for x in A.flat:
print (x)

oUW N

79

Types in NumPy

> python is rather limited in terms of numerical types

» scientific applications need precise control

» NumPy provides a large collection of types and automatic ways of
handling them

> types are described by dt ype objects complemented by a set of
fundamental types of scalars

» when an array is created, a dt ype parameter can be used to
specified the type of the content
> default types

> float64 for decimals
> int64 for integers
> bool for logical values

80

Numerous other concepts

» NumPy is a very rich library
> missing aspects
> alot!
proper use of types
dozens functions and methods
interactions between ufunc and other concepts (e.g. broadcasting
and types)
memory layout
advanced aspects of iteration, indexing, etc.

vvyy

vy

81

Licence

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/

82

http://creativecommons.org/licenses/by-sa/4.0/

Version

Last git commit: 2020-02-19
By: Fabrice Rossi (Fabrice.Rossi@apiacoa.org)
Git hash: 9e2d57088730bd3a349bda83bc9f96dde98391f8

83

Changelog

> February 2020: added NumPy
» December 2019:

» added dictionaries
> added tuples
» added sets

» November 2019: initial version

84

	Lists
	Core aspects
	Methods
	Slices
	Comprehensions

	Tuples
	Core aspects
	Implicit uses

	Sets
	Hashing functions
	Python sets

	Dictionaries
	NumPy
	Introduction
	Linear algebra
	Broadcasting and reshaping
	Indexing and iterating

