An introduction to Python

Fabrice Rossi

CEREMADE
Université Paris Dauphine

2020

Python

https://www.python.org/

»> Python is a high level programming ... - oo (mae e youe names o)
|anguage print ("Hello", name)

» Python’s reference implementation
is a multiplatform free software

»> Python can be extended by
thousands of libraries

» Python is generally considered to be
easy to learn

What's your name? Joh
Hello John Doe

https://www.python.org/

Python and data science

» Python is one of the two de
facto standard languages for
data science (with R)

»> Python has a large collection
of high performance data
science oriented libraries

> Python is generally

considered to be easy to
read

Python

Pros Cons
> open source implementation > limited point-and-click
> full-fledged programming support
language > rather steep learning curve
» strong support from a large compared to an integrated
community software
> broad coverage of data > naive code has low
science, statistics, etc. performances
» high performance libraries > “old” language (1990) with a
> high quality graphics lack of modern constructs

» curated distribution

Recommended installs

» Anaconda (with Python 3.x)
» https://www.anaconda.com/distribution/
> a python distribution: python + libraries + tools
» data science oriented
» anaconda navigator for managing the distribution

» recommended tools (in Anaconda)

» VS code or Spyder for Python programming
> JupyterLab for literate programming

» other IDE include PyCharm
» do not use Python 2.7

https://www.anaconda.com/distribution/
https://www.jetbrains.com/pycharm/

Introduction

Core concepts
Control structures
Functions

Exception handling

Core concepts
Programming Language
Console interaction
Basic data model
Variables
Strings
Functions
Modules

Programming Language

Definition
» a formal language with a strict mathematical definition
> defines syntactically correct programs

» associated to a semantics

» (formal) model of the computer
> effects of a program on the model

Programming Language

Definition
» a formal language with a strict mathematical definition
> defines syntactically correct programs

» associated to a semantics

» (formal) model of the computer
> effects of a program on the model

In other words...

> a programming language can be used to write programs = texts
> a programming language has a strict syntax

> lexical aspects ~ word spelling
> grammatical aspects ~ sentence level

> when a program follows the syntax, it has a proper meaning i.e.
an effect on the computer on which it runs

Turing Machine

» standard mathematical model
> too low level to a daily use

Other models

» data oriented models
> a model of the data
> together with a model of the execution of a program

» effects of instructions/statements on the data ~ sentence level
> global flow and organization on a program ~ text level

> include input/output aspects

https://en.wikipedia.org/wiki/Turing_machine

Interactive mode

Standard program execution

> a program is written in a file (or a set of files)

> in some languages the file can be translated to a more efficient
language
> the file (or its translation) is executed on a computer

Console/Shell
> some languages have an associated “console” or “shell” (e.qg.
Python and R)

> one can type interactively program sentences and get associated
results

> simplifies learning and testing

Python Shell

» Python provides a shell for
interactive use

> in general integrated in a
specific window of a
programming environment

» can be launched from the
command line (python)

» command prompt >>>

Python Shell

Python 3.7.3 (default, Mar 27 2019, 22:11:17)
GCC 7.3.0] :: Anaconda, Inc. on linux

» Python provides a shell for (: _
. h Type "help", "copyright", "credits" or "license"
Interactive use >>>for more information.
> in general integrated in a
specific window of a
programming environment

» can be launched from the
command line (python)

» command prompt >>>

Python Shell

Python 3.7.3 (default, Mar 27 2019, 22:11:17)
GCC 7.3.0] :: Anaconda, Inc. on linux

» Python provides a shell for (: _
. h Type "help", "copyright", "credits" or "license"
Interactive use >>>f?r+ryajre information.
> in general integrated in a
specific window of a
programming environment

» can be launched from the
command line (python)

» command prompt >>>

Python Shell

Python 3.7.3 (default, Mar 27 2019, 22:11:17)

» Python provides a shell for [6cC 7.3.0] :: Anaconda, Inc. on linux
. | Type "help", "copyright", "credits" or "license"
Interactive use >>>fgr+m/>re information.

> in general integrated in a .

specific window of a
programming environment

» can be launched from the
command line (python)

» command prompt >>>

Python Shell

Python 3.7.3 (default, Mar 27 2019, 22:11:17)

» Python provides a shell for [6cC 7.3.0] :: Anaconda, Inc. on linux
. | Type "help", "copyright", "credits" or "license"
Interactive use >>>fgr+m/>re information.

> in general integrated in a > 4 4

specific window of a
programming environment

» can be launched from the
command line (python)

» command prompt >>>

Python Shell

Python 3.7.3 (default, Mar 27 2019, 22:11:17)

» Python provides a shell for [6cC 7.3.0] :: Anaconda, Inc. on linux
. | Type "help", "copyright", "credits" or "license"
Interactive use >>>fgr+m/>re information.

> in general integrated in a > 4 4
specific window of a o

programming environment

» can be launched from the
command line (python)

» command prompt >>>

Python Shell

>

>

Python provides a shell for
interactive use

in general integrated in a
specific window of a
programming environment

can be launched from the
command line (python)

command prompt >>>

Python 3.7.3 (default, Mar 27 2019, 22:11:17)

[GCC 7.3.0] :: Anaconda, Inc. on linux

Type "help", "copyright", "credits" or "license"
for more information.

>>> 2+ 2

4

>>> 4 «

64

>>>

Warning

The behavior of a program in the
shell is not exactly the same as the
behavior of a program outside of the
shell

Python Shell as a calculator

>>> 2.5 / 1.3
1.923076923076923
>>> 2,5/ 1,3

(B, 5.0, 3)

>> 1+ 2 / 3
1.6666666666666665
>>> (1 3
1.0

>>> 5/ 2

203

>>> 5 // 2

2

>>> 5 % 2

1

>>> -5 // 2

=

>>> 5 xx

3125

>>> 2 x+ 0.5
1.4142135623730951

+2) /

>>> 12.5 - 4 /
11.7

>>> + 2
13.7

>>> 4.5 > 3.5
True

>>> (2.5 >= 3) or (2.5 < 3)
True

>>> -1 xx 0.5
=il .0

>>> (=1) *x 0.5
(6.123233995736766e-17+17)
>>> xx 2
(-1+1.2246467991473532e-1673)
>>> 0]

03

>>> 13 *x 2
(-1+03)

Basic data model

Numerical values

> integers
» real numbers

> decimal point
» classical scientific notation
eg.1l.5e-3

» complex numbers

» automatically used in some
situations
» real + img J

Arithmetic operations

» standard operations
> integer oriented

Basic data model

Numerical values Logical expressions

> integers > boolean (a.k.a. truth value)
> real numbers » True and False values
> i i o A
decimal point » automatic integer conversion

» classical scientific notation .
e.g.1.5¢-3 to 1 and 0, respectively (and

vice versa)
» complex numbers)
> automatically used in some > logical operators and or not
situations » numerical comparisons
» real + img J » ——and '=
» <=and < (and reversed
Arithmetic operations NS

» standard operations
> integer oriented

Basic data model

Syntax Semantics
» literal values (spelling) > interpretation off the symbols
> e_?_ numbers and truth Zg:d of the expressions such
> \;)e;/tliﬁ)sn specifies how 1o : calculati(;n Orderi|r']tg
> \/ev'gt'elt?grrs not a real - %Srfsprgziggacgﬁplex
number! numbers
> operations (grammar) g Eoi;g‘uet:ft value

» writing rules are similar to >
mathematical ones error cases
. . >>>
> with exceptions such as TCEAEET: (Tenk SRS Gl oci)E

File "<stdin>", line 1, in <module>

> == for equa“ty ZeroDivisionError: division by zero
>« for exponentiation
> etc.

Objects and variables

Objects Variables
» Python manipulates objects > objects can be named
> each object has a type > a variable is a name for an
> specifies the possible object
values » setting/binding a name:
> specifies the possible variable = object
operations

. | »> when a name appears in an
examp es expression it is replaced by
> 2isan int the object

> 2.5isa float > |
» Trueisabool examp eﬂ
»> >>> x = 2

1+25isa complex oo 2 o o
4

>>> x = 4 Key points
>>> y = 3
o > (obvious) sequential model

>>> 2 no default binding
Traceback (most recent call last):

>
File "<stdin>", line 1, in <module> P case dependant
NameError: name 'z' is not defined .
>>> y / X > aliases: several names for
Traceback (most recent call last): agiven ObjeCt
File "<stdin>", line 1, in <module>

NameError: name 'X' is not defined variable = variable
>>> z = X

S5 does not bind the names
g together

>>> x = 3

55> 2 > unconstrained rebinding
4

>>> vy z < X

>>> vy

False

v

>>> "A text"

'A text'

>>> 'Another text'
'Another text'

>>> ' yet

o text'''

'vet\nanother\ntext'

> U0

'

>>> u = 'my

>>> u x 2

'my textmy text'

>>> t = '

>>> u + t

'my text is mine!'

>>> 2 + t

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unsupported operand type (s)

text'

is mine!'’

vvyVvyy

for +:

Strings

type str (string)

literal ' "or" "
multiline with "+ "
concatenation

types are not compatible in
general!

'int' and 'str'

>>> x = 'ab

>>> x[0]

T

>>> x[4

et

>>> x[-1]

g

>>> x[0:3

'abc!'

>>> x[:4]

'abcd'

>>> x[2:]

'cdefg'

>>> x

Tefg’

>>> x[:-3]

'abcd'

>>> x

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: string index out of range

Slices

Indexing

» some Python objects can be
indexed

> [index]

»> numbering always start at 0

> negative indexing enables
reverse ordering

> slices a:b

> fromatob-1
» missing a: 0
»> missing b: last index + 1

> negative slicing: same logic

Functions

Additional actions

> objects can be manipulated with
more than operators

» functions provide such additional

>>> len('abcd')

4

>>> type (2)
<class 'int'>

>>> type('2'")
<class 'str'>
>>> complex(2,-1)

actions (2-19)
» a function e
» has a name >>> round(17.23,1)
> needs 0 or more argument(s) P
» possibly returns an object 13
. . abs (-4
> using a function A
» function call >>> % = 2
>>> 'x=' 4+ str(x)
> function (argument_1, argument_2) Ty=o1

» function ()

Functions are objects

> type function for general
functions
> specific type for built in
functions
> all standard properties apply
> new names

> function as an argument to
a function

Functions

>>> len

<built-in function len>
>>> type (len)

<class 'builtin_function_or_method'>
>>> foo = len

>>> foo

<pbuilt-in function len>
>>> foo('abc')

3

>>> str (foo)

'<built-in function len>'

20

Methods

Functions for objects

> methods are specific
functions associated to some
object types

> special calling syntax
object.function ()

> equivalent to
Type.function (object)

>>> 'bla'.capitalize()
'Bla’

>>> 'tototi'.find('t"'")
0

>>> 'tototi'.find('ti'")
4

>>> foo = 'et' x 3
>>> foo

'etetet'’

>>> foo.upper ()
'"ETETET’

>>> foo.count ('et')
3

21

Extending Python
» modules provide new
functions and types

» a module must be imported
to have access to its content

» default module sys

Importing modules

> import module gives
access to the names in the
module via module.name

> import module as bla
turns that into bla.name

>>> import math

>>> math.pi
3.141592653589793

>>> math.factorial (20)
2432902008176640000
>>> math.log(2)
0.6931471805599453
>>> math.ceil (3.4)

4

>>> import random as rd
>>> rd.random()
0.9786544666626154
>>> rd.random()
0.7496554473100112

>>> rd.randint (1, 10)
2
>>> rd.randint (1,10)
8

22

Control structures
Non interactive Python
Conditional execution
Loops

23

Input and output

Console limitation Outputs
> has to be used interactively > to output something, use the
» commands are not saved print function
> reproducibility is not > for instance
guaranteed print (2, 'toto')
BEiRt(x, 2 % %) 2 wx
Scripts will print

2 toto
368

»> normal simple python
programs are script

> ascript: a text file (generally |MPUTS

ending with .py) > to input something, use the
> a script is executed by the input function

python interpreter > returns always a string st r

» convert if needed

24

Conditional execution

Execute if... if in Python
> programs can include parts > ifis a compound statement
that are executed only if > it consists a clause
» the condition is written as a > a header
Boolean expression if expression:

> a suite whose execution is
controlled by the header

General form _ _
> in general the suite (a.k.a.

if expression:

statement_1 the body) is made of a series
SEEEmEnE. 2 of indented statements
statement_n

rest of the program Semantlcs

the body is executed if and only if
the expression of the clause
evaluates to True

25

More conditional execution

Other clauses in i f Semantics

. . The compound instruction is executed as
> a if statement can contain follows

» one or more elif clauses > the expression of the if header is

> one else clause evaluated
> if the value is True then the body is
> general form executed and the execution resumes for
03 ergoreasien g the rest of the program
statement_1 > if the value is False the body is ignored
L the execution resumes on the second
statement_n clause

elif expression_2: .
> for each elif header, the execution

elif expresion_3: follows the same pattern:
e > if the corresponding expression
else: is True the body of the clause is
s executed, followed by the rest of
rest of the program the program

> if not the execution resumes on
the next clause

> if all expressions evaluate to False the
body of the else clause is executed

26

Repeating instructions

Multiple executions

> programs can include parts
that are executed several
times

> repetitions can be conditional
or numbered

Conditional loop

while expression:
statement_1

statement_n
rest of the program

while in Python

> compound statement (single
clause)

> while expression: is
the header of the clause

Semantics

> the expression of the header is
evaluated

> if the value is True
> the body is executed
> the execution resumes on clause
itself!
> if the value is False the
execution resumes for the rest of
the program

27

Iterable objects Strings
> objects which can be > string "content": characters
decomposed into several > iterating a string: in character
other objects order!

» the content of an iterable
object is arranged in a
certain order

> jterating over the object
means accessing in order to
its elements

> 'foobar' gives 'f', 'o',
'O', Vbl’ rg! and Tyt

28

lterating iterables

For loops for in Python
» specific loop for iterables > compound statement (single
> the loop execute a code for clause)
each value contained in the » for variable in expression: IS
iterable the header of the clause
> the expression of the header
General form must evaluate to an iterable
for variable in expression: ObjeCt

statement_1

statement_n
rest of the program

29

For semantics

Semantics

> the expression is evaluated
to get an iterable object
> for each object in the iterable
> the variable is bound to
the object
> the body of the clause is
executed

> then the execution of the rest
of the program resumes

> if the iterable is empty, the for
loop does not execute (no
error)

Example
The program

for x in 'foobar':
print (x)

prints

5 ©® O O O rh

30

Repeating n times some range objects
operations > integer range iterable
> very common case > range (n): integers from 0
> easy to do with a while but ton-1 (n values)
not immediately obvious > simpler solution
k=0 for k in range(n):
while k < n: something
something to repeat
to repeat n times
n times more statements
k=k +1
more statements » clearer for python

programmer

31

More ranges

> range operates in a similar way to slices
range (end) : integers from 0 to end-1
range (begin, end): integers from begin to end-1
range (begin, end, step): integers from beginto end-1 by
increments of step
» range(l, 4, 2):1and3
» range(l, 5, 2):1and3
> works with negative increments
» range (5, 2) :empty
» range(5, 2, -1):5,4and3

vvyy

32

Functions
Defining functions
Namespaces
Recursive functions
Parameters and arguments

33

Defining functions

Benefits of user defined return
functions > the return statement
> provide program organization ;jeflr;_es the value of the
o unction
> reduce code repetition . i i
> | . . > it terminates the function
enable using generic Seaiien
functionalities
Vocabular
Example y
Y7 O b » the code above is a function
return x + 1 definition
> p_1,...,p_narethe
General form formal parameters of the
def function_name (p_1,...,p_n): function (possible none)

statement_1

. > the statements form the body
SEREETENE 2 of the function

34

Calling a function

Definition versus call Semantics

> the function definition only a function call is evaluated as follows

makes it available in the rest 1. arguments are evaluated
of the program 2. anew namespace is created

> a (standard) function call is 3. formal parameters become
needed to use it variables in the new namespace
function_name(a_1l,...,a_n) and are bound to the

> the expression corresponding arguments
a_1l,...,a_n arethe 4. the body of the function is
arguments of the call executed

5. the namespace is discarded

6. the value of the function call is
the result of the execution of the
body

35

Program Execution

def onemore (x):
return x + 1

[SI IRV R R

a=2
b = onemore(a + 2)

Namespaces

36

Program Execution

def onemore (x) : > lines 1 and 2:

return x + 1 . .
> function definition

> onemore is added to the global namespace
> no other statement are executed

Bow N =

a=2
b = onemore(a + 2)

o

Namespaces

global » onemore

36

Program Execution

def onemore (x) : > lines 1 and 2:

return x + 1 . .
> function definition

> onemore is added to the global namespace

Bow N =

5 2 _ ;nemore(a +2) > no other statement are executed
> line 4: a added to the global namespace with
Namespaces value 2

global » onemore
> a2

36

Program Execution

def onemore (x) : > lines 1 and 2:

return x + 1 . .
> function definition

> onemore is added to the global namespace

Bow N =

5 2 _ ;nemore(a +2) > no other statement are executed
> line 4: a added to the global namespace with
Namespaces value 2

> line 5:
global » onemore

> a2

36

Program Execution

def onemore (x) : > lines 1 and 2:

return x + 1 . .
> function definition

> onemore is added to the global namespace

Bow N =

5 2 _ ;nemore(a +2) > no other statement are executed
> line 4: a added to the global namespace with
Namespaces value 2

> line 5:
global » onemore .
> 252 > a + 2isevaluatedto 4

36

Program Execution

def onemore (x) : > lines 1 and 2:

return x + 1 . .
> function definition

> onemore is added to the global namespace

Bow N =

5 2 _ ;nemore(a +2) > no other statement are executed
> line 4: a added to the global namespace with
Namespaces value 2

> line 5:
global » onemore .
> 252 > a + 2isevaluatedto 4

> alocal namespace is created

36

Program Execution

def onemore (x) : > lines 1 and 2:

return x + 1 . .
> function definition

> onemore is added to the global namespace

Bow N =

5 2 _ énemore(a +2) > no other statement are executed
> line 4: a added to the global namespace with
Namespaces value 2

> line 5:
global » onemore .
> 252 > a + 2isevaluatedto 4

> alocal namespace is created

> formal parameters are bound to arguments
local » x-4 P 9

36

Program Execution
1 def onemore (x): > lines 1 and 2:
2 return x + 1 .]
2 > function definition
4 as=2 > onemore is added to the global namespace
5 B = esememala & 2) > no other statement are executed
> line 4: a added to the global namespace with
Namespaces value 2

> line 5:
global » onemore .
> 252 > a + 2isevaluatedto 4

> alocal namespace is created

> formal parameters are bound to arguments
local > x4 > line 2 is executed

> x + 1isevaluatedto 5
> the return value of onemore is bound to 5

36

Program Execution
1 def onemore (x): > lines 1 and 2:
2 return x + 1 .]
2 > function definition
4 as=2 > onemore is added to the global namespace
5 B = esememala & 2) > no other statement are executed
> line 4: a added to the global namespace with
Namespaces value 2

> line 5:
global » onemore .
> 252 > a + 2isevaluatedto 4

> alocal namespace is created
> formal parameters are bound to arguments
> line 2 is executed

> x + 1isevaluatedto 5
> the return value of onemore is bound to 5

the local namespace is discarded

v

36

Program Execution
1 def onemore (x): > lines 1 and 2:
2 return x + 1 .]
2 > function definition
4 as=2 > onemore is added to the global namespace
5 B = esememala & 2) > no other statement are executed
> line 4: a added to the global namespace with
Namespaces value 2

> line 5:
global » onemore .
> 252 > a + 2isevaluatedto 4

> alocal namespace is created
> formal parameters are bound to arguments
> line 2 is executed

> x + 1isevaluatedto 5

> the return value of onemore is bound to 5
the local namespace is discarded
onemore (a + 2) is evaluated to 5

vy

36

Program Execution
1 def onemore (x): > lines 1 and 2:
2 return x + 1 .]
2 > function definition
4 as=2 > onemore is added to the global namespace
5 B = esememala & 2) > no other statement are executed
> line 4: a added to the global namespace with
Namespaces value 2

> line 5:
global » onemore .
> 252 > a + 2isevaluatedto 4

> o5 a local namespace is created

>
> formal parameters are bound to arguments
> line 2 is executed

> x + 1isevaluatedto 5
> the return value of onemore is bound to 5

> the local namespace is discarded
> onemore (a + 2) isevaluatedto 5
> bis bound 5 in the global namespace

36

Semantics

» return both

> binds the value of the function
> interrupts its execution

> a function can contain multiples return statements (only one will
be executed)
> when a function contains no return statement

> jts value is None
> its execution continues until the end of its body

37

Bow N =

o

Multiple return

def my_fun(x, y):
if x > y:
return x
else:
return y

» the function value is obviously
the largest of its two arguments

> if the first argument is the
largest one, the first return
statement is executed and thus
only lines 2 and 3 are executed

> in the other case, the second
return statement is executed

No return

1 def foo(x):

2
3

AW N =

o«

Xx=x+1
print (x)

> lines 2 and 3 are always

executed
the value of the function is None
do not confuse printing and

returning a value! The program

def foo(x):
x = x + 1
print (x)

y = foo(2)
print(y)
prints

3
None

38

Namespaces

Definition
A namespace binds names to objects

Examples

> the built-in namespace (with type, len, etc.)
> the global namespace of a program
> the local namespace of a function (during its execution)

Important aspects

> namespaces are runtime dynamical entities

> two different namespaces can contain the same name bound to
different objects

39

Definition
A scope is a textual part of a program in which a namespace is directly
accessible

Examples

> a Python program is a scope (associated to the global namespace
of the program) which is enclosed in the scope of the built-in
namespace

> a function definition defines a scope which is enclosed in the
global scope

40

Access rules

Directly accessible

> names in the namespace of the local scope are directly accessible
(those are local names)

> names in namespaces associated to enclosing function scopes
are directly accessible (when a function is defined inside another
function)

> global names are accessible (names in the global enclosing
namespace)

> built-in names are accessible

> names are searched for in order from the local scope to the
built-in one: the first match is used!

41

Non local access Scopes
This program -
1 X = ;pf“ :gubu?‘ scope 1 bu”t-ln
D et I~ 2. global (the program)
4 # local scope of f 3 |Oca| to f
5 return max (x, y)
6
7 rint (£(2))
T = Accesses
¢ () > max is accessible as a name of the built-in
prints namespace
i > vy is accessible in £ as a name of the

namespace created when £ is executed
and attached to the scope of £

> x is accessible in £ as a name of the global
namescape attached to the global scope
which encloses the scope of £

42

Non local access Scopes
This program -

1 X = ;pf“ :g;m’,:u?‘ scope 1 bu”t-ln

D et I~ 2. global (the program)

4 # local scope of f 3 |Oca| to f

5 return max (x, y)

6

7 rint (£(2))

T = Accesses

o) > max is accessible as a name of the built-in
prints namespace
i > vy is accessible in £ as a name of the

namespace created when £ is executed

Do not do that! and attached to the scope of £

> x is accessible in £ as a name of the global
namescape attached to the global scope
which encloses the scope of £

42

o W N e

Cannot access enclosed
scopes

In this program

def f(z):
return z + 1

print (£(2))

print (z)

line 5 prints an error of the form
NameError:
z is not accessible in the global
scope.

name 'z' is not defined

(SN IS I O

Priority
This program

def g(x):
return x + 1

5

X = 2
print (g(3))
print (x)

prints
2

> x is both a local name
(parameter) and a global one

> the name is searched first in
the local namespace and
then in enclosing ones

43

Recursive functions

Calling oneself

> a function body may
contain calls to itself

> leverage dynamic
namespaces: each call
has its own namespace

Example

def facto(n):
if n <= 1:
return 1
else:
return n ~ facto(n-1)

(S NI R

44

Recursive functions

(S NI R

Calling oneself

> a function body may
contain calls to itself

> leverage dynamic
namespaces: each call
has its own namespace

Example

def facto(n):
if n <= 1:
return 1
else:
return n ~ facto(n-1)

Analyzing a call

facto (4)
n-4
facto (3)
n-3
facto (2)
n-2
facto (1)
n-1

return 1

n » facto(l)-2
return 2
n = facto(2)— 6
return 6
n = facto(3)—24
return 24

44

Matching parameters and arguments

Positional matching Example
» standard case The program
- def f(x, y):
> definition AL L
def function_name(p_1,...,p_n) ey
» call function_name(a_1,...,a_n) y =3

. print (£(y, X))
> constraints and semantics

» exactly as many arguments as formal
parameters
> p kisboundto a_k
> the position of the argument decides its
formal parameters

prints
1

45

Keyword Arguments

Name matching Example
> definition Ihfefffrogrf‘m
def function_name(p_1,...,p_n) el .
> call print (f(y = 3, x = 2))
function_name(p_1 = a_1l,...,p_n = a_n)
> constraints and semantics prints
> exactly as many arguments as formal -t
parameters

> p_k is bound to the argument associated
to its name in the call
> only the names are used, not the
positions

function_name(p_n = a_n,...,p_1 = a_1)

46

Mixing both types

Rules Examples
» a function call may mix > with
positional arguments and def f(a, b, c):

keyword arguments

> positional arguments must
appear first > £(2,b=3,4)
. > f(b=3,c=4,1)
»> when a keyword argument is
> correct calls
used, all subsequent . S
arguments must use the £(2,b=3,c=4) (a is bound to

2)
seyoialinece > f£(2,c=5, b=2) (ais bound

to 2)

> incorrect calls

47

Default arguments

Main use of keyword Rules and semantics

arguments > p_k=d_k specifies both a
formal parameter p_k and its
default value d_k

> defaults values are optional
(may be given for a subset of
the parameters only)

> when a parameter has no
matching argument in a call,
it is bound to its default value

»> to enable function calls with
missing arguments

> via default values for missing
arguments

Function definition
with default values

def f n(p_1=d_1,...,p_n=d_n):
statement_1

statement_n

48

The program Interpretation

1 def foo(a, b =2, ¢c = 3): .

2 return (a + ¢) / b default values are underlined

3

4 print (foo (2)) H

5 print (foo (4, c = 2)) Ilne a b c

6 print (foo(3, 5)) 4 2 2 3

7 print(foo(c = 4, a = 8)) 5 4 2 2
prints 6 3 5 3
2.5 7 8 2 4

3o
i
6.

o N o

49

Exception handling

50

Problems in programs

Errors and Exceptions

> Syntax errors: the program is not an acceptable python program

and cannot be executed

> Exceptions: errors detected during execution

Syntax error

Running
y =5
x=3+/y

prints

Traceback (most recent call last):

File "error.py", line 2
x =3 +/y

SyntaxError:

invalid syntax

Exception
Running

y
X 3 +/ y

prints
Traceback (most recent call last):
File "zero.py", line 3, in <module>
z = x/y

ZeroDivisionError: division by zero

51

Handling exceptions Example
» normal behavior: an try: - , ‘ o
. answer = input ('Enter an integer = ')
exception stops the x = int (answer)
except ValueError:
program print (answer,' is not an integer')
» desirable behavior: fix the . nf(;‘”
. pri
problem and continue
» mechanism Normal output
> try Something gnter an integer = 5

> if it does not work and
induces an exception do
something else

Exceptional output

Enter an integer = foo
foo 1is not an integer
0

52

Handling Exceptions

try statement

> tryis a compound statement which starts with a try clause

> followed by
> asingle finally clause
> or at least one except clause with possibly an else clause and a
finally clause

Short version Long version
try: try:
body_t body_t
finally: except type_l:
body_f£ body_e_1
except type_2:
body_e_2
else:
body_el
finally:

body_f

53

Handling Exceptions

try: Semantics
body_t
except type_l: > Python tries to execute body_t
body_e_1
except type_ 2: > if this does not produce any exception, the
body_e_2 execution continues through the else and
else: then through the rest of the program
ity > if an exception of type T is raised
body_f

> Python search for a matching type in the
except headers in order (an empty type
in a except matches any exception
type)

> if a matching type is found, the
corresponding body is executed and
then the rest of the program is executed

rest of the program

> the £inally clause is always executed, even
if an exception occurs in the except or else
clause

54

try:
v = input('x = ")
X = 1int (v)
print (1/x)
except ValueError:
print (v, 'is not an integer')
except ZeroDivisionError:
print ('no inverse for',x)
else:
print ('ok")
finally:
print ('this is the end')
print ('rest of the program')

Interactions

> if the user inputs 2. 5, she gets

2.5 is not an integer
this is the end
rest of the program

> if the user inputs 4, she gets

0.29

ok

this is the end
rest of the program

» if the user inputs 0, she gets

no inverse for 0
this is the end
rest of the program

55

An exception is unhandled

> when it occurs in the try
clause and is not matched

> when it occurs in a except
clause

> when it occurs in a else
clause

> when it occursina finally
clause

and it is passed to the enclosing
environment

Missing an exception

Example

The following program

try:
try:
x = int('2.5")
except ValueError:
print ('got it')
print (1/0)
except ZeroDivisionError:
print ('missed')
finally:
print ('exiting')
except ZeroDivisionError:
print ('caught')

prints
got it
exiting
caught

56

Next Steps

1. Data structures in Python
2. Data manipulation in Python

57

Licence

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/

58

http://creativecommons.org/licenses/by-sa/4.0/

Version

Last git commit: 2019-12-09
By: Fabrice Rossi (Fabrice.Rossi@apiacoa.org)
Git hash: ba0fa5483950d448f7a9210e4ac63ceabff8fb3f

59

Changelog

»> November 2019: added exception handling
> October 2019: initial version

60

	Introduction
	Core concepts
	Programming Language
	Console interaction
	Basic data model
	Variables
	Strings
	Functions
	Modules

	Control structures
	Non interactive Python
	Conditional execution
	Loops

	Functions
	Defining functions
	Namespaces
	Recursive functions
	Parameters and arguments

	Exception handling

