
Generic Back-Propagation in Arbitrary FeedForward Neural Networks∗

Cédric Gégout•�? Bernard Girau• Fabrice Rossi�?†

� École Normale Supérieure
de Paris

• École Normale Supérieure
de Lyon
L.I.P.

? THOMSON-CSF
SDC/DPR/R4

45 rue d’Ulm 46 avenue d’Italie 7 rue des Mathurins
75005 PARIS France 69007 LYON France 92223 BAGNEUX France

Abstract

In this paper, we describe a general mathematical
model for feedforward neural networks. The final form
of the network is a vectorial function f of two variables,
x (the input of the network) and w (the weight vector).
We show that the differential of f can be computed
with an extended back-propagation algorithm or with
a direct method. By evaluating the time needed to
compute the differential with the help of both meth-
ods, we show how to chose the best one. We introduce
also input sharing and output function which allow us
to implement efficiently a multilayer perceptron with
our model.

1 Introduction

Léon Bottou and Patrick Gallinari have proposed in
[1] a general framework for the cooperation of neural
modules. In this paper we extend this model in or-
der to derive a general model for feedforward neural
networks. The model presented in section 2 can sim-
ulate multilayer perceptrons and related models, with
the help of an extension proposed in section 4. We
show in section 3 that an extended back-propagation
algorithm allows us to compute the differentials of the
function computed by the net and therefore to use gra-
dient based neural training, as explained in section 6.
We give in sections 5 and 6 complexity results allow-
ing us to choose between direct calculation and retro-
propagation in order to compute efficiently the gradi-
ent for a supervised learning.

∗Published in ICANNGA’95 Proceedings.

Available at

http://apiacoa.org/publications/1995/icannga95.pdf
†Up to date contact informations for Fabrice Rossi are avaible

at http://apiacoa.org/

Due to space limitation, the proofs are ommited in
this paper. A technical report gives all the necessary
details (see [3]).

2 The general model

2.1 The neuron

In our model, a neuron is a vectorial function of several
variables. More formally, we have :

Definition 2.1 Let n be a positive integer and let
I1, . . . , In, W and O be n + 2 vectorial spaces on IR

of finite dimensions. A n-input neuron is a contin-
uously differentiable function from I1×I2×. . .×In×W

to O.
If N is such a neuron, we write dNw its partial dif-

ferential with respect to its (n+1)-th variable and dNik

its partial differential with respect to its k-th variable.

In this definition, W , Ik and O are respectively the
weight space of the neuron, itsk-th input space and its
output space.

2.2 The neural net

In order to define a neural net, we need to introduce
ordered graphs :

Definition 2.2 An ordered graph is a triple
(N , E , <) which fulfills the following conditions :

• N is a finite totally ordered set of nodes. It is
in fact a sequence of nodes and we will write its
elements as N1, N2, . . . ;

• E is a subset of N∈. e = (x, y) ∈ E is an edge

of the graph and it represents a connection from
x to y ;

http://apiacoa.org/publications/1995/icannga95.pdf
http://apiacoa.org/

• < is a function from N to N∈. It associate to
each node N i in N a total order <Ni on its pre-
decessor set, Pred(N i). This set is therefore a
sequence and we can refer to Pred(N i)k for its
k-th element.

In order to simplify the rest of the paper we intro-
duce here some notations : G = (N , E , <) is an or-
dered graph with exactly n nodes ; N 1, . . . , Nn is the
sequence of the graph nodes ; P (Nk) = P (k) is the set
of the predecessors of Nk ; S(Nk) = S(k) is the set of
the successors of Nk. We assume that node Nk has
exactly pk predecessors and sk successors, and that we
call P (k)1, . . . , P (k)pk the sequence of the predecessors
of Nk and S(k)1, . . . , S(k)sk the sequence of the suc-
cessors of Nk. In general, superscripts correspond to
node numbers and subscripts correspond to input or
output numbers. Furthermore, we will not make any
distinction between a node Nk and its rank k.

We also need to generalize the notion of predeces-
sor : for an arbitrary node N , we define P 0(N) as
{N} and recursively P k(N) as {M ∈ N | ∃Q ∈
P‖−∞(N) so that (M,Q) ∈ E}. We have there-
fore P 1(N) = P (N). We call also P +(N) the set
∪∞

k=1P
k(N) and P ∗(N) = P 0(N) ∪ P+(N). Similar

sets can be defined in order to generalize the notion of
successor.

We can now define a neural network :

Definition 2.3 A feedforward neural network is
an ordered graph G = (N , E , <) fulfilling the following
conditions :

1. The graph has no-cycle.

2. The elements of N are j-input neurons (j de-
pends of course on the neuron). The output space
of Nk is Ok and its weight space is W k.

3. If pk > 0 then neuron Nk is a pk-input neuron.
That means it has exactly one input for each of its
predecessors in the graph (but only if it has prede-
cessors !). The input spaces of Nk are Ik

1 , . . . , Ik
pk .

4. If pk = 0 then neuron Nk is a 1-input neuron with
input space Ik.

5. If pk > 0 then for each input i of the neu-
ron Nk the following condition holds : dim Ik

i =
dim OP (k)i .

Let us now introduce some additionnal definition re-
lated to the neural network.

In is the subset of N which elements have no

predecessor, i.e., In = {N ∈ N | P(N) = ∅}. In has
in elements. As a subset of N , In is totally ordered

and In1, . . . , Inin is the ordered sequence of its ele-
ments. The elements of In are connected to the “out-
side” by means of their inputs. As we make no disct-
inction between a node and its rank, we can call for
instance OInk the output space of the node N j = Ink,
which is in fact Oj .

Out is the subset of N which elements have no

successor, i.e., Out = {N ∈ N | S(N) = ∅}. Out has
out elements and is totally ordered. Out1, . . . , Outout

is the ordered sequence of its elements.The elements of
Out are connected to the “outside” by means of their
outputs.

The vectorial space I =
∏in

k=1 IInk is the in-

put space of the neural network, the vectorial space
O =

∏out
k=1 OOutk is the output space of the neural

network and the vectorial space W =
∏n

k=1 W k is the

weight space of the neural network.

2.3 Computing the output

We define the output of the network like this :

Definition 2.4 Let G be a feedforward neural net-
work. Let x = (x1, . . . , xin) ∈ I be an input vector
and let w = (w1, . . . , wn) ∈ W be a weight vector. For
each l, 1 ≤ l ≤ n, ol(x, w), the output of the neuron
N l, is computed with the help of the following recursive
construction :

• If N l ∈ In, we have N l = Ink. Then ol(x, w) =
N l(xk, wl) ;

• If N l 6∈ In, the output of N l is obtained by
ol(x, w) = N l(oP (l)1(x, w), . . . , oP (l)

pl (x, w), wl).

Finally, G(x, w), the output of the network, is obtained
by G(x, w) = (oOut1 (x, w), . . . , oOutout(x, w)).

Of course this definition is correct only because the
underliying graph is non cyclic.

In the rest of the paper, we will call I l(x, w) the
generalized input of node N l, i.e :

(oP (l)1 (x, w), . . . , oP (l)
pl (x, w), wl)

3 Computing the differential

3.1 Direct method

As a composed function, G is continuously differen-
tiable. The first method to compute its differential is
to use the classical derivation rule for composed func-
tion. This is the direct method.

Theorem 3.1 Let G be a feedforward neural network.
The ol functions are continuously differentiable and we
have :
• if N l 6= Nk :

– if N l 6∈ In :

∂ol

∂wj
(x, w) =

pl

∑

k=1

dN l
ik

(

I l(x, w)
) ∂oP (l)k

∂wj
(x, w) (1)

– if N l ∈ In :
∂ol

∂wj
(x, w) = 0 (2)

• if N l = Nk :
∂ol

∂wl
(x, w) = dN l

w

(

I l(x, w)
)

(3)

We have a similar property if we consider ∂ol

∂xi
, where

xi is the input of the i-th input neuron.

3.2 Back-propagation

The key idea of the back-propagation algorithm is to
consider ok(x, w), the output of neuron Nk, as a func-
tion of ol(x, w), the output of another neuron N l. In
fact, we define a new function ok→l(x, w, f l) and we
have of course ok→l(x, w, ol(x, w)) = ok(x, w). We
have the following theorem :

Theorem 3.2 Let G be a feedforward neural network.
Let Nk, N l, x and w be respectively two neurons of
G, an arbitrary input vector and an arbitrary weight
vector. Then we have :

∂ok

∂wl
(x, w) =

∂ok→l

∂ol

(

x, w, o
l(x, w)

)

dN
l

w

(

I
l(x, w)

)

(4)

A similar equation is fullfilled for ∂ol

∂xi
.

The back-propagation algorithm gives a recursive

method to compute ∂ok→l

∂ol . We first need an addition-
nal definition :

Definition 3.1 Let G be an ordered graph and let N k

and N l be two nodes of G. r(k, l) is the rank of Nk

in the predecessor set of N l, i.e., Nk is the r(k, l)-th
predecessor of N l.

Theorem 3.3 Let G be a feedforward neural network.
Let Nk, N l, x and w be respectively two neurons of
G, an arbitrary input vector and an arbitrary weight
vector. Then we have :
• if N l = Nk then :

∂ok→l

∂ol

(

x, w, ol(x, w)
)

= IdOk , (5)

where IdOk is the identity function of Ok the output
space of Nk.

• if N l 6∈ P ∗(Nk) then :

∂ok→l

∂ol

(

x, w, ol(x, w)
)

= 0Ol,Ok , (6)

where 0A,B is the null function from A to B, two vec-
torial spaces.

• if N l ∈ P+(Nk) then :

∂ok→l

∂ol

(

x, w, ol(x, w)
)

= (7)

∑

Nj∈S(l)

∂ok→j

∂oj

(

x, w, oj(x, w)
)

dN
j
ir(l,j)

(Ij(x, w))

The formula 7 gives a recursive method for computing
∂ok→l

∂ol . In order to compute ∂ok→l

∂ol , we need ∂ok→j

∂oj for

N j ∈ S(l). Therefore, ∂ok→l

∂ol is computed from the
last layer of the network to the input layer : this is a
backward algorithm nad therefore an extended back-
propagation.

4 Input sharing

4.1 The model

The obtained model is rather powerfull but cannot
imitate simple models such as multilayer perceptron
(MLP). The main problem is that input nodes have
different inputs whereas in a MLP they share the same
input. In order to avoid this problem, we introduce an
input sharing function :

Definition 4.1 Let G = (N , E , <) be a feedforward
neural network. Let NI be a vectorial space on IR of
finite dimension and let SF be a function from NI to
I, the input space of the neural network. SF is called a
sharing function for the neural network G. It defines
a new function GSF from NI × W to O like this :

GSF (y, w) = G(SF (y), w) (8)

By using a replicating function which maps one vector
x to a n-tuple which elements are all equal to x, we
can give the same input vector to all input neurons
and therefore simulate a MLP. In fact, with this last
definition, we can implement with our model all clas-
sic feedforward neural networks such as MLP, Radial
Basis Function networks, wavelet networks, etc. The
model is therefore a general representation of feedfor-
ward neural networks.

4.2 Differentials

The input sharing method does not change the differ-
ential of G with respect to its weight vector. In fact,
we have dGSF w(y, w) = dGw(SF (y), w). Therefore,
we don’t have to take care of a sharing function when
evaluating the time needed to compute the differential
of G with respect to its weight vector.

5 Complexity

In this section, we give the time needed to compute the
matricial operations involved in both calculation meth-
ods. These times do not include the time needed to
compute the local differential (e.g., dN l

w) for individ-
ual nodes. They take only into account the matricial
products and sums needed to compute the differential
of the output of the network with respect to its weight
vector. In the sequel, |E| is the dimension of the vec-
torial space E.

5.1 Direct method

Theorem 5.1 Let G be a neural network. The time
needed to compute the matricial operations required for
calculating dGw with the direct method is proportionnal
to :

∑

Nj 6∈In

|Oj |
∑

N l∈P+(j)

|W l|



−1 +
∑

Nk∈P (j)∩S∗(l)

2|Ok|



 (9)

5.2 Back-propagation

Theorem 5.2 Let G be a neural network. The time
needed to compute the matricial operations required for
calculating dGw with the back-propagation method is
proportionnal to :

out
∑

k=1

|OOutk |





∑

N l∈P+(Outk)

∣

∣W l
∣

∣

(

2
∣

∣Ol
∣

∣− 1
)

+
∑

N l∈P+(Outk)

∣

∣Ol
∣

∣



−1 +
∑

Nj∈S(l)∩P+(Outk)

2
∣

∣Oj
∣

∣









(10)

5.3 Comparison

The formulae are not directly comparable. In fact,
even for a classic MLP architecture, the number of
neurons can be chosen so that the direct method is
faster than the back-propagation. Therefore, in order
to compute efficiently the differential of the output of
a particular network with respect to its weight vector,
the theoretical costs have to be compared.

6 Output function

6.1 Model

In order to train a neural network to approximate a
function, we use an error function which is in fact a
distance between the output of the network and the de-
sired output. This error is a function of the weight vec-
tor of the network and gradient based training meth-
ods need only the gradient of this function. In order
to compute this gradient, we can handle the error E

as a composed function of a distance d and the neural
output G(x, w). We compute dGw with an arbitrary
method and then use the classic chain rule to obtain
∇E as the result of a matricial product. Let us note
that we need to introduce the desired output into the
formula.

We can also see the couple (d, y), where d is a dis-
tance fonction and y a desired output, as a particular
neuron with no weight vector and with out inputs (one
input for each output neuron of G). We can therefore
apply the back-propagation to this model.

6.2 Back-propagation

We obtain the following theorem :

Theorem 6.1 Let G be a feedforward neural network
and let F be a continuously differentiable vectorial
function with out variables from S1 × . . . × Sout to
OF , with Si ' OOuti . Let FG(x, w) be :

F
(

oOut1(x, w), . . . , oOutout(x, w)
)

= F (G(x, w))

We define in a similar way F l
G , where N l is an arbi-

trary node, with the help of oOutj→l.

Let dFik
be the partial differential of F with respect

to its k-th variable. We have :

∂FG

∂wl
(x, w) =

∂F l
G

∂ol
(x, w, ol(x, w))dN l

w(I l(x, w)) (11)

If N l = Outk :

∂F l
G

∂ol
(x, w, ol(x, w)) = dFik

(G(x, w)) (12)

If N l 6∈ Out :

∂F l
G

∂ol
(x, w, ol(x, w)) = (13)

∑

Nj∈S(l)

∂F
j
G

∂oj
(x, w, oj(x, w))dN

j

r(l,j)(I
j(x, w))

6.3 Complexity

Theorem 6.2 With the hypothesis of theorem 6.1, we
obtain that the time needed to compute the matricial
operations required for calculating dFG with the back-
propagation method is proportionnal to :

|OF |

[

∑

N l

∣

∣W l
∣

∣

(

2
∣

∣Ol
∣

∣− 1
)

+
∑

N l 6∈Out

∣

∣Ol
∣

∣

(

2
∑

Nj∈S(l)

∣

∣Oj
∣

∣− 1

)]

(14)

The complexity of the direct algorithm applied to this
modified model is simply the sum of the complexity
obtained in theorem 5.1 with the time needed to com-
pute the product between dGw and dF (i.e.,a time
proportionnal to |OF ||W |(2|O| − 1)).

6.4 Comparison

Once again, it is not possible to achieve a direct com-
parison between the computation times for both meth-
ods. But we can prove that if F is an error func-
tion (i.e., |OF | = 1), the back-propagation is faster
than the direct method, for a multilayer perceptron
(i.e., we rediscover this classic result). Another im-
portant result is that computing with our generalized
back-propagation the gradient of the error mode by
a MLP represented with the mathematical language
of our model is as fast as doing it with the classic
back-propagation algorithm. In fact, the formulae are
identical for both methods.

7 Conclusion

In this paper we have presented a general model for
feedforward neural networks. On one hand, this model
is powerfull enough to describe classic architectures
such as multilayer perceptrons or wavelet networks.
On the other hand, the model is simple enough to al-
low the derivation of an extended back-propagation
algorithm. Unfortunately, this algorithm is no longer
faster than the direct method, except for particular
cases (such as the MLP). The obtained differentials
can be used for gradient based neural learning.

The general model gives a formal framework and al-
lows us to study overall properties of feedforward neu-
ral networks, such as differential computation. It has
been used also to construct a simulator kernel which
can handle arbitrary feedforward neural network in a
very efficient way (see [2]).

References

[1] Léon Bottou and Patrick Gallinari. A Framework
for the Cooperation of Learning Algorithms. In
R.P. Lippmann, J.E. Moody, and D.S. Touretzky,
editors, Neural Information Processing Systems,
volume 3, pages 781–788. Morgan Kauffman, 1991.

[2] Cédric Gégout, Bernard Girau, and Fabrice Rossi.
NSK, an Object-Oriented Simulator Kernel for
Arbitrary Feedforward Neural Networks. In Int.
Conf. on Tools with Artificial Intelligence, pages
93–104, New Orleans (Louisiana), November 1994.
IEEE.

[3] Cédric Gégout, Bernard Girau, and Fab-
rice Rossi. A General Feed-Forward Neu-
ral Network Model. Technical report NC-
TR-95-041, NeuroCOLT, Royal Holloway,
University of London, May 1995. Avail-
able at http://apiacoa.org/publications/

1995/neurocolt1995.pdf.

	Introduction
	The general model
	The neuron
	The neural net
	Computing the output

	Computing the differential
	Direct method
	Back-propagation

	Input sharing
	The model
	Differentials

	Complexity
	Direct method
	Back-propagation
	Comparison

	Output function
	Model
	Back-propagation
	Complexity
	Comparison

	Conclusion

