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Abstract  

Metric studies are based on complex, voluminous and heterogeneous data. In order to obtain meaningful results, 
human guided analysis is therefore needed and can be achieved with information visualization methods. In this 
paper, we survey visualization methods traditionally used in informetrics and present recent achievements in this 
domain. We also outline some potentially interesting visualization tools from machine learning.  

1. Introduction 

Information visualization [1] uses the high processing capabilities of the human vision system to 
enable interactive exploration of abstract data. Humans are extremely good at spotting patterns in 
images. This skill is supported by the low level visual system which has pre-attentive processing 
capabilities (see e.g. [2]): some specific features, such as colors or shapes, are detected and recognized 
without effort and very quickly, generally in less than 200ms, even in a large image. Recent 
experiments have shown that pre-attentive processing scales up to one million items [3].  
Human vision is however limited by several factors. The most obvious is that vision is physically 
restricted to three dimensional displays (3D). In addition, 3D has many specific problems, such as 
occlusion, disorientation, scarcity of stereovision hardware (despite its low cost), etc. As shown in [4], 
effectiveness of graphical features is also a complex issue: for instance color hue is an efficient and 
accurate way of displaying nominal variables whereas it is not adapted to quantitative value 
representation. Moreover fast pre-attentive processing is limited to two or three combined features (see 
[2]).  
In practice therefore, original data are mapped to a two dimensional (2D) layout that exploits a few 
pre-attentive features to represent the characteristics of the studied objects. Interaction methods such 
as zooming, linking-and-brushing, dynamic distortion, etc. enable the user to manipulate and 
dynamical modify the image: she can focus on some part of the data, filter irrelevant aspects, compare 
different points of view (especially in 3D), etc.  
In general, layout strategies leverage some particularities of the data. Scientific visualization, for 
instance, represents real world phenomena (such as fluid dynamics) and can therefore use their natural 
3D interpretation. Another example comes from the general abstract data model called the Table Data 
Model [1,5]: each object is described by a fixed (and common) number of attributes. While there is no 
natural 3D embedding for such type of data, dimension reduction techniques (see e.g. [6] for a recent 
survey) can be used to map the high dimensional data to a low dimensional representation. 
However, general abstract data have seldom a natural table or vector representation. Even if some 
successful models, such as Salton's Vector Space Model for text [7], have been proposed, they 
generally induce some distortion or some information loss. Visualization methods must therefore rely 



on some specific layout techniques. This is especially the case for data from metric studies. Citation 
data, for instance, correspond to graphs that have no meaningful vector representation. 
We give in this paper an overview of the major visualization methods used in metric studies. General 
surveys of this field can be found in [8,9] and we won't try to have comprehensive coverage as those 
articles. Examples of state-of-the-art methods can be found in the winning entries of the InfoVis 2004 
contest whose goal was to display the history of information visualization based on bibliographic 
information [10,11]. Our goal is to present the main layout strategies used in informetrics and to 
outline some possible research opportunities in this area by listing recent machine learning 
achievements that could be used for visual representation. Section 2 recalls the types of data 
commonly considered by metric studies. Section 3 is dedicated to dissimilarity methods, based on the 
transformation of the original data into a dissimilarity matrix. Section 4 presents methods adapted to 
the vector space model used for, e.g., abstract or full text paper analysis. Section 5 briefly outlines 
graph based methods that deal with citation data and other networks from metric studies.  

2. Metric studies data 

Informetrics is based on the analysis of complex, heterogeneous and interlinked data with different 
level of details. Bibliographic data include for instance articles whose full text is generally described 
by some meta-data: title, authors, publication mean (journal, conference proceedings, etc.), keywords, 
abstract, cited papers, etc. Articles are also nodes in a graph whose arcs correspond to citations (author 
or mixed graphs can also be considered). Analysis can be conducted at the article level, but also at 
higher levels such as author, journal, research field, etc. This general pattern applies to patents, web 
sites, etc. Its complexity is increased by the lack of consistency of data sources: older articles might 
miss full text or keywords, web page meta-data are frequently non-existent or even bogus, etc. 
Because of their complex nature, metric studies data are generally transformed to simpler but 
manageable representations. A standard solution is to consider the graph structure induced at the 
article level by (co)-citation or at the author level by co-authoring and (co)-citation (higher level can 
also be analyzed). The obtained graphs can be enriched by node annotations (content of the article, 
number of articles per author, etc.) and arc annotations (number of co-citations for instance). It should 
be noted that this graph base representation doesn't generally imply information loss. It's in fact the 
natural representation for web sites, for instance. Another complementary approach consists in relying 
more on the textual part of the data, generally by using a vector space model [7] or more directly by 
focusing on meta-data with high semantic content such as keywords or categories.  
Because metric studies are based on very heterogeneous data, aggregate measures are frequently 
preferred over raw data. Basic statistics such as journal impact factors lead to simple and classical 
visualization (bar charts, time series, etc.). Aggregation can also be used to define similarities (or 
dissimilarities) between the studied objects. For instance the Jaccard index applied to cited articles 
defines a similarity between articles: articles that cite similar papers are considered to be similar. This 
rationale can be applied at different abstraction levels and to different low level data (authors cited 
together in articles, articles that use common words, etc.).  
To summarize informetrics can be based on three major types of data: annotated graphs, vector data 
and similarity data (by similarity data, we mean data described by the matrix of their pairwise 
similarities).  

3. Similarity based approaches 

3.1. Multidimensional scaling 

When data are described only through pairwise similarities, the main goal of visualization is to respect 
as closely as possible those similarities: close objects according to the similarity matrix should be 



represented by close points or icons on the 2D (or 3D) layout. The main tool for this ordination 
problem is the family of Multidimensional Scaling (MDS) methods, introduced by Torgerson [12]. 
The main idea of MDS methods is to find a low dimensional representation of the data such that 
Euclidean distances between points in the low dimensional space are good approximations of the 
original dissimilarities (which are obtained via simple transformations from the similarities).  
Torgerson's classical MDS applies to dissimilarities defined by high dimensional data in an Euclidean 
space, a situation that doesn't correspond to metric studies data (in fact classical MDS is equivalent to 
Principal Component Analysis). In more general situations, one relies on Kruskal's MDS [13,14] 
which is based on the iterative optimization of a stress function that measures the discrepancies 
between the low dimensional Euclidean structure and the original dissimilarity matrix. This form of 
MDS is one of the most common tool in metric studies and more generally for mapping non vector 
data (see e.g. [8,9] for some references in metric studies). The type of MDS and, as a consequence, of 
visualization, depends on the optimized stress function. Some examples of modified stress include  
Sammon's non linear mapping [15] which tries to respect more small dissimilarities (in the original 
space) than large ones and Curvilinear Component Analysis (CCA [16]) which tries to make sure that 
small distances in the low dimensional representation correspond to small dissimilarities in the 
original space. To our knowledge, those variants of MDS are seldom use in metric studies, despite 
their advantages (CCA has low computational requirements for instance). 
MDS used to have a major limitation, its high computational cost. Standard MDS algorithms scale in 
O(n3) or O(n4) for n objects. A lot of optimization work has been done in order to reduce this cost. A 
very sophisticated solution, based on sampling, interpolation and a force directed model is proposed in 
[17,18] and scales in O(n5/4). This implementation achieves impressive scalability: 100 000 objects can 
be embedded in less than 6 minutes on a standard PC (Pentium IV 2.4 Ghz). Other optimized 
implementations include hierarchical grid methods proposed in [19]. It should be noted that those 
methods use approximations to solve the stress minimization problem and therefore that the final value 
of the stress should be checked in order to make sure that the mapping is acceptable. 
Another optimization possibility consists in using spectral analysis (as in the classical scaling) either 
of the original dissimilarity matrix (discarding or not negative eigenvalues, see [20]) or of some pre-
processed version such as in laplacian eigenanalysis (used in VxInsight [21,22]). Those solutions 
strongly benefit from research in eigenanalysis, especially because some similarity matrices obtained 
in metric studies are sparse. As for iterative MDS, classical MDS can be accelerated by approximating 
some calculation. The well known FastMap algorithm [23] for instance is in fact an approximate 
classical MDS [24]. It should be noted however, that methods based on classical MDS don't minimize 
the same stress function as non classical MDS and can lead to less interesting embeddings, mainly 
because even if the underlying similarity is metric, a perfect Euclidean embedding might be 
impossible: knowing that mapping errors are unavoidable, stress functions are designed to limit some 
type of errors while disregarding others. CCA [16], for instance, is known to be able to unfold 
complex structures by “tearing” the high dimensional surface.   
A limitation MDS that is still valid is the fact that global analysis is difficult, partly because axes of 
the mapping don't have generally any obvious meaning. This might be considered as a consequence of 
the non linear nature of non classical MDS as opposed to Principal Component Analysis for instance. 
Another consequence of non linearity is the difficulty to trust proximities in the 2D representation. The 
valued of the stress function gives only a rough estimation of the quality of the mapping. Better global 
measures have been proposed [25,26] and local distortions can be visualized on the layout itself [27], 
but those techniques have not been applied yet to metric studies. 

3.2. Other methods 

While the family of MDS methods dominates the field of ordination algorithms, other solutions are 
used. VxInsight uses for instance a sophisticated type of force directed placement (FDP), VxOrd 
[21,22], that scales in O(n). The algorithm is related to MDS but the optimized stress is quite different. 
As pointed out in [9], VxInsight and similar FDP methods have been used in many metric studies.  



Older methods include for instance the triangulation technique proposed in [28] which provides 
perfect preservation of some of the original dissimilarities (the dissimilarities between any object and 
its two closest neighbors are exactly represented which corresponds to 2(n-3)+3 perfectly represented 
values).  
Kohonen's Self Organizing Map (SOM [29]) have been used in DIVA [30] to provide ordinations of 
similarity data from metrics studies (DIVA maps documents according to citations and words based 
similarities). One of the limitations of the proposed solution is that it transforms the similarity matrix 
into a vector model: two objects are close according to this model if they have the same pattern of 
similarity to all other objects. In a way, this emphasizes global distances rather than local ones. A 
similar approach is used in [31] for mapping authors based on co-citation similarities. While this 
approach can lead to good results, its theoretical properties are not well known. Some extensions of 
the SOM to dissimilarity data that try to give a proper semantic to the algorithm have been proposed 
[32-35], but none have been applied to metric studies. There computational costs tend to be quite high 
even if recent advances have been made [36]. 

4. Vector model 

When the data can be accurately represented in a vector space, most of the standard visualization tools 
can be applied (more precisely methods that target the table data model [1,5]). In metric studies, the 
vector space approach has been mainly applied to textual data, via Salton's model [7] combined with 
some term weighting strategy such as inverse document frequency. For full text analysis, this 
generates very high dimensional vectors: simple linear dimension reduction techniques, such as 
Principal Component Analysis (PCA) and Latent Semantic Analysis (LSA [37]) are generally used to 
limit noise and to enhance semantic content. 
The obtained data (raw vector data or preprocessed vector data) are sometimes cast into a similarity 
matrix (via the Euclidean norm or more generally a Minkowsky norm) and submitted to a non linear 
MDS algorithm.  

4.1. The Self Organizing Map 

Apart from this approach, the most used vector space tool in metric studies is Kohonen's SOM [29]. 
Pioneering work in this area was done by X. Lin et al. in [38] which is generally considered as the first 
application of the SOM to abstract information visualization (document spaces). The SOM has several 
advantages over MDS that include its scalability to huge data sets (the impressive Websom application 
was conducted on almost seven millions of patent abstracts [39]), the simultaneous clustering and 
projection operations that provide both overview and detailed representation, the numerous 
visualization methods [40-42] that give a complete view of the SOM's results, etc. 
The standard SOM algorithm has been modified and enhanced for text database visualization and 
more generally for document space analysis. Chen et al. have proposed for instance a type of 
hierarchical SOM (layered SOM in their words [43]) that enables to recursively refine the mapping by 
training a SOM on some area of the results of a previous SOM. This model was further enhanced in 
[44] by taking advantage of the sparsity of the vector model for text analysis (see also [45] for recent 
achievements of the same team). Other hierarchical SOM methods have been proposed for similar 
tasks, for instance the Treeview SOM [46] which targets web pages. A more complex extension of 
SOM which is in a way related to hierarchical SOM but with communications between SOMs, the 
multi-SOM [47], has also been applied to the mapping of document bases [48]. 
The SOM appears has a meeting point for many communities. For example, its excellent visualization 
capabilities have been a motivation for researchers of the machine learning community to leverage 
concepts and methods from information visualization. The general concept of “focus + context” [49] 
has been for instance applied to the SOM by Ritter in [50] and further extended to hierarchical 



growing SOM by Ontrup and Ritter in [51] (see also [52] for dynamic distortion techniques applied to 
the SOM). 
Because it generates a map, the SOM has also been exploited and analyzed by researchers from the 
geographic information system (GIS) community. Skupin for instance has studied the geographic and 
cartographic metaphors for displaying information spaces, originally with MDS [53] and latter with 
the SOM [54,55]. The display of the SOM results by GIS software provide very interesting results 
with might be easier to comprehend by non expert users with the help of a strong cartographic 
metaphor. A survey of the link between information visualization and cartography is available in [56].  

4.2. Promising recent methods 

To our knowledge, metric studies visualizations based on vector space data have been limited to MDS 
like methods and to derivatives of the SOM and haven't yet take advantage of recent advances from 
machine learning in the field of manifold learning [6] and latent variable models [57].  
Manifold learning aims at finding low dimensional structures in high dimensional data, such as a 
sphere in a 3D space. The main idea is to build in the high dimensional space a model of the local 
structure of the data (via its k-neighbor graph for instance) chosen so as to be easily embeddable in a 
low dimensional space. Isomap [58] for instance builds a geodesic distance between objects based on 
the k-neighbor graph and maps the obtained dissimilarity matrix to a low dimensional representation 
via classical MDS. Curvilinear Distance Analysis (CDA [59]) uses the same idea but replaces MDS 
with CCA [16]. Locally Linear Embedding (LLE [60]) represents the local structure by a hyperplane 
and finds a low dimensional embedding that has a similar linear structure. Other related methods have 
been defined (see [6] and [61]) and tend to produce very interesting results, even in very high 
dimensional spaces (such as image spaces). It remains however to be seen whether the underlying 
structure of vector spaces built from metric studies data can be modeled as a low dimensional 
manifold that can be easily embedded in a low dimensional space. The emphasize put on locality by 
manifold learning methods might be for instance incompatible with the requirements of metric studies 
(manifold learning methods do not respect long distances at all because they are discarded in the early 
phase of the algorithms). It should be noted that many of those methods, especially Isomap, CDA, and 
LLE, can be applied to dissimilarity matrices.  
Latent variable models take in a way the opposite point of view: the high dimensional observed data 
are supposed to be generated from corresponding low dimensional unobserved (or latent) variables 
[57] through a known probabilistic model of the general form t=y(x;w)+e, where t denote the high 
dimensional data, x the latent variables, e the noise and y the parametric form of the model with 
parameters w. The oldest latent variable model is the one of factor analysis (see e.g. [6]) in which y is 
linear. With some assumptions on the distribution of x and e, it corresponds to PCA (see e.g. [62]). It 
allows one to define probabilistic PCA [62], which in turns gives mixture of probabilistic PCA [63]: in 
this approach, the data are simultaneously clustered and linearly projected to a low dimensional 
representation. This allows one to overcome the limitation of one single linear projection, while 
preserving a simple model. An interactive hierarchical version of this model has been proposed in [64] 
and gave interesting visual results. The Generative Topographic Mapping (GTM [65]) is a SOM like 
non linear latent variable model that has visualization capabilities quite similar to those of the SOM, 
with the advantage of being based on a simple probabilistic model. An interactive hierarchical version 
of the GTM has been proposed in [66].  
The main difficulty in designing latent variable models is to come up with meaningful probabilistic 
high dimensional models. The standard GTM for instance is not adapted to discrete data and has to be 
modified for this type of task as in [67], or more recently with the Latent Trait Model (LTM [68]). It 
has been shown in [69] that combining LTM with the hierarchical GTM of [66] provides very 
interesting visualization possibility for text corpus represented by a binary vector space model. Many 
recent works on latent variable models try to define generative models for different types of data. The 
model of [70] targets for instance text streams, while [71] is designed for symbolic sequences, such as 
web log data. Latent variable models are therefore applicable to metric studies data such as text 



collections, but broader applications, e.g., to graph structures, will be possible only if meaningful 
generative models can be build for those type of data (based for instance on random graph models, see 
e.g. [72] for a survey). 

5. Graph based methods 

The natural representation of metric studies data is generally a graph with annotations and early 
visualization of such data were done by manual layout of the graphs (see e.g. [73]). Latter works 
represent simplified graphs (clustered graphs) via MDS (see e.g. [74]). This type of visualization is 
based on a transformation of the graph into a dissimilarity matrix and therefore doesn't directly 
leverage the graph structure of the data. On the contrary, the work of Chen (Generalized Similarity 
Analysis, GSA [75,76]) is truly based on the links between analyzed objects. Chen's method is based 
on the extraction from the graph of a Pathfinder network [77]: this network acts as a summary of the 
original graph by retaining only some of the links between nodes. The obtained sub-graph depends on 
the parameters of the algorithm, but they can be chosen such that the pathfinder network corresponds 
to the union of all possible minimum spanning trees of the original graph. In this situation, the 
geodesic dissimilarity between nodes of the pathfinder network is a distance and is therefore easier to 
embed in 2D than an arbitrary non metric dissimilarity. Chen uses the Kadama and Kawai's force 
directed placement method [78] to layout the pathfinder network. GSA has been applied to different 
metric studies, for instance author co-citation in [79] and for document co-citation in [9]. The main 
limitation of GSA is the high cost of pathfinder network calculation that scales in O(n4). It is therefore 
tempting to use a Minimum Spanning Tree (MST) for which simple algorithms such Kruskal's or 
Prim's scale in O(e log n) where e is the number of edges in the graph. While this allows one to obtain 
interesting results [80], comparative studies have shown that pathfinder networks provide better 
summaries than MSTs (see e.g. [81]). 
More recently, metric studies data visualizations have started to use general purpose graph 
visualization tools (see [82,83] for surveys on graph visualization), especially software such as Pajek 
[84], originally designed for social network analysis. Two of the four winning submissions to the 
InfoVis 2004 contest [10] made intensive use of graph visualization ([85] used Pajek and [86] was 
based on WilmaScope [87]), while five among the eight second place submissions do the same. One of 
the most original works from this contest is [88] which uses a hierarchical decomposition of the graph 
to be visualized based on the small-world structure of many social networks [89].  

6. Conclusion 

Metric studies data are complex and heterogeneous; with the growing availability of interlinked 
numerical libraries, the volume of those data is becoming huge. Even if automated knowledge 
discovery tools can be applied to informetrics, interactive visualization tools remain extremely useful 
to help practitioners to understand those voluminous data.  
Recent works in the visualization field try to display the complex networks that give a natural and 
complete description of some important aspects of metric studies data, e.g. co-citation author networks 
in bibliometrics. Progresses of the graph visualization fields have allowed the layout of large graphs 
and provide the infrastructure of those advanced knowledge domain exploration methods. 
In the future, dissimilarity based methods, which remain useful even if they loose part of the original 
structure by summarizing it into a simple numerical matrix, could benefit from recent advances such 
as efficient Multidimensional Scaling algorithms, modified Self Organizing Maps for dissimilarity 
data, and Manifold Learning methods like Isomap or LLE.  
The standard vector model for text remains a valuable tool for document analysis, especially in 
conjunction with the Self Organizing Map. Better results might be achieved nevertheless via latent 
variable models (such as the Generative Topographic Mapping), especially because good generative 
models have been recently proposed for text data. 
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