R

Fabrice Rossi

CEREMADE Université Paris Dauphine

2020

Outline

Introduction

Main concepts

Data Management in R

https://www.r-project.org/

- R is a programming language and an environment for statistical computing and visualization
- R is a multiplatform free software
- R can be extended by thousands of packages
- R provides state-of-the-art implementation of myriads of statistical, data mining and machine learning algorithms

Pros

- open source
- full-fledged programming language
- strong support from multiple compagnies
- broad coverage of data science, statistics, etc.
- high performance packages
- report generation and high quality graphics

Cons

- limited point-and-click support
- peculiar language with specific constructs
- naive code has low performances
- way too many packages

4

Recommended installs

- ► R https://www.r-project.org/
- ► Rstudio https://www.rstudio.com/
 - standard IDE for R
 - open source (desktop version)
 - numerous integrated tools
- ► tidyverse https://www.tidyverse.org/
 - collection of data science oriented packages
 - try to enforce good practices
 - associated book https://r4ds.had.co.nz/

Outline

Introduction

Main concepts

Data Management in F

Programming Language

Definition

- a formal language with a strict mathematical definition
- defines syntactically correct programs
- associated to a semantics
 - ► (formal) model of the computer
 - effects of a program on the model

Programming Language

Definition

- a formal language with a strict mathematical definition
- defines syntactically correct programs
- associated to a semantics
 - (formal) model of the computer
 - effects of a program on the model

In other words...

- lacktriangle a programming language can be used to write programs \simeq texts
- a programming language has a strict syntax
 - ▶ lexical aspects ≃ word spelling
 - ▶ grammatical aspects ≃ sentence level
- when a program follows the syntax, it has a proper meaning i.e. an effect on the computer on which it runs

A computer

Turing Machine

- standard mathematical model
- too low level to a daily use

Other models

- data oriented models
- a model of the data
- together with a model of the execution of a program
 - ightharpoonup effects of instructions on the data \simeq sentence level
 - ightharpoonup global flow and organization on a program \simeq text level
- include input/output aspects

Interactive mode

Standard program execution

- a program is written in a file (or a set of files)
- in some languages the file can be translated to a more efficient language
- the file (or its translation) is executed on a computer

Console/Shell

- some languages have an associated "console" or "shell" (e.g. Python and R)
- one can type interactively program sentences and get associated results
- simplifies learning and testing

- R provides a console for interactive use
- in general integrated in a specific window of a programming environment (Rstudio)
- can be launched from the command line (R)
- command prompt >

R provides a console for interactive use

| >

- in general integrated in a specific window of a programming environment (Rstudio)
- can be launched from the command line (R)
- command prompt >

- R provides a console for interactive use
- in general integrated in a specific window of a programming environment (Rstudio)
- can be launched from the command line (R)
- command prompt >

> 2 + 2

- ► R provides a console for interactive use |> 2 + 2 | 13 | 4 | 4 | >
- ▶ in general integrated in a specific window of a programming environment (Rstudio)
- can be launched from the command line (R)
- command prompt >

► R provides a console for interactive |> 2 + 2 | 1] | 4 | |> 4 ^ 3 | use

- in general integrated in a specific window of a programming environment (Rstudio)
- can be launched from the command line (R)
- command prompt >

- ► R provides a console for interactive use
- in general integrated in a specific window of a programming environment (Rstudio)
- can be launched from the command line (R)
- command prompt >

```
> 2 + 2
[1] 4
> 4 ^ 3
[1] 64
>
```

- R provides a console for interactive use
- in general integrated in a specific window of a programming environment (Rstudio)
- can be launched from the command line (R)
- command prompt >

```
> 2 + 2
[1] 4
> 4 ^ 3
[1] 64
>
```

Warning

The behavior of a program in the console is not exactly the same as the behavior of a program outside of the console

Using the console

Console presentation

In the slides

- code to type given directly
- outputs given as comments ####

```
4 + 2 * 5
```

Integrated help

- ?foo gives the documentation of foo
- direct access in Rstudio

R console as a calculator

Numerical

```
2 + 3.5
## [1] 5.5
4 - 2/3
## [1] 3.333333
5%/%2
## [1] 2
5882
## [1] 1
7^2
## [1] 49
sqrt(3)
## [1] 1.732051
sin(0.5 * pi)
## [1] 1
```

Logical

```
5 > 5

## [1] FALSE

sqrt(5) <= 3

## [1] TRUE

5 == 5

## [1] TRUE

(2 > 3) | (3 > 2)

## [1] TRUE

(5 > 0) & (5^2 > 20)

## [1] TRUE
```

R data model

R understands

- numerical values
 - ▶ both integers 12
 - ▶ and decimal numbers 1.4e-5
- logical values TRUE and FALSE
- names such sin and pi

Object oriented

- ▶ R handles objects
- vectors, matrices, lists, data frames, etc.
- each object has a class which specifies
 - the possible values for objects of the class
 - the operations than can be performed on the objects
- values are by default put into vectors

Variables and vectors

Variables

- a variable is a name for an object
- ▶ assignment with = or <-</p>
- integrated "calculator"
- standard behavior

```
a <- 2
b <- a + 3
a <- 1
a
## [1] 1
b
```

Vector

- the main object type
- c(2, 3, 4): a vector with 3 coordinates
- [t]: access/modification
 operator (numbering starts at
 1)

```
x <- c(2, 3, 4)

x

## [1] 2 3 4

x(2]

## [1] 3

x[1] <- x[1] + 7

x

## [1] 9 3 4
```

Vector indexing

Sequences

- a:b vector of integers from a to b (included)
- ▶ seq(a, b) same vector
- seq(a, b, by) vector of integers a, a+by, up to b

```
1:3
## [1] 1 2 3

-2:2
## [1] -2 -1 0 1 2

-1:-5
## [1] -1 -2 -3 -4 -5

seq(1, 4, 2)
## [1] 1 3

seq(2, -3, -2)
## [1] 2 0 -2
```

Vector indexing

- a vector can be indexed by a vector of integers
- x[y] gives the vector of values from x at the positions selected by y

```
x <- 5:10

x

## [1] 5 6 7 8 9 10

x[c(1, 2)]

## [1] 5 6

x[seq(1, 5, 2)]

## [1] 5 7 9
```

 negative indexes exclude elements

```
x[c(-3, -4)]
## [1] 5 6 9 10
```

Functions and packages

Principle

- R is mostly extended via packages that provide functions
- a function has a name, takes parameters and generally returns a result
- ▶ numerous built-in functions (seq)

Some built-in functions

- ► library(foo): loads package foo
- class (x): gives the class of an object

```
class(c(1.5, 2, 3))
## [1] "numeric"
```

More built-in functions

- length(x): length of a
 vector
- sum(x), mean(x),
 median(x), sd(x), etc.:
 statistics on a vector

```
y <- c(2, -3, 1, 4, 5)
length(y)
## [1] 5
sum(y)
## [1] 9
mean(y)
## [1] 1.8
median(y)
## [1] 2
sd(y)
## [1] 3.114482</pre>
```

Function parameters

Parameters

- R functions have frequently many parameters
- default values are provided
- how to override the defaults?

Positional parameters

- ▶ seq(from = 1, to = 1, by, length.out, ...)
- during a call, parameters are considered in order
- ▶ in seq(0), from takes the value 0
- ightharpoonup in seq (2, 4), from is 2 and to is 4

```
seq(-1)
## [1] 1 0 -1

seq(2, -4)
## [1] 2 1 0 -1 -2 -3 -4
```

Named parameters

Limitation

- many parameters with default values
- what about overriding only the last one?

Named parameters

- after positional parameters, one can give named parameters
- direct assignment for those parameters
- ▶ in seq(10, by=-2), from=10, to=1 (default value) and by=-2

```
seq(10, by = -2)
## [1] 10 8 6 4 2

seq(by = 3, to = 10)
## [1] 1 4 7 10
```

Base types

- vectors contain values of the same type
- standard types:
 - ► logical (TRUE, FALSE)
 - integer
 - double (real numbers)
 - complex
 - character
- special values
 - NA: missing value, not a number
 - ► NULL: no value
- ▶ typeof function

```
class(c(1, 2))
## [1] "numeric"
typeof(c(1, 2))
## [1] "double"
typeof(c(1L, 2L))
## [1] "integer"
class(c("abcd", "efgh"))
## [1] "character"
class (c (TRUE, TRUE, FALSE))
## [1] "logical"
class(c(1 + (0+2i), 0+4i, -2.75 -
    (0+1i))
## [1] "complex"
```

Factors

Nominal variables

- a.k.a. categorical variables
- finite number of possible values (e.g. gender)
- sometimes ordered

Factor

- R representation of nominal variables
- ▶ the levels are the values

```
x <- factor(c("A", "B", "A", "A"),
    levels = c("A", "B", "C"))
## [1] A B A A
## Levels: A B C
as.numeric(x)
## [1] 1 2 1 1
x[3] \leftarrow "D"
## Warning in '[<-.factor'('*tmp*',
3, value = "D"): invalid factor
level, NA generated
## [1] A B <NA> A
## Levels: A B C
```

Outline

Introduction

Main concepts

Data Management in R

Data Frame

Data import

Data transformation

Data Frame

Tabular data

- standard data representation
- each row is an object
- each column is a variable
- ► R version: a data frame (of class data.frame)

```
data(iris) # loads the standard iris dataset
class (iris)
## [1] "data.frame"
head(iris)
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
             5.1
## 1
                        3.5
                                    1.4
                                                0.2 setosa
             4.9
                        3.0
                                    1.4
                                                0.2 setosa
             4.7
                        3.2
                                    1.3
                                                0.2
                                                    setosa
             4.6
                        3.1
                                    1.5
                                                0.2
                                                    setosa
             5.0
                        3.6
                                    1.4
                                                0.2 setosa
                        3.9
             5.4
                                    1.7
                                                0.4 setosa
```

Data Frame

Global operations

- View(iris): spreadsheet like view of the data frame
- ▶ dimensions with dim
- names of the variables with names
- statistical summary

```
dim(iris)
## [1] 150 5
names (iris)
## [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"
summary(iris)
                 Sepal.Width
                                Petal.Length
                                               Petal.Width
                                                                  Species
  Min. :4.300
                 Min. :2.000
                                Min.
                                              Min. :0.100
                                                             setosa
                                              1st Ou.:0.300
  1st Ou.:5.100
                 1st Ou.:2.800
                                1st Ou.:1.600
                                                             versicolor:50
  Median :5.800
                 Median :3.000
                                Median :4.350
                                              Median :1.300
                                                             virginica :50
  Mean :5.843
                 Mean :3.057
                                Mean :3.758
## Max. :7.900
                 Max. :4.400
                                Max. :6.900
                                              Max. :2.500
```

Data Frame

Columns

- columns are vectors (single type per column)
- named and positional access

```
names (iris)
## [1] "Sepal.Length" "Sepal.Width" "Petal.Length"
## [4] "Petal.Width" "Species"
iris[[1]][1:5]
## [1] 5.1 4.9 4.7 4.6 5.0
iris$Sepal.Width[2:4]
## [1] 3.0 3.2 3.1
iris[["Species"]][10:13]
## [1] setosa setosa setosa
## Levels: setosa versicolor virginica
```

Tibble

Modern data frames

- replacement for data.frame: does less but better
- part of the tidyverse
- package tibble, class tbl_df, creation tibble, conversion as_tibble

Reccurring example

Bank dataset

- sources
 - https://archive.ics.uci.edu/ml/datasets/Bank%2BMarketing
 - http://hdl.handle.net/1822/14838
- data types
 - age: integer
 - balance: integer
 - education: categorical semi ordered
 - most of the others: categorical with some binary

Importing data

CSV files

- comma-separated values
 2.5, -3.2, A
- de factor standard (but poor quality)
- ► local variants (e.g. French!)

R import

- ▶ use the <u>readr</u> package
- read_csv, read_csv2, read_tsv, read_delim
- ▶ load a tbl (tibble)

```
library (readr)
hank <-
  read delim("../data/bank.csv", "; ")
class (bank)
## [1] "spec_tbl_df" "tbl_df"
                      "data.frame"
## [3] "tbl"
names (bank)
        "age"
                     "iob"
                     "education"
        "marital"
    [5] "default"
                     "balance"
   [7] "housing"
                     "loan"
   [9] "contact"
                     "day"
   [11] "month"
                     "duration"
## [13] "campaign"
                     "pdays"
## [15]
        "previous"
                     "poutcome"
## [17]
class (bank $age)
## [1] "numeric"
class (bank$job)
## [1] "character"
```

Importing data

Builtin CSV import

- functions read.csv, read.csv2, read.table
- numerous limitations
 - (very) slow and memory hungry
 - no support for "fancy" variable names
 - automatic conversion to factors (sometimes useful!)

```
bank <-
  read.table("../data/bank.csv",
             header=TRUE, sep=";")
class (bank)
## [1] "data.frame"
names (bank)
    [1] "age"
                     "job"
    [3] "marital"
                     "education"
    [5] "default"
                     "balance"
   [7] "housing"
                     "loan"
  [9] "contact"
                     "dav"
## [11] "month"
                     "duration"
                     "pdays"
## [13] "campaign"
  [15] "previous"
                     "poutcome"
## [17]
class (bank$age)
## [1] "integer"
class (bank$ job)
## [1] "character"
```

Importing data

Other formats

- numerous other input/output formats (and data sources)
- native R: rds files saveRDS readRDS
- ► R/python compatible: <u>feather</u>
- ► SPSS/SAS/Stata: haven
- excel: readxl
- database connection: DBI
- OLAP connection (windows specific)

```
library (readxl)
hank <-
  read excel("../data/bank.xlsx")
class (bank)
## [1] "tbl df"
                     "+b1"
## [3] "data.frame"
names (bank)
        "age"
                     "job"
        "marital"
                      "education"
        "default"
                     "balance"
    [7] "housing"
                     "loan"
        "contact"
                     "day"
   [11] "month"
                     "duration"
   [13] "campaign"
                     "pdays"
        "previous"
                     "poutcome"
## [17]
class (bank$age)
## [1] "numeric"
class (bank$ job)
## [1] "character"
```

Sub-setting

Using dplyr (and magrittr for the pipe operator)

Data subset

- ▶ filter function
- keeps in a tibble rows that match the conditions

Example (standard syntax)

Sub-setting

Using dplyr (and magrittr for the pipe operator)

Data subset

- ▶ filter function
- keeps in a tibble rows that match the conditions

Example (pipe operator)

Selecting variables

Column oriented subsetting

- two main motivations
 - to restrict the data set to variable types compatible with some technique
 - to restrict the data set to meaningful variables for an automated analysis (e.g. clustering or predictive modeling)
- ► simple declarative approach

```
bank %>% select (age, balance, day, duration) %>% print (n = 6)
## # A tibble: 4,521 x 4
     age balance day duration
   <dbl> <dbl> <dbl>
                     <db1>
## 1 30
        1787 19
                       79
   33
        4789 11
                   220
   35 1350 16
                   185
   30 1476 3 199
## 5 59 0 5 226
## 6 35 747 23
                   141
## # ... with 4,515 more rows
```

Selecting and extracting variables

Dropping some variables

- select can be passed variable names prefixed by the operator
- this removes those variables from the tibble

Example

```
print (dim (bank))
## [1] 4521    17

print (dim (bank %>% select (-age, -y)))
## [1] 4521    15
```

Extracting a variable

- ► select(tbl, X) is a tibble
- ▶ pull (tbl, X) extracts the columns in its native class

```
print(class(bank %>% select(age)))
## [1] "tbl_df"
## [2] "tbl"
## [3] "data.frame"

print(class(bank %>% pull(age)))
## [1] "numeric"
```

Creating new variables

Principle

- a form of row oriented calculation
- create a new variable using the existing ones
- e.g. duration from starting and ending times

Support

- numerous statistical summary functions (column oriented)
- column oriented arithmetic (e.g. sum of columns)
- column oriented logical operations (e.g. comparison)
- ► function application (e.g. to each row)

Bank data set

Binary variable telling whether some client has some characteristics

- more than average mean annual balance
- ▶ at least one loan

```
bank %>% mutate (moreavg = balance > mean (balance)) %>% select (moreavg,
   balance) %>% print (n = 2)
## # A tibble: 4,521 x 2
## moreavg balance
## <lgl> <dbl>
## 1 TRUE 1787
## 2 TRUE 4789
## # ... with 4,519 more rows
bank %>% mutate(oneormoreloan = loan == "yes" | housing ==
   "ves") %>% select (oneormoreloan, loan, housing) %>%
   print(n = 2)
## # A tibble: 4,521 x 3
## oneormoreloan loan housing
## <lal> <chr> <chr>
## 1 FALSE
                 no no
## 2 TRUE yes yes
## # ... with 4,519 more rows
```

Creating new variables

Functions

- mutate: creates new variables and adds them to the data frame
- ▶ transmute: creates new variables and drops other variables
- ▶ rename

Numerical summaries

Single value summary

- ► summarise function
- computes a value that summarises a variable
- ▶ e.g.
 - ▶ mean
 - ▶ median
 - ▶ min
 - etc.

```
hank %>%
   summarise (avg_balance=mean (balance) ,
              avg age=mean(age))
## # A tibble: 1 x 2
  avg_balance avg_age
          <dbl> <dbl>
          1423.
                 41.2
bank %>%
   filter(marital=="married",
          education=="secondary") %>%
    summarise (avg balance=mean (balance),
              avg_age=mean(age))
## # A tibble: 1 x 2
     avg balance avg age
          <dbl> <dbl>
          1273. 42.4
```

Conditional analysis

Finding dependencies and links

One of the main goal of data analysis, e.g.

- predictive models: links between target variables and explanatory variables
- frequent patterns: variables that are frequently non zero at the same time
- etc.

Conditional summaries

- chose one variable
- for each possible value of the variable
 - find all corresponding objects in the data set
 - compute a summary of the other variables on this subset

Conditional summaries

Conditional analysis

- group rows by values on some variables with group_by
- ▶ then summarise each group

General mechanism

X	Υ
2	Α
1	В
4	В
3	В
1	В
2	С
1	Α
3	C
3	Ā
2	Α
2	Α
3	A
3	В
1	Ā
1	Δ

	Υ	X 2
	Α	2
	Α	1
	Α	3
	Α	2
	Α	2
	Α	3
	Α	1
	Α	1 3 2 2 3 1
t		
	Υ	X
	В	1
	В	4
	В	3
	В	1
	Y A A A A A A A B B B B B	X 1 4 3 1 3
	C C	2 3
	С	2
	С	3

Apply

Υ	Sum
Α	15
	Sum
В	12
Υ	Sum
С	5

	Y	Sum
ombine	Α	15
	В	12
	С	5

Grouping on more than one variable

Principle

- groups are computed using all possible combinations of values of the grouping variables
- apply and combine work as for a single variable

```
bank %>% group_by (marital, housing) %>%
   summarise(nb = n(), avg balance = mean(balance), avg age = mean(age))
## # A tibble: 6 x 5
## # Groups: marital [3]
   marital housing nb avg balance avg age
  <chr> <chr> <chr> <int>
                            <dhl> <dhl>
                  230
## 1 divorced no
                            1085. 48.0
## 2 divorced yes 298 1151. 43.6
## 3 married no
               1172 1766. 47.3
## 4 married ves
               1625 1245. 40.7
                          1448. 33.8
                  560
## 5 single no
## 6 single yes
                   636
                            1471. 34.0
```

Group by subtleties

Understanding group_by

- group_by adds to a tibble groups organized in layers
 - each grouping variable corresponds to a layer
 - layers order reproduces variables order in group_by
- most tibble operations take groups into account
- summarise consume a group layer (the last one, but see next slide)

Group by subtleties

Functions that preserve groups

- column/variable oriented functions preserve groups (e.g. mutate and co)
- ► filter preserve groups
- aggregates are group aware
 - ▶ e.g. sum computes the sum group by group
 - each row of group receives the same aggregate value

summarise

- aggregates are computed for each group
- ▶ the resulting tibble has one row per group
- it is grouped over all the variables except the last one: the last layer is removed (dplyr<1.0)</p>
- ▶ the .groups parameter enables user control on the resulting grouping (experimental in dplyr 1.0.0)

Original group by

- ▶ 3 binary variables ⇒ 8 groups
- 3 layers: housing, loan and y

Counting

```
bank %>% group_by(housing, loan, y) %>% summarise(n = n())
## # A tibble: 8 x 4
## # Groups: housing, loan [4]
## housing loan y
## <chr> <chr> <chr> <int>
## 1 no
          no
               no
                     1394
## 2 no no yes
                    283
## 3 no yes no
                     267
## 4 no
                     18
        yes yes
## 5 ves
          no
               no
                    1958
                    195
## 6 yes
          no
                yes
## 7 ves
        yes
                      381
               no
                      25
## 8 ves
         ves
               ves
```

- 2 layers: housing, loan
- ▶ 2 binary variables ⇒ 4 groups

Counting and summing

```
bank %>% group_by(housing, loan, y) %>% summarise(n = n()) %>%
   mutate(nb = sum(n))
## # A tibble: 8 x 5
## # Groups: housing, loan [4]
## housing loan y n
## <chr> <chr> <chr> <int> <int>
## 1 no no
               no 1394 1677
                   283 1677
## 2 no no yes
## 3 no ves no
                   267 285
## 4 no yes yes 18 285
## 5 yes no no 1958 2153
## 6 ves
                   195 2153
       no ves
## 7 yes
                    381 406
       yes
                     25 406
## 8 ves
       ves
               ves
```

- ► 2 layers: housing, loan
- ▶ 2 binary variables ⇒ 4 groups
- sum applies to the housing×loan grouping

Conditional distribution of y

```
bank %>% qroup_by(housing, loan, y) %>% summarise(n = n()) %>%
   mutate(freq = n/sum(n))
## # A tibble: 8 x 5
## # Groups: housing, loan [4]
## housing loan y n freq
## <chr> <chr> <chr> <int> <dbl>
## 1 no no no 1394 0.831
## 2 no no yes
                  283 0.169
                   267 0.937
## 3 no yes no
## 4 no yes yes
                  18 0.0632
       no no 1958 0.909
## 5 ves
## 6 ves
                  195 0.0906
          no yes
## 7 ves
                    381 0.938
       ves
                    25 0.0616
## 8 yes
       yes
               yes
```

- 2 layers: housing, loan
- ▶ 2 binary variables ⇒ 4 groups
- the frequency of y is computed in each group

Limitation of summarise prior dplyr 1.0

Multiple values in an aggregate

- ▶ in dplyr<1.0
- an aggregation function cannot return multiple values
- for instance

```
bank %>% group_by(marital) %>% summarise(q_age = quantile(age))
```

fails with the message

```
Error: Column `q_age` must be length 1 (a summary value), not 5
```

Workaround for dplyr < 1.0

```
bank %>% group_by (marital) %>%
    summarise(g age=list(enframe(guantile(age)))) %>%
        unnest (q_age) %>% rename (quantile=name, age=value)
   # A tibble: 15 x 3
      marital quantile
                           age
##
      <chr>
                         <dbl>
   1 divorced 0%
##
    2 divorced 25%
                            37
##
   3 divorced 50%
                            45
##
                            53
   4 divorced 75%
##
    5 divorced 100%
                            84
##
   6 married 0%
                            23
   7 married 25%
##
##
    8 married 50%
                            42
    9 married 75%
                            51
              100%
                            87
## 10 married
## 11 single
               0%
                            19
  12 single
               25%
                            29
## 13 single
               50%
                            32
## 14 single
               75%
## 15 single
               100%
                            69
```

Since dplyr 1.0.0

Multiple values in an aggregate

- no particular problem
- vector values are handled as multiple single values: one row per value in the result

```
bank %>% group_by (marital) %>% summarise (q_age = quantile (age,
   probs = c(0.25, 0.5, 0.75))
## # A tibble: 9 x 2
## # Groups: marital [3]
## marital q_age
## <chr> <dbl>
## 1 divorced 37
## 2 divorced 45
            53
## 3 divorced
## 4 married
## 5 married
               42
## 6 married
               51
## 7 single 29
## 8 single
## 9 single
```

Mutliple columns in summarise

Data frame like results

- aggregate functions can return data frames
- each column corresponds to a column in the result table
- multiple rows are handled as in the case of vector valued aggregates

Multidimensional analysis

Dimensions

- variables with finite number of values
- each cell summarise the original data for a given combination of the values of the dimensions
- ▶ this is exactly group_by

Measures

- variables with numerical values
- aggregated in each cell
- ▶ this is summarise

Multidimensional analysis

Dimensions

- variables with finite number of values
- each cell summarise the original data for a given combination of the values of the dimensions
- this is exactly group_by

Measures

- variables with numerical values
- aggregated in each cell
- this is summarise

Tidy data

- but the results is not a pivot table
- data scientist keep data tidy
 - each column is a variable
 - each row is in object
- group_by %>%
 summarise
 - rows: group
 - column: original variables + aggregated values
 - from objects to groups
- tidyr allows to switch from tidy data to untidy data (and vice versa)

Spreading data

From tidy data to pivot table

- pivot_wider function (spread in older versions)
- operates on two variables in the original table: a key and a value
- each value taken by the key becomes a column
- the value variable is used to fill the column

Original table

Χ	Υ	Z
1	Α	2
1	В	3
2	Α	4
2	В	5

Spread table

Y is the key, Z is the value

Α	В
2	3
4	5
	2

Principle

- names_from: the key variable(s)
- ▶ values_from: the value variable

Tidy MDA

```
bank %>% group_by (marital, education) %>%
   summarise(nb = n())
## # A tibble: 12 x 3
## # Groups: marital [3]
     marital education
   1 divorced primary
   2 divorced secondary
   3 divorced tertiary
   4 divorced unknown
   5 married primary
  6 married secondary
                        1427
   7 married tertiary
   8 married unknown
   9 single primary
## 10 single secondary
## 11 single tertiary
## 12 single
             unknown
```

Pivot table

Tidy MDA

```
bank %>% group by (housing, loan,
    v) %>% summarise(n = n()) %>%
    mutate(freq = n/sum(n)) %>%
    select (-n)
## # A tibble: 8 x 4
## # Groups: housing, loan [4]
    housing loan y
             <chr> <chr> <dbl>
## 1 no
## 2 no
             no
                   ves
                        0.169
## 3 no
             ves
## 4 no
             ves
                   ves
## 5 yes
             no
## 6 yes
             no
                   ves
## 7 yes
             ves
## 8 yes
             ves
                   ves
```

Pivot table

```
bank %>% group by (housing, loan,
   y) %>% summarise(n = n()) %>%
   mutate(freq = n/sum(n)) %>%
   select(-n) %>% pivot_wider(names_from = y,
   values from = freq)
## # A tibble: 4 x 4
## # Groups: housing, loan [4]
    housing loan
                     no
            <chr> <dbl> <dbl>
## 1 no
## 2 no
            ves
## 3 yes
            no
## 4 yes
            ves
                 0.938 0.0616
```

Contingency table

Cross tabulation of two variables

Dependency tests

- feed the contingency table to a dependency test
- ightharpoonup e.g. the χ -squared test

```
bank $>$ group_by (marital, education) $>$
    summarise(nb = n()) $>$
    pivot_wider(names_from=marital,
        values_from=nb) $>$
    select(-education) $>$
    chisq.test()

##
## Pearson's Chi-squared
## test
##
## data:
##
## data:
## X-squared = 139.09, df =
## 6, p-value < 2.2e-16</pre>
```

Multi-valued summaries

Tidy MDA

```
bank %>% group_by(marital) %>%
   summarise(tibble(g age = quantile(age).
       probs = c(0, 0.25, 0.5,
           0.75, 1)))
## # A tibble: 15 x 3
## # Groups:
              marital [3]
     marital q_age probs
              <dbl> <dbl>
   1 divorced
                 26 0
   2 divorced
   3 divorced
                45 0 5
   4 divorced
               53 0.75
   5 divorced
  6 married
  7 married
   8 married
                42 0.5
   9 married
## 10 married
                 87 1
## 11 single
                19 0
## 12 single
                 29 0.25
## 13 single
## 14 single
## 15 single
```

Pivot table

```
bank %>% group_by(marital) %>%
    summarise(tibble(g age=quantile(age),
                probs=c(0,0.25,0.5,0.75,1))) %>%
    pivot wider (names from=probs.
## # A tibble: 3 x 6
               marital [3]
## # Groups:
     marital
              `0` `0.25` `0.5` `0.75`
     <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
## 1 divorc~
                2.6
                             45
## 2 married
                              42
## 3 single
## # ... with 1 more variable: `1` <dbl>
```

Spreading

Spreading to Tidy

- spreading data can improve the tidiness
- when an object is described by several rows

Spreading

Spreading to Tidy

- spreading data can improve the tidiness
- when an object is described by several rows

Untidy

- flow (in number of persons) in and out a building
- direction encoded in the flow variable
- time periods should be the objects

```
calit
    A tibble: 10,080 x 4
       flow date
                       time
      <int> <date>
                     <time> <dhl>
          7 2005-07-24 00:00
          9 2005-07-24 00:00
          7 2005-07-24 00:30
          9 2005-07-24 00:30
          7 2005-07-24 01:00
          9 2005-07-24 01:00
          7 2005-07-24 01:30
          9 2005-07-24 01:30
          7 2005-07-24 02:00
          9 2005-07-24 02:00
  # ... with 10,070 more rows
```

Spreading

Spread version

```
tcalit <- calit %>%
   pivot_wider(names_from=flow, values_from=count) %>%
   rename (flowin = `7`, flowout = `9`)
tcalit
## # A tibble: 5,040 x 4
   date time flowin flowout
## <date> <time> <dbl> <dbl>
## 1 2005-07-24 00:00
                           0
## 2 2005-07-24 00:30
## 3 2005-07-24 01:00
## 4 2005-07-24 01:30
## 5 2005-07-24 02:00
## 6 2005-07-24 02:30
## 7 2005-07-24 03:00
## 8 2005-07-24 03:30
## 9 2005-07-24 04:00
## 10 2005-07-24 04:30
## # ... with 5,030 more rows
```

Gathering data

Pivot longer

- pivot_longer is the reverse operation of pivot_wider (gather in older versions)
- it reduces the number of columns by encoding them as a series of rows and two new columns/variables
- the new key variable encode the gathered column while the new value variable contains the original value

Original table

Spread table

W	Κ	٧
а	Χ	1
а	Υ	2
а	Z	3
b	Χ	5
b	Υ	6
b	Z	7

Wide data

- weekly product sales
- one row per product, one column per week: product view

```
## # A tibble: 811 x 53
                            W1
                                   W2
                                                           W6
                                      <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
                         <db1>
                                <dbl>
   4 P4
                                                            9
                                                                  14
   6 P6
                                                            8
   7 P7
   8 P8
                                                      8
                                                                                           8
   9 P9
## 10 P10
     ... with 801 more rows, and 40 more variables: W12 <dbl>, W13 <dbl>, W14 <dbl>,
       W15 <dbl>, W16 <dbl>, W17 <dbl>, W18 <dbl>, W19 <dbl>, W20 <dbl>, W21 <dbl>,
       W22 <dbl>, W23 <dbl>, W24 <dbl>, W25 <dbl>, W26 <dbl>, W27 <dbl>, W28 <dbl>,
## #
       W29 <dbl>, W30 <dbl>, W31 <dbl>, W32 <dbl>, W33 <dbl>, W34 <dbl>, W35 <dbl>,
## #
       W36 <dbl>, W37 <dbl>, W38 <dbl>, W39 <dbl>, W40 <dbl>, W41 <dbl>, W42 <dbl>,
## #
       W43 <dbl>, W44 <dbl>, W45 <dbl>, W46 <dbl>, W47 <dbl>, W48 <dbl>, W49 <dbl>,
       W50 <db1>, W51 <db1>
```

Gather the weeks

- gather all the columns except the product one
- object: (product, week)

```
prodperweek %>%
   pivot_longer(!Product_Code,
                 names to="Week",
                 values to="Sales")
  # A tibble: 42,172 x 3
     Product_Code Week Sales
                  <chr> <dbl>
   1 P1
                   WO
   2 P1
                  W 1
  3 P1
                  W2.
   4 P1
                   W.3
   5 P1
                   W4
                        13
   6 P1
                   W.5
  7 P1
                   W6
                           14
## 8 P1
                   W7
  9 P1
                   W8
                             6
## 10 P1
                   W9
                            14
   # ... with 42,162 more rows
```

Gather the weeks

- gather all the columns except the product one
- object: (product, week)

```
prodperweek %>%
    pivot longer (!Product Code,
                 names to="Week",
                 values to="Sales")
   # A tibble: 42,172 x 3
      Product_Code Week Sales
                   <chr> <dbl>
   1 P1
                   WO
   2 P1
                   W 1
   3 P1
                   W2.
   4 P1
                   W3
   5 P1
                   W4
   6 P1
                   W.5
   7 P1
                             14
                   W6
   8 P1
                   W7
    9 P1
                   W8
                              6
  10 P1
                   W9
   # ... with 42,162 more rows
```

Recoding

```
prodperweek %>%
    pivot_longer(!Product_Code,
             names to="Week",
             values to="Sales") %>%
    mutate(Week=parse_number(Week))
## # A tibble: 42,172 x 3
      Product Code Week Sales
                   <dbl> <dbl>
   1 P1
## 2 P1
                            12
## 3 P1
## 4 P1
                            8
   5 P1
                            13
## 6 P1
   7 P1
                            14
## 8 P1
  9 P1
                            6
## 10 P1
                            14
## # ... with 42,162 more rows
```

Spreading again

► Week point of view

```
prodperweek %>% pivot longer(!Product Code, names to = "Week",
   values to = "Sales") %>% mutate(Week = parse number(Week)) %>%
   pivot wider (names from = Product Code, values from = Sales) %>%
   print(10, n extra = 0)
## # A tibble: 52 x 812
      Week
     8
                        8
                                  6
            14
                            9
                                  9
                                  14
        8
                                 9
## 10
            1.4
## # ... with 42 more rows, and 803 more variables
```

- ▶ R is with Python the *de facto* standard for data science
- ► R can be extended by thousands of packages
- ▶ R can be use to implement extremely efficient data processing pipelines on large scale data
- R support several usage level from basic scripting to advanced programming
- ongoing efforts to simplify R use (e.g. blueSky statistics and jamovi)

For more...

R for Data Science

Licence

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/

Version

Last git commit: 2020-10-06

By: Fabrice Rossi (Fabrice.Rossi@apiacoa.org)

Git hash: d3eaab94717e93344a41efec611d1abf20ef8708

Changelog

- ► Septembre 2020:
 - added tibbles
 - updated to dplyr 1.0
 - updated to tidyr 1.0
- ► January 2020:
 - improved the coverage of group_by
 - added variable oriented operations
 - added data source
- September 2019: initial version