R

Fabrice Rossi

CEREMADE
Université Paris Dauphine

2020

Introduction
Main concepts

Data Management in R

https://www.r—-project.org/

» R is a programming language
and an environment for
statistical computing and
visualization

» R is a multiplatform free
software

» R can be extended by
thousands of packages

» R provides state-of-the-art
implementation of myriads of L T
statistical, data mining and s oo R
machine learning algorithms

e

https://www.r-project.org/

Pros Cons
> open source » limited point-and-click support
» full-fledged programming » peculiar language with specific
language constructs
» strong support from multiple » naive code has low
compagnies performances
» broad coverage of data » way too many packages

science, statistics, etc.
» high performance packages

» report generation and high
quality graphics

Recommended installs

» Rhttps://www.r-project.org/
» Rstudio https://www.rstudio.com/
» standard IDE for R
> open source (desktop version)
» numerous integrated tools
» tidyverse https://www.tidyverse.org/
» collection of data science oriented packages

> try to enforce good practices
» associated book https://r4ds.had.co.nz/

https://www.r-project.org/
https://www.rstudio.com/
https://cran.r-project.org/package=tidyverse
https://www.tidyverse.org/
https://r4ds.had.co.nz/

Main concepts

Programming Language

Definition
» a formal language with a strict mathematical definition
» defines syntactically correct programs

» associated to a semantics

» (formal) model of the computer
» effects of a program on the model

Programming Language

Definition
» a formal language with a strict mathematical definition
» defines syntactically correct programs

» associated to a semantics

» (formal) model of the computer
» effects of a program on the model

In other words...

> a programming language can be used to write programs ~ texts
» a programming language has a strict syntax

> lexical aspects ~ word spelling
» grammatical aspects ~ sentence level

» when a program follows the syntax, it has a proper meaning i.e.
an effect on the computer on which it runs

Turing Machine

» standard mathematical model
» too low level to a daily use

Other models

» data oriented models
» a model of the data
» together with a model of the execution of a program

» effects of instructions on the data ~ sentence level
> global flow and organization on a program ~ text level

» include input/output aspects

https://en.wikipedia.org/wiki/Turing_machine

Interactive mode

Standard program execution

» a program is written in a file (or a set of files)

» in some languages the file can be translated to a more efficient
language
> the file (or its translation) is executed on a computer

Console/Shell
» some languages have an associated “console” or “shell” (e.qg.
Python and R)

> one can type interactively program sentences and get associated
results

> simplifies learning and testing

R console

>

>

R provides a console for interactive
use

in general integrated in a specific
window of a programming
environment (Rstudio)

can be launched from the command
line (R)

command prompt >

R console

>

>

g . . >
R provides a console for interactive |

use

in general integrated in a specific
window of a programming
environment (Rstudio)

can be launched from the command
line (R)

command prompt >

R console

>

>

[>2 + 2

R provides a console for interactive
use

in general integrated in a specific
window of a programming
environment (Rstudio)

can be launched from the command
line (R)

command prompt >

R console

>

>

> 2 +
[1] 4
>

iz

R provides a console for interactive
use

in general integrated in a specific
window of a programming
environment (Rstudio)

can be launched from the command
line (R)

command prompt >

R console

>

>

R provides a console for interactive
use

in general integrated in a specific
window of a programming
environment (Rstudio)

can be launched from the command
line (R)

command prompt >

R console

>

>

R provides a console for interactive >[
use >[
in general integrated in a specific >
window of a programming

environment (Rstudio)

can be launched from the command

line (R)

command prompt >

R console

> R provides a console for interactive | (1, 4
use >[1j] .

» in general integrated in a specific >
window of a programming Warning

environment (Rstudio) The behavior of a program in

> can be launched from the command e console is not exactly the

line (R) same as the behavior of a
» command prompt > program outside of the
console

Using the console

Console presentation
In the slides
» code to type given directly
> outputs given as comments ####

4 + 2 % 5
[1] 14

Integrated help

» 2foo gives the documentation of foo
» direct access in Rstudio

R console as a calculator

Numerical Logical
2 + 3.5
[11 5.5 05
[1] FALSE
4 - 2/3
‘ o sgrt (5) <= 3
[1] 3.333333 ## [1] TRUE
5%/%2 5 —— 5
[1] 2 ## [1] TRUE
5%%2
(2 > 3) | (3> 2)
(1] 1 ## [1] TRUE
T2
" (5 > 0) & (572 > 20)
[1] 49 ## [1] TRUE
sqgrt (3)
[1] 1.732051

sin (0.5 = pi)
[1]1 1

R data model

R understands

» numerical values

> both integers 12
» and decimal numbers 1.4e-5

» logical values TRUE and FALSE
» names such sin and pi

Object oriented

» R handles objects
» vectors, matrices, lists, data frames, etc.

» each object has a class which specifies

> the possible values for objects of the class
> the operations than can be performed on the objects

» values are by default put into vectors

Variables and vectors

Variables Vector
» avariable is a name for an » the main object type
object > c(2, 3, 4):avectorwith
» assignment with = or <- 3 coordinates
» integrated “calculator” > [t]: access/modification
» standard behavior operator (numbering starts at
a <- 2 1)
b <-a+3 x <- c(2, 3, 4)
a <-1 %
2 ## [1]1 2 3 4
(1] 1
x[2]
15 ## 111 3
[1]1 5
x[1] < x[1] + 7

x
[1]1 9 3 4

Vector indexing

Sequences Vector indexing
» a:b vector of integers from a > a vector can be indexed by a
to b (included) vector of integers
» seqg(a, b) same vector > x[y] gives the vector O_f.
> seq(a, b, by) vector of values from x at the positions
4 4
integers a, a+by, up to b selected by v
TE x <-= 5:10
AR ## [11 5 6 7 8 9 10
=232 B
[1] -2 -1 0 1 2 zleld, 2)1
[1] 5 6
I x[seq(l, 5, 2)]
AR # (11 57 9
seq(l, 4, 2) . .
#4011 1 3 » negative indexes exclude
elements

seq (2, -3, -2)
[1] 2 0 -2 x[e (=3, -4)]
. ## [1] 5 6 9 10

Functions and packages

Principle More built-in functions
> R is mostly extended via > length (x): length of a
packages that provide functions vector
» a function has a name, takes » sum(x),mean(x),
parameters and generally returns median (x), sd (x), etc..
a result statistics on a vector
- . y <-e¢(2, -3, 1, 4, 5)
» numerous built-in functions (seq) length (y)
[1] 5
Some built-in functions W
i . (y)
> ilbrary(foo). loads package f::a?l\] L
©0 i median (y)
> class (x): gives the class of an # (1] 2
object sd(y)
class(c(1.5, 2, 3)) ## [1] 3.114482

[1] "numeric"

Function parameters

Parameters
» R functions have frequently many parameters
» default values are provided
» how to override the defaults?

Positional parameters

» seq(from = 1, to = 1, by, length.out, ...)
» during a call, parameters are considered in order

» in seq(0), from takes the value 0

» inseq(2, 4),fromis2andtois4

seq(-1)
[1] 1 0 -1

2 1 0-1-2-3 -4

Named parameters

Limitation
» many parameters with default values
> what about overriding only the last one?

Named parameters

> after positional parameters, one can give named parameters
» direct assignment for those parameters
» inseq (10, by=-2), from=10, to=1 (default value) and by=-2

seq (10, by = -2)
(1] 10 8 6 4 2

seq(by = 3, to = 10)
[1 1 4 7 10

Base types

» vectors contain values of the
same type
» standard types:
> logical (TRUE, FALSE)
> integer
> double (real numbers)
»> complex
» character
> special values

> NA: missing value, not a
number
» NULL: no value

» typeof function

Examples

class(c(1l, 2))
[1] "numeric"

typeof (c (1, 2))
[1] "double"

typeof (c (1L, 2L))
[1] "integer"

class (c("abcd", "efgh"))
[1] "character"

class (c (TRUE, TRUE, FALSE))
[1] "logical"

class(c(1 + (0+2i), 0+4i, -2.75 -
(0+11)))
[1] "complex"

Nominal variables

» a.k.a. categorical variables

» finite number of possible
values (e.g. gender)

» sometimes ordered

Factor

> R representation of nominal
variables

» the levels are the values

Examples

x <- factor(c("A", "B", "A", "A")
levels = c("A", "B", "C"))

X

[1] A B A A
Levels: A B C

as.numeric (x)
(11 1 2 1 1

tor* (‘+xtmpx*,
lid factor

[1] A B
Levels: A B C

20

Data Management in R
Data Frame
Data import
Data transformation

21

Tabular data

» standard data representation

» each row is an object

» each column is a variable

> R version: a data frame (of class data. frame)

Example

data(iris)
class (iris)
[1] "data.frame"

head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa
#+ 2 4.9 3.0 .4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

22

Global operations

> View (iris): spreadsheet like view of the data frame
» dimensions with dim

» names of the variables with names

» statistical summary

Example
dim(iris)

[1] 150

names (i

[1] " "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

summary (iris)

Sepal.Length

23

Columns

» columns are vectors (single type per column)
» named and positional access

names (iris)
[1] "Sepal.Length" "Sepal.Width" "Petal.Length"
[4] "Petal.Width" "Species"

iris|[[s"]11[10:13]
[1] set setosa setosa setosa
Levels: setosa versicolor virginica

24

Tibble

Modern data frames
> replacement for data. frame: does less but better
» part of the tidyverse

» package tibble, class tbl_df, creation tibble, conversion
as_tibble

Example

iri as_tibble(iris)

SRR RRRBER R R RD
&,

25

Reccurring example

Bank dataset

» sources
| 4
>

> data types
> age: integer
» balance: integer
» education: categorical semi ordered
> most of the others: categorical with some binary

26

https://archive.ics.uci.edu/ml/datasets/Bank%2BMarketing
http://hdl.handle.net/1822/14838

Importing data

CSV files

» comma-separated values
2.5,-3.2,A

» de factor standard (but poor
quality)
» local variants (e.g. French!)

R import

> use the readr package

» read_csv, read_csv2,
read_tsv, read_delim

> load a tb1l (tibble)

Example

library (readr)

bank <

read _delim(".

class (bank)

[1]
[3]

names (bank)

#HoI1
3]
[5]
[7]
[9]
#4# [11
[13]
[15]
[17]

"age"
"marital"
"default"
"housing"
"contact
"month"

"campaign"
"previous"
"y

class (bank$age)

[1]

"numeric"

class (bank$job)

[1]

"character"

./data/bank.csv",";")

"spec_tbl_df" "tbl_df"
nEp1"

"data.frame"

"Sop™
"education"
"balance"
"loan"
"day"
"duration"
"pdays"
"poutcome"

27

https://cran.r-project.org/package=readr

Builtin CSV import

» functions read.csv,
read.csv2, read.table

» numerous limitations

» (very) slow and memory
hungry

> no support for “fancy”
variable names

> automatic conversion to
factors (sometimes useful!)

Importing data

Example

bank <-
read.table("../data/bank.csv",
header=TRUE, sep=";")
class (bank)
[1] "data.frame"

names (bank)

[1] "age" "job"

H#4# [3] "marital" "education"
#4# [5] "default" "balance"
[7] "housing" "loan"

[9] "contact" "day"

[11] "month" "duration"
[13] "campaign" "pdays"

[15] "previous" "poutcome"
[17] "y"

class (bank$age)
[1] "integer"

class (bank$job)
[1] "character"

28

Other formats
» numerous other input/output
formats (and data sources)

» native R: rds files saveRDS
readRDS

R/python compatible: feather
SPSS/SAS/Stata: haven
excel: readx|

database connection: DBI

OLAP connection (windows
specific)

vVvyVvyvVvyy

Example

library (readxl)
bank <

read_excel ("../da
class (bank)
[1] "tbl_df"
[3] "data.frame"

names (bank)

[1] "age"

[3] "marital"
[5] "default"
[7] "housing"
[9] "contact"
[11] "month"

[13] "campaign"
[15] "previous"
4 [17] "y"

class (bankS$age)
[1] "numeric"

class (bank$job)
[1] "character"

Importing data

ta/bank.xlsx")

R

"job"
"education"
"balance"
"loan"
"day"
"duration"
"pdays"
"poutcome"

29

https://cran.r-project.org/package=feather
https://cran.r-project.org/package=haven
https://cran.r-project.org/package=readxl
https://cran.r-project.org/package=DBI

Using dplyr (and magrittr for the pipe operator)

Data subset

» filter function
» keeps in a tibble rows that match the conditions

Example (standard syntax)

library (dplyr)

bank <- read delim("../data/bank.csv",";")

dim (bank)

[1] 4521 17

subbank <- filter (bank, marital=="married", age>40,
education=="secondary")

dim (subbank)
[1] 731 17

30

https://cran.r-project.org/package=dplyr
https://cran.r-project.org/package=magrittr

Using dplyr (and magrittr for the pipe operator)

Data subset

» filter function
» keeps in a tibble rows that match the conditions

Example (pipe operator)

library (dplyr)

bank <- read delim("../data/bank.csv",";")
dim (bank)
[1] 4521 17

subbank <- bank %>% filter (marital=="ma

", age>40,
education==" 3

dary")

dim (subbank)
[1] 731 17

31

https://cran.r-project.org/package=dplyr
https://cran.r-project.org/package=magrittr

Selecting variables

Column oriented subsetting

» two main motivations
> to restrict the data set to variable types compatible with some
technique
> to restrict the data set to meaningful variables for an automated
analysis (e.g. clustering or predictive modeling)

» simple declarative approach

Example

bank %>% select (age, balance, day, duration) %>% print(n = 6)
A tibble: 4,521 x 4

age balance day duration
#4# <dbl> <dbl> <dbl> <dbl>
#4# 1 30 1787 19 79
2 33 4789 11 220
3 35 1350 16 185
#+ 4 30 1476 3 199
5 59 0 5 226
6 35 1477 23 141
#H+ # . with 4,515 more rows

32

Dropping some variables

> select can be passed
variable names prefixed by the
— operator

» this removes those variables
from the tibble

Example

print (dim(bank))

[1] 4521 17

print (dim(bank %>% select (-age, -y)))
[1] 4521 15

Selecting and extracting variables

Extracting a variable

» select (tbl, X) isa

tibble

» pull (tbl, X) extracts
the columns in its native
class

Example

print (class (bank %>% select (age)))
[1] "tbl_df"

[2] "tbl"

[3] "data.frame"

print (class (bank %>% pull (age)))
[1] "numeric"

33

Creating new variables

Principle

» a form of row oriented calculation
» create a new variable using the existing ones
» e.g. duration from starting and ending times

Support

» numerous statistical summary functions (column oriented)
» column oriented arithmetic (e.g. sum of columns)

» column oriented logical operations (e.g. comparison)

» function application (e.g. to each row)

34

Bank data set
Binary variable telling whether some client has some characteristics

» more than average mean annual balance
> at least one loan

bank %>% mutate (reavg = balance > mean(balance)) %>% select (moreavg,
balance) %>% print(n = 2)

A tibble: 4,521 x 2

moreavg balance

<lgl> <dbl>

1 TRUE 1787

2 TRUE 4789

... with 4,519 more rows

bank %>% mutate (oneormore an = loan == "yes" | housing ==
"yes") %>% select (oneormoreloan, loan, housing) %>%
print (n = 2)

A tibble: 4,521 x 3

oneormoreloan loan housing

#4# <lgl> <chr> <chr>

1 FALSE no no

2 TRUE yes yes

... with 4,519 more rows

35

Creating new variables

Functions

> mutate: creates new variables and adds them to the data frame
» transmute: creates new variables and drops other variables

» rename

Example

bank %>% transmute (age > 40, oneormoreloan = loan == "yes" |
housing == "yes") %>% rename(A le: one 1 ° = oneormoreloan) %>%
print (n = 3)

A tibble: 4,521 x 2

#4 ‘age > 40° "At least one loan’

<lgl> <lgl>

1 FALSE FALSE

2 FALSE TRUE

3 FALSE TRUE

#H# # . with 4,518 more rows

36

Numerical summaries

Single value summary

» summarise function

» computes a value that
summarises a variable

> eg.

>

vvyy

mean
median
min
etc.

Examples

bank %>%
summarise (avg_balance=mean (balance),
age=mean (age))
A tibble: 1 x 2

#4# avg_balance avg_age
<dbl> <dbl>
1 1423. 41.2

bank %>%
filter (marital=="married",
educati dary") %>%
summarise (a “e=mean (balance),
avg_age=mean (age)
A tibble: 1 x 2

#
avg_balance avg_age
<dbl> <dbl>
1 1273. 42.4

37

Conditional analysis

Finding dependencies and links
One of the main goal of data analysis, e.g.

» predictive models: links between target variables and explanatory
variables

» frequent patterns: variables that are frequently non zero at the
same time

> eftc.

Conditional summaries

» chose one variable
» for each possible value of the variable

> find all corresponding objects in the data set
> compute a summary of the other variables on this subset

38

Conditional summaries

Conditional analysis

» group rows by values on some variables with group_by
» then summarise each group

Example
bank %>% group_by (marital) %>%
summarise (nb = n(), avg_balance = mean(balance), avg_age = mean (age))
A tibble: 3 x 4
marital nb avg_balance avg_age
<chr> <int> <dbl> <dbl>
1 divorced 528 1122. 45.5
2 married 2797 1463. 43.5
3 single 1196 1460. 33.9

39

Sum
15
12

5

Y
Combine —A
B
c

Sum
15
Sum
12
Sum
5

Y
A
Y
B
Y
C

Apply

XN~ ANND— | [X[+~ ™| [X|N™

<P m| >O00

Split

>IN O COCCITILIMIC<

XN+~ O~ AN~ OONNO® T~

=
2
c
©
<
O
(]
S
©
-
(O]
c
()
©)

40

Grouping on more than one variable

Principle

» groups are computed using all possible combinations of values of
the grouping variables

» apply and combine work as for a single variable

Example

bank %>% group_by (marital, housing) %>%
summarise (nb = n(), avg_balance = mean(balance), avg_age = mean (age)

A tibble: 6 x 5

Groups: marital [3]

marital housing nb avg_balance avg_age

<chr> <chr> <int> <dbl> <dbl>

1 divorced no 230 1085. 48.0

2 divorced yes 298 1151. 43.6

3 married no 1172 1766. 47.3

4 married yes 1625 1245. 40.7

5 single no 560 1448. 33.8

6 single yes 636 1471. 34.0

41

Group by subtleties

Understanding group_by

> group_by adds to a tibble groups organized in layers

» each grouping variable corresponds to a layer
» layers order reproduces variables order in group_by

» most tibble operations take groups into account

> summarise consume a group layer (the last one, but see next
slide)

Example

bank %>% group_by (marital) %>% mutate(nb = n()) %>% select (marital,
nb) %>% print(n = 4)
A tibble: 4,521 x 2
Groups: marital [3]
marital nb
<chr> <int>
1 married 2797
2 married 2797
3 single 1196
4 married 2797
. with 4,517 more rows

42

Group by subtleties

Functions that preserve groups
» column/variable oriented functions preserve groups (e.g. mutate
and co)
> filter preserve groups

> aggregates are group aware

» e.g. sum computes the sum group by group
> each row of group receives the same aggregate value

summarise

» aggregates are computed for each group
» the resulting tibble has one row per group

» it is grouped over all the variables except the last one: the last
layer is removed (dplyr<1.0)

» the .groups parameter enables user control on the resulting
grouping (experimental in dplyr 1.0.0)

43

Example

Original group by

bank %>% group_by (housing, loan, y) %>% print(n = 2)

A tibble: 4,521 x 17

Groups: housing, loan, y [8]

#4# age job marital education default balance housing
#4# <dbl> <chr> <chr> <chr> <chr> <dbl> <chr>
#4# 1 30 unem~ married primary no 1787 no

2 33 serv~ married secondary no 4789 yes

... with 4,519 more rows, and 10 more variables:

#H # loan <chr>, contact <chr>, day <dbl>, month <chr>,

#4 # duration <dbl>, campaign <dbl>, pdays <dbl>,
#4# # previous <dbl>, poutcome <chr>, y <chr>

» 3 binary variables = 8 groups
» 3 layers: housing, loan and y

44

Counting

bank %>% group_by (housing, loan, y) %>% summarise(n = n())
A tibble: 8 x 4

Groups: housing, loan [4]

#4# housing loan vy n
<chr> <chr> <chr> <int>
1 no no no 1394
2 no no yes 283
3 no es no 267
4 no yes yes 18
5 yes no no 1958
6 yes no yes 195
7 yes yes no 381
8 yes es yes 25

> 2 layers: housing, loan
» 2 binary variables = 4 groups

45

Counting and summing

bank %>% group_by (housing, loan, y) %>% summarise(n = n()) %>%
mutate (nb = sum(n))
A tibble: 8 x 5
Groups: housing, loan [4]
#4# housing loan y n nb
<chr> <chr> <chr> <int> <int>
1 no no no 1394 1677
2 no no yes 283 1677
3 no es no 267 285
4 no yes yes 18 285
5 yes no no 1958 2153
6 yes no yes 195 2153
7 yes yes no 381 406
8 yes es yes 25 406

> 2 layers: housing, loan
2 binary variables = 4 groups
» sum applies to the housingxloan grouping

v

46

Conditional distribution of y

bank %>% group_by (housing, loan, y) %>% summarise(n =

mutate (fre = n/sum(n))

A tibble: 8 x 5
Groups: housing, loan [4]
#4# housing loan vy n freq
#4# <chr> <chr> <chr> <int> <dbl>
1 no no no 1394 0.831
2 no no yes 283 0.169
3 no yes no 267 0.937
4 no yes yes 18 0.0632
5 yes no no 1958 0.909
6 yes no yes 195 0.0906
7 yes yes no 381 0.938
8 yes es yes 25 0.0616

> 2 layers: housing, loan

» 2 binary variables = 4 groups

> the frequency of y is computed in each group

47

Limitation of summarise prior dplyr 1.0

Multiple values in an aggregate

» indplyr<1.0
» an aggregation function cannot return multiple values
» for instance

bank %$>% group_by (marital) $%>% summarise (g_age = quantile (age)

fails with the message

Error: Column 'g_age’ must be length 1 (a summary value), not 5

48

Workaround for dplyr < 1.0

bank %>% group_by (marital) %>%

summarise (ge=list (enframe (quantile (age)))) %$>%
unnest (g_age) %>% rename (quan le=name, age=value)

A tibble: 15 x 3

#4# marital quantile age
#4# <chr> <chr> <dbl>
1 5 26
#H 2 5% 37
3 % 45
##+ 4 % 53
5 0% 84
6 married 0% 23
7 married 25% 35
8 married 50% 42
9 married 75% 51
10 married 100% 7
11 single 0% 19
12 single 25% 29
13 single 50% 32
14 single 15% 37
15 single 100% 69

49

Since dplyr 1.0.0

Multiple values in an aggregate

» no particular problem

» vector values are handled as multiple single values: one row per
value in the result

Example

bank %>% group_by (marital)

probs = ¢ (0.25,

A tibble:

Groups:

#4# marital
i <chr>

1 divorced
2 divorced
3 divorced
4 married
5 married
6 married
7 single
8 single
9 single

9 x 2
marital
g_age
<dbl>

37
45
53
35
42
51
29
32

37

50

Mutliple columns in summarise

Data frame like results
» aggregate functions can return data frames
» each column corresponds to a column in the result table
» multiple rows are handled as in the case of vector valued

aggregates

Example

bank %>% group_by (marital) %>% summarise (tibble (g_age = quantile (age,
probs = ¢(0.25, 0.5, 0.75)), probs = ¢(0.25, 0.5, 0.75)))

A tibble: 9 x 3

Groups: marital [3]

#4# marital g_age probs

4 <chr> <dbl> <dbl>

1 divorced 37 0.25

2 divorced 45 0.5

3 divorced 53 0.75

4 married 35 0.25

5 married 42 0.5

6 married 51 0.75

7 single 29 0.25

8 single 32 0.5

9 single 37 0.75

51

Multidimensional analysis

Dimensions
» variables with finite number
of values

» each cell summarise the
original data for a given
combination of the values of
the dimensions

» this is exactly group_by

Measures

» variables with numerical
values

> aggregated in each cell

» thisis summarise

52

https://cran.r-project.org/package=tidyr

Multidimensional analysis

Dimensions Tidy data
» variables with finite number > but the results is not a pivot
of values table
» each cell summarise the > data scientist keep data tidy
original data for a given > each column is a variable
combination of the values of > each row is in object
the dimensions > group_by $>%

» this is exactly group_by summarise
> rows: group

Measures > column: original variables +
aggregated values
» variables with numerical > from objects to groups
values > tidyr allows to switch from
> aggregated in each cell tidy data to untidy data (and

> this is summarise vice versa)

52

https://cran.r-project.org/package=tidyr

Spreading data

From tidy data to pivot table

» pivot_wider function (spread in older versions)

> operates on two variables in the original table: a key and a value
» each value taken by the key becomes a column

» the value variable is used to fill the column

Original table Spread table
Xy 7 Y is the key, Z is the value
1 A 2 X A B
1 B 3 1 2 3
2 A 4 2 4 5
2 B 5

53

Example

Principle

» names_from: the key variable(s)
» values_ from: the value variable

Tidy MDA Pivot table

Jank %>% . —
bank %>% group by (marital, education) %>% bank %>% group_by (ma ition) %>%
summarise (n()) summarise (n()) %%
tibble: 12 x 3 pivot_wider (marital,

Grou

e

<chr>
4o

4
##
#
##
##

54

Example

Tidy MDA Pivot table

bank %>% group_by (housing, loan,

$>% group_by (housi

q ese y) %>% summarise(n = n()) %>%
y) %>% summarise (&
(_) mutate (= n/sum(n)) %>%
mutate (= n/sum(n))
select (-n) r (=y,

select (-n)
A tibble: 8 x 4

Groups:

*
=
=

55

Contingency table

Cross tabulation of two
variables

bank $>% group_by (marital, edu
summarise (n()
pivot_wider (

select (-education)
TR 4

#4#
4
1

Dependency tests

» feed the contingency table to
a dependency test

> e.g. the x-squared test

bank %>% group_ by (marital, education) %>%
summarise (=n()) %%
pivot_wider (=m;

select (-education) %>%
chisg.test ()

##
Pearson's Chi-squared
tes

56

Multi-valued summaries

Tidy MDA Pivot table

bank %$>% group_by (marital) %>%
summarise (tibble (quantile (age),
©(0,0.25,0.5,0.75,1))) %>%

bank $>% group_by (marital) %>%
summarise (tibble (quantile (age),

pivot_wider (

4

##

57

Spreading

Spreading to Tidy

» spreading data can improve
the tidiness

» when an object is described
by several rows

58

Spreading

Spreading to Tidy Example
. . calit
» spreading data can improve 4 # a tibble: 10,080 x 4
idi #4# flow date time count
the tidiness ## <int> <date> <time> <dbl>
» when an object is described ¥ ! /2005707724 00:00)
o2 9 2005-07-24 00:00 0
by several rows ## 3 7 2005-07-24 00:30 1
o4 9 2005-07-24 00:30 0
5 7 2005-07-24 01:00 0
Un’[idy o6 9 2005-07-24 01:00 0
o7 7 2005-07-24 01:30 0
. ## 8 9 2005-07-24 01:30 0
> flow (in number of persons) i: o 5 20050724 02:00 0
in and out a building ## 10 9 2005-07-24 02:00 0
X i . ## # with 10,070 more rows
» direction encoded in the flow
variable
» time periods should be the
objects

58

Spreading

Spread version

tcalit <- calit %>

o\°

pivot_wider (names_from=flow, lues_ m=count) %>%

rename (flowin = “7°, flowout = ~97)
tcalit
A tibble: 5,040 x 4
date time flowin flowout
#4# <date> <time> <dbl> <dbl>
1 2005-07-24 00:00 0 0
2 2005-07-24 00:30 1 0
3 2005-07-24 01:00 0 0
4 2005-07-24 01:30 0 0
5 2005-07-24 02:00 0 0
6 2005-07-24 02:30 2 0
7 2005-07-24 03:00 0 0
8 2005-07-24 03:30 0 0
9 2005-07-24 04:00 0 0
10 2005-07-24 04:30 0 0
... with 5,030 more rows

59

Gathering data

Pivot longer
» pivot_longer is the reverse operation of pivot_wider
(gather in older versions)

» it reduces the number of columns by encoding them as a series of
rows and two new columns/variables

» the new key variable encode the gathered column while the new
value variable contains the original value

Original table Spread table
Gather X, Yand Z W KV
W X Y Z a X 1
a 1 2 3 2 ; §
b 5 6 7 S % oG
b Y 6
b zZ 7

60

Example

Wide data

» weekly product sales
> one row per product, one column per week: product view

61

Gather the weeks

» gather all the columns except
the product one
> object: (product, week)

prodperweek %>%
pivot_longer (!Product_Code,

to="Week",
L _to="Sales")

A tibble: 42,172 x 3

#4# Product_Code Week Sales
#4# <chr> <chr> <dbl>
1 P1 w0 11
2 Pl Wl 12
3 P1 W2 10
4 P1 W3 8
5 P1 wa 13
6 P1 W5 12
7 P1 W6 14
8 P1 W7 21
9 P1 W8 6
10 P1 W9 14
... with 42,162 more rows

62

Example

Gather the weeks Recoding

prodperweek %>%
pivot_longer (!Product_Code,

» gather all the columns except

the product one names_to
es_to="Sales") %>%
> object: (product, week) mutate (Week=parse_number (Week))
A tibble: 42,172 x 3

prodperweek %>% 4 Product_Code Week Sales

pivot_longer (!Product_Code, ## <chr> <dbl> <dbl>

es_to="Week", ## 1 P1 0 11

ues_to="Sales") ## 2 P1 1 12

A tibble: 42,172 x 3 ## 3 P1 2 10

#4# Product_Code Week Sales ## 4 P1 3 8

<chr> <chr> <dbl> ## 5 P1 4 13

1 P1 w0 11 ## 6 P1 5 12

2 Pl Wl 12 ## 7 Pl 6 14

3 P1 W2 10 ## 8 P1 7 21

4 P1 w3 8 ## 9 P1 8 6

5 P1 wa 13 ## 10 P1 9 14

6 P1 W5 12 ## # ... with 42,162 more rows
7 P1 W6 14
8 P1 W7 21
9 P1 W8 6
10 P1 W9 14
... with 42,162 more rows

62

Example

Spreading again

> Week point of view

prodper

$>% pivot_longer (!Prc
L "Sales") %>% mutate(
pivot_wider (Product_Cc

1 0 12 3 4 8
#H 2 1 11 8 5 3 8 6
3 2 8 3 3 2 3 0
4 3 9 3 1 7 7 9
5 4 10) 6 6 3 6
6 5 6 7 3 7 8
t# 6 9 9 8 2

8 13 13 4 6 3

9 8 12 13 [10 1
10 9 6 11 3 10

1‘
e

“*

F

(=

, and 803 more variables

63

» R is with Python the de facto standard for data science

R can be extended by thousands of packages

» R can be use to implement extremely efficient data processing
pipelines on large scale data

» R support several usage level from basic scripting to advanced
programming

» ongoing efforts to simplify R use (e.g. blueSky statistics and
jamovi)

v

64

For more...

R for Data Science

65

https://r4ds.had.co.nz/

Licence

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/

66

http://creativecommons.org/licenses/by-sa/4.0/

Version

Last git commit: 2020-10-06
By: Fabrice Rossi (Fabrice.Rossi@apiacoa.org)
Git hash: d3eaab94717e93344a41efec611d1abf20ef8708

67

Changelog

» Septembre 2020:

> added tibbles
» updated to dplyr 1.0
» updated to tidyr 1.0

» January 2020:

» improved the coverage of group_by
» added variable oriented operations
> added data source

» September 2019: initial version

68

	Introduction
	Main concepts
	Console interaction

	Data Management in R
	Data Frame
	Data import
	Data transformation

