
Data Manipulation

Fabrice Rossi

CEREMADE
Université Paris Dauphine

2021

Data Manipulation

In this course
I tabular data
I elementary extension to

multiple-table data
I data transformation

I wrangling
I filtering
I ordering

I data aggregation and
summary

I tidy data and reshaping

In other courses
I database management

system
I data models
I relational data
I unstructured data

2

Data Model

In this course
I a data set is

I a (finite) set of entities (a.k.a. objects, instances, subjects)
I each entity is described by its values with respect to a fix set of

variables (a.k.a. attributes)
I in practice a data set is a table with

I a row per entity
I a column per variable

Extension
I multiple-table data
I a data set = several tables

3

Example

age job marital education default balance housing
1 30 unemployed married primary no 1787 no
2 33 services married secondary no 4789 yes
3 35 management single tertiary no 1350 yes
4 30 management married tertiary no 1476 yes
5 59 blue-collar married secondary no 0 yes
6 35 management single tertiary no 747 no
7 36 self-employed married tertiary no 307 yes
8 39 technician married secondary no 147 yes
9 41 entrepreneur married tertiary no 221 yes

10 43 services married primary no -88 yes
11 39 services married secondary no 9374 yes
12 43 admin. married secondary no 264 yes
13 36 technician married tertiary no 1109 no
14 20 student single secondary no 502 no
15 31 blue-collar married secondary no 360 yes
16 40 management married tertiary no 194 no
17 56 technician married secondary no 4073 no
18 37 admin. single tertiary no 2317 yes
19 25 blue-collar single primary no -221 yes
20 31 services married secondary no 132 no

4

Variable types

Numerical
I essentially “physical”

measurements
I integer or decimal
I easier to handle than the

other types

Categorical
I a.k.a. Nominal (factors and

levels in R)
I finite number of values

(called categories or
modalities)

I might be ordered

Dates and times
I very important in numerous

applications
I notoriously difficult to handle
I use specific libraries!

Short texts
I a.k.a. strings
I could be handled as

categorical data
I specific processing in some

cases
I do not confuse them with full

texts

5

Example

Bank dataset
I sources

I https://archive.ics.uci.edu/ml/datasets/Bank%2BMarketing

I http://hdl.handle.net/1822/14838

I data types
I age: integer
I balance: integer
I education: categorical semi ordered
I most of the others: categorical with some binary

6

https://archive.ics.uci.edu/ml/datasets/Bank%2BMarketing
http://hdl.handle.net/1822/14838

Data Management

Data manipulation software
I typical examples: R with tidyverse or python with pandas
I limited automatic support for enforcing complex data models

I declarative support for broad types
I constraints can be checked explicitly

very complex constraints can be enforced
error/bug prone
difficult to read

I documentation is needed

7

Outline

Introduction

Data transformation

Data grouping and summarizing

Tidy data

Multiple data tables

8

Subsetting

Working on a subpopulation
I a.k.a by “removing” rows
I several motivations

I speed (for large data sets)
I robustness (removing outliers)
I modeling

I generally called filtering
I declarative approach in R and python

I give me the subset of the data that fulfills some conditions
I supported by comparison and Boolean operators

9

Example

Bank data set
Married clients with secondary education level in their thirties (age
between 30 and 39 included)

Python (pandas)
bank[(bank.marital == 'married') &

(bank.education == 'secondary') &
(bank.age >= 30) &
(bank.age < 40)]

R (dplyr)

bank %>% filter(marital == "married",
education == "secondary",
age >= 30,
age < 40)

10

Example

Bank data set
Married clients with secondary education level in their thirties (age
between 30 and 39 included)

Python (pandas)
bank[(bank.marital == 'married') &

(bank.education == 'secondary') &
(bank.age >= 30) &
(bank.age < 40)]

R (dplyr)

bank %>% filter(marital == "married",
education == "secondary",
age >= 30,
age < 40)

10

Computational considerations

Running time
I filtering is a row oriented operation
I naive implementation

I browse the data row by row
I keep a row if the conditions are fulfilled

I run time proportional to the number of rows in the data
I can be improved in some cases via indexing

Do not program it yourself!
I far less efficient
I less readable

11

Computational considerations

Running time
I filtering is a row oriented operation
I naive implementation

I browse the data row by row
I keep a row if the conditions are fulfilled

I run time proportional to the number of rows in the data
I can be improved in some cases via indexing

Do not program it yourself!
I far less efficient
I less readable

11

Dropping Variables

Column oriented subsetting
I two main motivations

I to restrict the data set to variable types compatible with some
technique

I to restrict the data set to meaningful variables for an automated
analysis (e.g. clustering or predictive modeling)

I simple declarative approach

12

Example

Bank data set
Keep some numerical variables

Python (pandas)
bank[['age', 'balance', 'day', 'duration']]

R (dplyr)

bank %>% select(age, balance, day, duration)

13

Example

Bank data set
Keep some numerical variables

Python (pandas)
bank[['age', 'balance', 'day', 'duration']]

R (dplyr)

bank %>% select(age, balance, day, duration)

13

Ordering

Sorting
I standard sorting feature
I multiple criteria

Python
bank.sort_values(by=['age',

'balance'])

R
bank %>% arrange(age, balance)

14

Transformation of Variables

Variable Operations
I modifying a variable
I adding new variables from

other sources
I computing new variables

(based on existing ones)

Data Wrangling
I low level transformation
I recoding
I extraction and merging
I etc.

Data Management
I context variables
I enforcing data model

Preparing Analysis
I e.g. recoding categorical to

numerical
I or quantifying numerical

variables
I scaling, normalization
I merging categories

15

Computed variables

Principle
I row oriented calculation
I create a new variable using the existing ones
I e.g. duration from starting and ending times
I combines nicely with aggregation/summary functions

Support
I numerous statistical summary functions (column oriented)
I column oriented arithmetic (e.g. sum of columns)
I column oriented logical operations (e.g. comparison)
I function application (e.g. to each row)

16

Example

Bank data set
Binary variable telling whether some client has some characteristics
I more than average mean annual balance
I at least one loan

Python
bank['moreavg'] = bank['balance'] > bank['balance'].mean()
bank['oneormoreloan'] = (bank['loan'] == 'yes') | (bank['housing'] == 'yes')

R
bank <- bank %>% mutate(moreavg = balance > mean(balance))
bank <- bank %>% mutate(oneormoreloan = loan=="yes" | housing=="yes")

17

Example

One Hot Encoding
I typical preparatory transformation
I categorical variable turn into a set of binary variables
I e.g. Gender=Male or Female transformed into GenderMale and

GenderFemale (binary)

Python
bank.join(pd.get_dummies(bank['education']))
bank.join(pd.get_dummies(bank['education'])).drop('education',axis=1)

R
bank %>%

bind_cols(as.data.frame(model.matrix(~education-1,data=bank))) %>%
select(-education)

18

Example

age job marital education default balance housing
1 30 unemployed married primary no 1787 no
2 33 services married secondary no 4789 yes
3 35 management single tertiary no 1350 yes
4 30 management married tertiary no 1476 yes
5 59 blue-collar married secondary no 0 yes
6 35 management single tertiary no 747 no
7 36 self-employed married tertiary no 307 yes
8 39 technician married secondary no 147 yes
9 41 entrepreneur married tertiary no 221 yes

10 43 services married primary no -88 yes
11 39 services married secondary no 9374 yes
12 43 admin. married secondary no 264 yes
13 36 technician married tertiary no 1109 no
14 20 student single secondary no 502 no
15 31 blue-collar married secondary no 360 yes
16 40 management married tertiary no 194 no
17 56 technician married secondary no 4073 no
18 37 admin. single tertiary no 2317 yes
19 25 blue-collar single primary no -221 yes
20 31 services married secondary no 132 no

19

Example

age job marital primary secondary tertiary unknown
1 30 unemployed married 1 0 0 0
2 33 services married 0 1 0 0
3 35 management single 0 0 1 0
4 30 management married 0 0 1 0
5 59 blue-collar married 0 1 0 0
6 35 management single 0 0 1 0
7 36 self-employed married 0 0 1 0
8 39 technician married 0 1 0 0
9 41 entrepreneur married 0 0 1 0

10 43 services married 1 0 0 0
11 39 services married 0 1 0 0
12 43 admin. married 0 1 0 0
13 36 technician married 0 0 1 0
14 20 student single 0 1 0 0
15 31 blue-collar married 0 1 0 0
16 40 management married 0 0 1 0
17 56 technician married 0 1 0 0
18 37 admin. single 0 0 1 0
19 25 blue-collar single 1 0 0 0
20 31 services married 0 1 0 0

20

Improving Representation

Data Management
I convert values to proper

types, e.g.
I integer only to language

supported integer
I data as string to language

supported date
I string to semantic content

I proprer encoding of missing
data

I add diagnostic data

Nominal data
I important particular case
I frequently represented by

strings
I loss of efficiency
I cannot leverage automatic

handling (in R in particular)

21

Example

Data Representation
I make sure that nominal variables are recognized as such
I yes/no nominal variables can be encoded as logical variables

Python
for myvar in ['job', 'marital', 'education']:

bank[myvar] = bank[myvar].astype('category')
for myvar in ['default', 'housing', 'loan']:

bank[myvar] = bank[myvar] == 'yes'

R
bank <- bank %>% mutate_at(vars(job,marital,education), ~(as.factor(.)))
bank <- bank %>% mutate_at(vars(default,housing,loan), ~(. == "yes"))

22

Example

Unknown values
I specific “unknown” category in the bank dataset (for several

variables)
I not considered “special” by the software while it should be

Python
Numpy provides a special value nan for not available
bank.replace("unknown",np.nan)

R
Similar special value NA

bank %>% mutate_all(~replace(., . == "unknown", NA))

23

Outline

Introduction

Data transformation

Data grouping and summarizing

Tidy data

Multiple data tables

24

Conditional analysis

Finding dependencies and links
One of the main goal of data analysis, e.g.
I predictive models: links between target variables and explanatory

variables
I frequent patterns: variables that are frequently non zero at the

same time
I etc.

Conditional summaries
I chose one or more variables
I for each possible combination of the values of the chosen

variables
I find all corresponding objects in the data set
I compute a summary of the other variables on this subset

25

Mechanism

X Y
2 A
1 B
4 B
3 B
1 B
2 C
1 A
3 C
3 A
2 A
2 A
3 A
3 B
1 A
1 A

Split

Y X
A 2
A 1
A 3
A 2
A 2
A 3
A 1
A 1

Y X
B 1
B 4
B 3
B 1
B 3

Y X
C 2
C 3

Apply

Y Sum
A 15

Y Sum
B 12

Y Sum
C 5

Combine
Y Sum
A 15
B 12
C 5

26

Example

Bank dataset
I balance conditioned on the response to the marketing campaign
I age conditioned on marital status and education level

Python
bank.groupby('y')['balance'].median()
bank.groupby(['marital', 'education'])['age'].mean()

R
bank %>% group_by(y) %>% summarise(median_balance = median(balance),

.groups = "drop_last")
bank %>% group_by(marital, education) %>%

summarise(mean_age = mean(age), .groups = "drop_last")

27

Example

Balance versus marketing

y median_balance
no 419.50
yes 710.00

Age versus marital and
education

marital education mean_age
divorced primary 51.39
divorced secondary 43.50
divorced tertiary 45.15
divorced missing 50.38
married primary 47.51
married secondary 42.40
married tertiary 41.78
married missing 48.44
single primary 37.01
single secondary 33.05
single tertiary 34.51
single missing 34.65

28

Pivot Table

Conditioning by two variables
I useful special case
I we can leverage standard tabular representation

I compute a standard aggregated table with two conditioning variables
and a single aggregate

I “pivot” the table
I remove one of conditioning variable and the aggregate
I creates as many columns as they are values of the removed variable
I use the aggregate to populate cells

29

Mechanism

X Y Z
2 B U
2 A V
2 C V
1 B V
4 A V
3 A U
1 C U
4 B U
3 B V
2 C V
2 C U
2 B U
2 B V
3 B V
4 B V

S-A-C

Y Z Sum
A U 3
A V 6
B U 8
B V 13
C U 3
C V 4

Pivot
Y/Z U V
A 3 6
B 8 13
C 3 4

30

Example

Age versus marital and education

marital education mean_age
divorced primary 51.39
divorced secondary 43.50
divorced tertiary 45.15
divorced missing 50.38
married primary 47.51
married secondary 42.40
married tertiary 41.78
married missing 48.44
single primary 37.01
single secondary 33.05
single tertiary 34.51
single missing 34.65

marital/education primary secondary tertiary missing
divorced 51.39 43.50 45.15 50.38
married 47.51 42.40 41.78 48.44
single 37.01 33.05 34.51 34.65

31

Howto

Python
Specific support for Pivot tables
bank.pivot_table('age', index = 'marital', columns = 'education')

R
A particular case of table reshaping

bank %>% group_by(marital, education) %>%
summarise(mean_age = mean(age), .groups = "drop_last") %>%
spread(key = education, value = mean_age)

32

Multidimensional analysis (MDA)

Pivot (hyper)cube
I a pivot table with more than 2 “dimensions” (e.g. a pivot cube)
I specific vocabulary:

I a dimension: a variable with a finite set of possible values
I a measure: a numerical variable
I a cell contains aggregate values for objects with given values for the

dimension

a very convoluted way of presenting conditional analysis
rich possibilities when the set of values of a “dimension” is
structured (e.g. postcodes)
rich support with specific OLAP software (not in this part of the
course)

33

Example

Bank data set
I Possible dimensions: job, marital, education, housing, loan
I Possible measures: age and balance
I A cell (such as unemployed, married, primary education, no

housing and no loan) contains the average age and the median
balance for the persons with the specified values on the
dimensions

Tabular point of view

job marital education housing loan mean_age median_balance
admin. divorced primary FALSE FALSE 57.00 1.00
admin. divorced primary FALSE TRUE 56.00 0.00
admin. divorced primary TRUE FALSE 57.00 179.00
admin. divorced secondary FALSE FALSE 41.80 432.00
admin. divorced secondary FALSE TRUE 45.83 175.00

and 337 additional rows...

34

Example

Tabular view
y housing loan n
no FALSE FALSE 1394
no FALSE TRUE 267
no TRUE FALSE 1958
no TRUE TRUE 381
yes FALSE FALSE 283
yes FALSE TRUE 18
yes TRUE FALSE 195
yes TRUE TRUE 25

MDA view

y="no"
housing/loan FALSE TRUE
FALSE 1394 267
TRUE 1958 381

y="yes"
housing/loan FALSE TRUE
FALSE 283 18
TRUE 195 25

arranged as a cube!

35

Outline

Introduction

Data transformation

Data grouping and summarizing

Tidy data

Multiple data tables

36

Tidy Data

Concept introduced by Hadley Wickham the Tidy Data paper

Definition
A data set made of several data tables is tidy if

1. each variable forms a column of a table
2. each observation forms a row of a table
3. each type of observational unit forms a table

Observational unit
I a particular type of observations in a data set
I e.g.

I persons
I daily behavior of persons
I etc.

37

http://www.jstatsoft.org/v59/i10/paper

Example

Bank data set
I mixes person information and marketing campaign information

(and economic variables in an extended version!)
I marketing campaign data

I last contact data
I contacts during the campaign
I summary of previous campaigns!

I clearly untidy
I violates property 3
I multiple types of observational unit in a single table

38

Example

Pivot table
housing/loan FALSE TRUE
FALSE 1677 285
TRUE 2153 406

I intrinsically untidy
I columns are not variables but variable values!

Summary table

loan housing n
FALSE FALSE 1677
FALSE TRUE 2153
TRUE FALSE 285
TRUE TRUE 406

I tidy data
I new observational unit: groups of observations!

39

Example

Pivot table
housing/loan FALSE TRUE
FALSE 1677 285
TRUE 2153 406

I intrinsically untidy
I columns are not variables but variable values!

Summary table

loan housing n
FALSE FALSE 1677
FALSE TRUE 2153
TRUE FALSE 285
TRUE TRUE 406

I tidy data
I new observational unit: groups of observations!

39

Tidying Data

Splitting or Joining
I observational unit level
I splitting

I separates different observational unit into several tables
I filtering/selecting + linking

I joining
I merges several tables about the same observational unit
I specific tools (see the last part of this course)

40

Tidying Data

Gathering or Spreading
I variable/observation level
I specific tools
I gathering

I reduces the number of columns
I merges several columns in a single one that corresponds to a proper

variable
I spreading

I increases the number of columns
I splits a column into several ones that correspond to proper variables

41

Example (Splitting)

Splitting bank marketing data
Steps:

1. add an identifier to each row (to identify clients)
2. select variables associated to each observational unit, keeping the

id
2.1 persons
2.2 current campaign (i.e. last contact)
2.3 previous campaigns

3. clean the tables (remove useless rows, e.g. when no previous
campaign is available)

42

Example (Splitting)

Python
I pandas data frames have always row identifiers
I splitting and cleaning

bank_persons = bank[['age', 'job', 'marital', 'education', 'default',
'balance', 'housing', 'loan']]

bank_current = bank[['contact', 'day', 'month', 'duration',
'campaign']]

bank_previous = bank[bank['pdays'] != -1][['pdays', 'previous',
'poutcome']]

43

Example (Splitting)

R
1. identifier

bank.tidy <- bank %>% mutate(key = 1:nrow(bank))

2. selection with cleanup
bank.persons <- bank.tidy %>% select(key, age, job, marital,

education, default, balance, housing, loan)
bank.current <- bank.tidy %>% select(key, contact, day, month,

duration, campaign)
bank.previous <- bank.tidy %>% filter(pdays != -1) %>% select(key,

pdays, previous, poutcome)

44

Spreading data

Replace variable encoded on rows by columns
I operates on two variables in the original table: a key and a value
I each value taken by the key becomes a column
I the value variable is used to fill the column

Original table

X Y Z
1 A 2
1 B 3
2 A 4
2 B 5

Spread table
Y is the key, Z is the value

X A B
1 2 3
2 4 5

45

Example (Spreading)

CalIt2 dataset
I flow (in number of persons) in and out a building
I direction encoded in the flow column

flow date time count
7 2005-07-24 00:00:00 0
9 2005-07-24 00:00:00 0
7 2005-07-24 00:30:00 1
9 2005-07-24 00:30:00 0
7 2005-07-24 01:00:00 0
9 2005-07-24 01:00:00 0
7 2005-07-24 01:30:00 0
9 2005-07-24 01:30:00 0
7 2005-07-24 02:00:00 0
9 2005-07-24 02:00:00 0

I untidy: flow is not a variable!
I spreading is needed

46

https://archive.ics.uci.edu/ml/datasets/CalIt2+Building+People+Counts

Example (Spreading)

CalIt2 dataset
I flow (in number of persons) in and out a building
I tidy version

date time entering leaving
2005-07-24 00:00:00 0 0
2005-07-24 00:30:00 1 0
2005-07-24 01:00:00 0 0
2005-07-24 01:30:00 0 0
2005-07-24 02:00:00 0 0
2005-07-24 02:30:00 2 0
2005-07-24 03:00:00 0 0
2005-07-24 03:30:00 0 0
2005-07-24 04:00:00 0 0
2005-07-24 04:30:00 0 0

47

https://archive.ics.uci.edu/ml/datasets/CalIt2+Building+People+Counts

Example (Spreading)

Python
I spreading can be done by leveraging the indexing system
I hierarchical indexing in this case

calit.set_index(['date', 'time'], inplace = True)
tcalit = calit.pivot(columns='flow')
tcalit.columns = tcalit.columns.to_flat_index()
tcalit.rename(columns={('count', 7):'entering',

('count', 9): 'leaving'},
inplace=True)

tcalit.reset_index(inplace = True)

I this is somewhat convoluted

48

Example (Spreading)

Python
I spreading can be also be done with pivot_table

tcalit = calit.pivot_table(values='count',
index=['date', 'time'],
columns='flow')

tcalit.rename(columns={7: 'entering', 9: 'leaving'},
inplace=True)

tcalit.reset_index(inplace=True)

I a bit simpler

R
Standard use of the spread function

calit %>% spread(flow, count) %>% rename(entering = `7`, leaving = `9`)

49

Gathering data

Gather
I gathering is the reverse of spreading
I it reduces the number of columns by encoding them as a series of

rows and two new columns/variables
I the new key variable encode the gathered columns while the new

value variable contains the original value

Original table

Gather X, Y and Z
W X Y Z
a 1 2 3
b 5 6 7

Gathered table

W K V
a X 1
a Y 2
a Z 3
b X 5
b Y 6
b Z 7

50

Example (Gathering)

Sales transaction data set
I weekly product sales
I one row per product, one column per week: product view

Product_Code W0 W1 W2 W3 W4 W5
P1 11.00 12.00 10.00 8.00 13.00 12.00
P2 7.00 6.00 3.00 2.00 7.00 1.00
P3 7.00 11.00 8.00 9.00 10.00 8.00
P4 12.00 8.00 13.00 5.00 9.00 6.00
P5 8.00 5.00 13.00 11.00 6.00 7.00
P6 3.00 3.00 2.00 7.00 6.00 3.00
P7 4.00 8.00 3.00 7.00 8.00 7.00
P8 8.00 6.00 10.00 9.00 6.00 8.00
P9 14.00 9.00 10.00 7.00 11.00 15.00
P10 22.00 19.00 19.00 29.00 20.00 16.00

with 53 columns and 811 rows

51

https://archive.ics.uci.edu/ml/datasets/Sales_Transactions_Dataset_Weekly

Example (Gathering)

Gather the weeks
I gather all the columns except the product one
I one observation: (product, week)

Product_Code Week Quantity
P1 1 11
P2 1 7
P3 1 7
P4 1 12
P5 1 8
P6 1 3
P7 1 4
P8 1 8
P9 1 14
P10 1 22

with 42162 more rows

52

Example (Gathering)

Python
Using the melt function
prodlong = pd.melt(prodperweek, 'Product_Code')
prodlong.rename(columns={'variable': 'Week',

'value': 'Quantity'},
inplace=True)

prodlong['Week'] = pd.to_numeric(prodlong['Week'].str[1:])+1

R
Standard use of the gather function

prodperweek %>% gather(Week, Quantity, -Product_Code) %>%
mutate(Week = parse_number(Week) + 1)

53

Tidy Data

Modeling assumptions
I data are tidy only with respect to some modeling assumptions
I what is an observation?

I maybe the most important assumption
I very frequently associated to an independence assumption

Practical aspects
I the data format must be adapted to the tool
I data mining and machine learning

I generally limited to a single table
I one might need to merge tables (e.g. bank data set)

I column oriented software (R)
I have limited row oriented capabilities
I might need a specific untidy representation

54

Tidy Data

Examples
I bank marketing: several object types or only one (person +

marketing action)
I flow in/out a building

I the half-hour bidirectional flow is an observation
I or a day is an observation

I weekly sales
I product point of view (original data set)
I product × week point of view
I week point of view

55

Outline

Introduction

Data transformation

Data grouping and summarizing

Tidy data

Multiple data tables

56

Multiple data tables

Tidy data
I one table per observational

unit
I complex data

I multiple observational units
(e.g. persons and
products)

I multiple tables!

Difficulties
I the vast majority of data

analysis methods are limited
to single tables

I complex real world data use
multiple table!

I a core data manipulation
task: join multiple tables into
data analysis oriented tables

57

Example

Loan application data set
I https://relational.fit.cvut.cz/dataset/Financial

I 8 tables including
I client table
I account table
I credit card table
I loan table
I etc.

I open ended data set: no specific goal

58

https://relational.fit.cvut.cz/dataset/Financial

Associations and keys

Relational data
I tables must be related one to another
I in the relational model a table is a relation
I some relations describe entities while others describe links

between entities

Keys
I a key is a (set of) variable(s) that uniquely identifies an entity
I a primary key does that in the relation/table that describe the entity
I a foreign key does that in another relation/table

59

Loan application data set

Client table
client_id gender birth_date district_id

1 F 1970-12-13 18
2 M 1945-02-04 1
3 F 1940-10-09 1
4 M 1956-12-01 5
5 F 1960-07-03 5

Keys
I primary key client_id
I foreign key

district_id

Account table
account_id district_id date

1 18 1995-03-24
2 1 1993-02-26
3 5 1997-07-07
4 12 1996-02-21
5 15 1997-05-30

Keys
I primary key account_id
I foreign key

district_id

60

Loan application data set

Disposition table
disp_id client_id account_id type

1 1 1 OWNER
2 2 2 OWNER
3 3 2 DISPONENT
4 4 3 OWNER
5 5 3 DISPONENT

Keys
I primary key disp_id
I foreign keys client_id

and account_id

Link table
I the disposition table/relation is a typical example of a link table
I it associates clients with accounts
I the link is also an entity as it has characteristics

61

Loan application data set

District table
district_id Name Region Inhabitants

1 Hl.m. Praha Prague 1204953
2 Benesov central Bohemia 88884
3 Beroun central Bohemia 75232
4 Kladno central Bohemia 149893

Direct links
I no link table from accounts and clients to the district table
I district_id is used as a foreign key in the account and client

tables

62

Joining tables

Main operations
I we need to build unique tables that gather information from

separate ones
I this is done via join operations

I identifying matching entities in two different tables
I generating tables which combine variables from said tables for

matched entities

Example
I joining client information with account information
I joining client information with district information

63

Basic case

Principle
I input

I two tables A and B
I A contains a variable V which is a foreign key
I B contains the same variable V as its primary key

I result
I a table with all the variables in A and B (no repeat)
I such that each entity in A is merged with the entity in B referenced

by the value of V

64

Example

Client with district information
I join the client table with the district table
I district_id: foreign key in the client table, primary key in the

district table
I (part of the) result
client_id gender birth_date district_id Name Region Inhabitants

1 F 1970-12-13 18 Pisek south Bohemia 70699
2 M 1945-02-04 1 Hl.m. Praha Prague 1204953
3 F 1940-10-09 1 Hl.m. Praha Prague 1204953
4 M 1956-12-01 5 Kolin central Bohemia 95616
5 F 1960-07-03 5 Kolin central Bohemia 95616

Python
pd.merge(client, district)

R
client %>% inner_join(district)

Common semantics: natural join
I common columns/variables are considered as a key

65

Join types

Missing keys
I missing foreign keys
I unreferenced foreign keys
I wrong foreign keys

How to build the join table?
I intersection approach
I missing data approach

Inner join
I most common solution
I keeps only full rows
I discard rows that would have

missing values

Outer joins
I produce tables with missing

data
I full or asymmetric (left or

right) joins

66

Join types

Missing keys
I missing foreign keys
I unreferenced foreign keys
I wrong foreign keys

How to build the join table?
I intersection approach
I missing data approach

Inner join
I most common solution
I keeps only full rows
I discard rows that would have

missing values

Outer joins
I produce tables with missing

data
I full or asymmetric (left or

right) joins

66

All cases

Left table
x y

-3 1
4 2
5 NA

Missing foreign key

Right table
y z
1 a
2 b
3 c

Unreferenced key

Inner join
x y z

-3 1 a
4 2 b

Only full rows

Full outer join
x y z

-3 1 a
4 2 b
5 NA NA

NA 3 c

All combinations

Left outer join
x y z

-3 1 a
4 2 b
5 NA NA

All rows from the left
table

Right outer join
x y z

-3 1 a
4 2 b

NA 3 c

All rows from the
right table

67

All cases

Left table
x y

-3 1
4 2
5 NA

Missing foreign key

Right table
y z
1 a
2 b
3 c

Unreferenced key

Inner join
x y z

-3 1 a
4 2 b

Only full rows

Full outer join
x y z

-3 1 a
4 2 b
5 NA NA

NA 3 c

All combinations

Left outer join
x y z

-3 1 a
4 2 b
5 NA NA

All rows from the left
table

Right outer join
x y z

-3 1 a
4 2 b

NA 3 c

All rows from the
right table

67

All cases

Left table
x y

-3 1
4 2
5 NA

Missing foreign key

Right table
y z
1 a
2 b
3 c

Unreferenced key

Inner join
x y z

-3 1 a
4 2 b

Only full rows

Full outer join
x y z

-3 1 a
4 2 b
5 NA NA

NA 3 c

All combinations

Left outer join
x y z

-3 1 a
4 2 b
5 NA NA

All rows from the left
table

Right outer join
x y z

-3 1 a
4 2 b

NA 3 c

All rows from the
right table

67

All cases

Left table
x y

-3 1
4 2
5 NA

Missing foreign key

Right table
y z
1 a
2 b
3 c

Unreferenced key

Inner join
x y z

-3 1 a
4 2 b

Only full rows

Full outer join
x y z

-3 1 a
4 2 b
5 NA NA

NA 3 c

All combinations

Left outer join
x y z

-3 1 a
4 2 b
5 NA NA

All rows from the left
table

Right outer join
x y z

-3 1 a
4 2 b

NA 3 c

All rows from the
right table

67

Implementation

Python
I merge function
I pd.merge(left, right):

inner join
I parameters

I how: join type among
'left', 'right',
'outer', 'inner'

I on: column name(s) for the
join

I many others

R
I merge in base R
I dplyr:

I several functions in with
explicit names:
inner_join,
full_join, left_join,
right_join

I by parameter: column
name(s) for the join

left %>% full_join(right)

68

Multiple joins

Loan data
I table with clients and

accounts
I difficulties

I link table
I duplicate variable name

district_id

Solution
I two joins
I columns renaming

Python
da = pd.merge(disposition, account)
da.rename(columns={

'district_id':
'acc_district_id'},

inplace=True)
fulldata = pd.merge(da, client)

R
disposition %>% inner_join(account) %>%

rename(acc_district_id=
district_id) %>%

inner_join(client)

69

Multiple joins

Loan data
I table with clients and

accounts
I difficulties

I link table
I duplicate variable name

district_id

Solution
I two joins
I columns renaming

Python
da = pd.merge(disposition, account)
da.rename(columns={

'district_id':
'acc_district_id'},

inplace=True)
fulldata = pd.merge(da, client)

R
disposition %>% inner_join(account) %>%

rename(acc_district_id=
district_id) %>%

inner_join(client)

69

Result

disp_id client_id account_id type
1 1 1 OWNER
2 2 2 OWNER
3 3 2 DISPONENT
4 4 3 OWNER
5 5 3 DISPONENT
6 6 4 OWNER
7 7 5 OWNER
8 8 6 OWNER
9 9 7 OWNER

10 10 8 OWNER
11 11 8 DISPONENT
12 12 9 OWNER
13 13 10 OWNER
14 14 11 OWNER
15 15 12 OWNER
16 16 12 DISPONENT
17 17 13 OWNER
18 18 13 DISPONENT
19 19 14 OWNER
20 20 15 OWNER

account_id district_id date
1 18 1995-03-24
2 1 1993-02-26
3 5 1997-07-07
4 12 1996-02-21
5 15 1997-05-30
6 51 1994-09-27
7 60 1996-11-24
8 57 1995-09-21
9 70 1993-01-27

10 54 1996-08-28
11 76 1995-10-10
12 21 1997-04-15
13 76 1997-08-17
14 47 1996-11-27
15 70 1993-10-02
16 12 1997-09-23
17 1 1997-01-08
18 43 1993-05-26
19 21 1995-04-07
20 74 1996-08-24

70

Result

disp_id client_id account_id type acc_district_id date
1 1 1 OWNER 18 1995-03-24
2 2 2 OWNER 1 1993-02-26
3 3 2 DISPONENT 1 1993-02-26
4 4 3 OWNER 5 1997-07-07
5 5 3 DISPONENT 5 1997-07-07
6 6 4 OWNER 12 1996-02-21
7 7 5 OWNER 15 1997-05-30
8 8 6 OWNER 51 1994-09-27
9 9 7 OWNER 60 1996-11-24

10 10 8 OWNER 57 1995-09-21
11 11 8 DISPONENT 57 1995-09-21
12 12 9 OWNER 70 1993-01-27
13 13 10 OWNER 54 1996-08-28
14 14 11 OWNER 76 1995-10-10
15 15 12 OWNER 21 1997-04-15
16 16 12 DISPONENT 21 1997-04-15
17 17 13 OWNER 76 1997-08-17
18 18 13 DISPONENT 76 1997-08-17
19 19 14 OWNER 47 1996-11-27
20 20 15 OWNER 70 1993-10-02

71

Result

client_id type acc_district_id date
1 OWNER 18 1995-03-24
2 OWNER 1 1993-02-26
3 DISPONENT 1 1993-02-26
4 OWNER 5 1997-07-07
5 DISPONENT 5 1997-07-07
6 OWNER 12 1996-02-21
7 OWNER 15 1997-05-30
8 OWNER 51 1994-09-27
9 OWNER 60 1996-11-24

10 OWNER 57 1995-09-21
11 DISPONENT 57 1995-09-21
12 OWNER 70 1993-01-27
13 OWNER 54 1996-08-28
14 OWNER 76 1995-10-10
15 OWNER 21 1997-04-15
16 DISPONENT 21 1997-04-15
17 OWNER 76 1997-08-17
18 DISPONENT 76 1997-08-17
19 OWNER 47 1996-11-27
20 OWNER 70 1993-10-02

client_id gender birth_date district_id
1 F 1970-12-13 18
2 M 1945-02-04 1
3 F 1940-10-09 1
4 M 1956-12-01 5
5 F 1960-07-03 5
6 M 1919-09-22 12
7 M 1929-01-25 15
8 F 1938-02-21 51
9 M 1935-10-16 60

10 M 1943-05-01 57
11 F 1950-08-22 57
12 M 1981-02-20 40
13 F 1974-05-29 54
14 F 1942-06-22 76
15 F 1918-08-28 21
16 M 1919-02-25 21
17 M 1934-10-13 76
18 F 1931-04-05 76
19 M 1942-12-28 47
20 M 1979-01-04 46

72

Result

disp_id client_id account_id type acc_district_id date gender birth_date district_id
1 1 1 OWNER 18 1995-03-24 F 1970-12-13 18
2 2 2 OWNER 1 1993-02-26 M 1945-02-04 1
3 3 2 DISPONENT 1 1993-02-26 F 1940-10-09 1
4 4 3 OWNER 5 1997-07-07 M 1956-12-01 5
5 5 3 DISPONENT 5 1997-07-07 F 1960-07-03 5
6 6 4 OWNER 12 1996-02-21 M 1919-09-22 12
7 7 5 OWNER 15 1997-05-30 M 1929-01-25 15
8 8 6 OWNER 51 1994-09-27 F 1938-02-21 51
9 9 7 OWNER 60 1996-11-24 M 1935-10-16 60

10 10 8 OWNER 57 1995-09-21 M 1943-05-01 57
11 11 8 DISPONENT 57 1995-09-21 F 1950-08-22 57
12 12 9 OWNER 70 1993-01-27 M 1981-02-20 40
13 13 10 OWNER 54 1996-08-28 F 1974-05-29 54
14 14 11 OWNER 76 1995-10-10 F 1942-06-22 76
15 15 12 OWNER 21 1997-04-15 F 1918-08-28 21
16 16 12 DISPONENT 21 1997-04-15 M 1919-02-25 21
17 17 13 OWNER 76 1997-08-17 M 1934-10-13 76
18 18 13 DISPONENT 76 1997-08-17 F 1931-04-05 76
19 19 14 OWNER 47 1996-11-27 M 1942-12-28 47
20 20 15 OWNER 70 1993-10-02 M 1979-01-04 46

73

Advanced join topics

Support for real world issues
I key selection
I variable renaming
I filtering join (dplyr R only)
I enforcing/checking unicity of keys (python only)
I index based join (python only)
I etc.

74

Licence

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/

75

http://creativecommons.org/licenses/by-sa/4.0/

Version

Last git commit: 2021-01-19
By: Fabrice Rossi (Fabrice.Rossi@apiacoa.org)
Git hash: a623238c82efeb5372d8b821e0e946cfd8c918cc

76

Changelog

I November 2019: added multiple table data
I October 2019: initial version

77

	Introduction
	Data transformation
	Data grouping and summarizing
	Split – Apply – Combine
	Pivot Table
	Multidimensional analysis

	Tidy data
	Multiple data tables

