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This exam consists in a series of independent exercises. They can be solved in any
order. Answers must be justified: a simple “yes” or “no” answer will not be considered as
a proper one.

Exercise 1
We study in this exercise a data set D = (Xi,Yi)1≤i≤20 with Yi ∈ {1,2}. The random
pairs (Xi,Yi) are assumed to by independant and identically distributed copies of a data
generating pair (X,Y ). Using this data set, an analyst builds two models, g1 and g2 whose
predictions on D are given by the following table:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Yi 1 1 1 2 1 1 1 1 1 2 2 2 2 1 2 2 2 1 1 1

g1(Xi) 1 1 1 2 1 2 1 2 1 2 1 1 2 1 1 2 2 1 1 1
g2(Xi) 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 2

In this table, each column corresponds to an observation (Xi, Yi). The top row gives the
value of Yi while the two other ones correspond to model predictions.

Question 1 Using the table, provide an estimation of P(Y = 1). What general estimation
principle is used to compute this estimation?

Question 2 Using the table, compute estimations of P(g1(X) 6= Y ) and P(g2(X) 6= Y ).

Question 3 Assume the loss function l0(p,t) = Ip6=t is used (p is the prediction, t the
true value and IC equals 1 when the condition C is fulfilled and 0 when it is not). The
corresponding risk is denoted L0. Using the table, provide an estimation of the risks of g1
and g2. What are the limitations (if any) of this estimation? What other strategy could
be used to estimate the risks?

Question 4 Let l1 be the following loss function:

l1(p,t) t = 1 t = 2
p = 1 0 1
p = 2 2 0

Determine the best model among g1 and g2 according to the risk associated to l1. Possible
limitations described in the previous question should be disregarded in the present one.
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Exercise 2
We assume given a random pair (X,Y ) with the following characteristics:

1. Y takes values in {−1,1} and P(Y = -1) = 2
3 ;

2. X takes values in {a, b, c} and the conditional distribution of X given Y is specified
by the following table:

x a b c

P(X = x|Y = −1) 1
6

1
3

1
2

P(X = x|Y = 1) 1
3

1
6

1
2

Question 1 Recall the expression of the general theoretical optimal model g∗0 for (X,Y )
when using the loss function l0 defined by l0(p,t) = Ip 6=t (p is the prediction and t the true
value) and assuming the joint distribution of (X,Y ) is known.

Question 2 Using the assumptions on (X,Y ) compute g∗0(x) for all x ∈ {a, b, c}.

Question 3 Compute L∗0 = L0(g∗0).

Question 4 Let l2 be the following loss function:

l2(p,t) t = 1 t = −1
p = 1 0 2

p = −1 1 0

Compute both g∗2 and L∗2, respectively the optimal model according to l2 and its risk.

Exercise 3
We assume given a random pair (X,Y ) with the following characteristics:

1. Y takes values in {A, B, C} and P(Y = A) = P(Y = B) = 1
3 ;

2. X takes values in {0,1}3 (that is a typical value of X is (1,0,1)). Xi,j denotes the
j-th coordinate of observation number i;

3. the distribution of (X,Y ) satisfies the conditional independence assumptions of the
Naive Bayes classifier.

We study a data set D = (Xi,Yi)1≤i≤300 for such that |{i|Yi = A}| = |{i|Yi = B}| = 100,
where |U | is the cardinality of the set U (its number of elements).

The values taken by the Xi are summarized in the following table:

Xi,1 Xi,2 Xi,3
Yi = A 85 74 85
Yi = B 38 57 50
Yi = C 43 93 8
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The table reads as follows: each row corresponds to the subset of observations for which
Yi takes the given value. For instance the first row corresponds to observations for which
Yi = A. Then each column gives the number of such observations for which the coordinate
associated to the column equals 1. For instance, the upper left corner value 85 says that
among the 100 observations for which Yi = A, 85 observations have a 1 as their first
coordinate.

Question 1 Estimate from the data all the (conditional) probabilities needed to design a
Naive Bayes classifier on those data.

Question 2 Using the loss function l0 defined by l0(p,t) = Ip6=t (p is the prediction and t
the true value), compute the optimal decision of the Naive Bayes classifier for u = (1, 0, 1)
and for v = (0,0,1).

Exercise 4
The data set studied in this exercise comprises 1473 objects described by 9 explanatory
(X1 to X9) and 1 target variable Y . Y takes values in {1, 2, 3}. Explanatory variables X1
and X4 are numerical variables while all other variables are nominal ones (with numbered
categorical values, from 0 to 4, but no special numerical meaning should be assigned to
said values).

Values taken by Y on the data set are summarized on the following table:

1 2 3
Y 624 345 504

Question 1 The data scientist builds a full (unprunned) decision tree on the data. The
tree ends up with 644 leaves and its confusion matrix on the data set is given by following
table:

1 2 3
1 603 9 4
2 5 321 22
3 16 15 478

In the confusion matrix, predictions are in row, with true values are in column.

Comment briefly the results.

Question 2 The analysts implements a ten fold cross-validation on the tree in order to
estimate its performances during the pruning process. Results are shown on Figure 1.
Comment briefly the figure. Compare in particular the results from the figure and the
confusion matrix.

Question 3 The analysts decides to prune the tree up to leaving only 7 leaves. Justify
briefly her choice.

Question 4 The pruned tree is represented on Figure 2. Use this figure to compute the
confusion matrix of the pruned tree. Are the results compatible with the ones from Figure
1?
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Figure 1: Behavior of the number of misclassified examples as a function of the number of
leaves in the tree (during pruning), both on the data set and as estimated by a 10 fold
cross-validation method. The x-axis uses a logarithmic scale.

Question 5 For each of the leaves of the pruned tree, construct an artificial data point
(by choosing the values of its coordinates) in such a way that it will fall into the associated
leaf when submitted to the tree.
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Figure 2: Pruned decision tree. At each node, the left branch corresponds to a "yes" answer
to the question of the node, while the right branch correspond to "no". In a leaf, the upper
value is the predicted class for the leaf, while the lower values correspond to the number of
examples from the data set that fall into this leaf, attributed to each class (in the natural
class order, 1, 2 and 3).
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