
An introduction to database design

Fabrice Rossi

CEREMADE
Université Paris Dauphine

2020



What is a good database?

What is a good database schema?
I some schemas are arguably bad

I redundant schemas: repeated information is difficult to maintain
I incomplete schemas: some information cannot be represented

I and can be (partially) fixed with specific algorithms (normalization)
I however

I normalization cannot detect some instances of bad design
I denormalization can be useful for performance reasons
I completeness can only be considered with respect to design

considerations

2



Example

Actors
id first_name last_name gender film_count

933 Lewis Abernathy M 1
2547 Andrew Adamson M 1
2700 William Addy M 1
2898 Seth (I) Adkins M 1
2925 Charles (I) Adler M 1

Movies
id name year rank

192017 Little Mermaid, The 1989 7.30
300229 Shrek 2001 8.10
306032 Snatch. 2000 7.90
333856 Titanic 1997 6.90

Roles
actor_id movie_id role

933 333856 Lewis Bodine
2547 300229 Duloc Mascot
2700 306032 Tyrone
2898 333856 Slovakian three-year-old boy
2925 192017 Additional Voices

Directors
id first_name last_name

429 Andrew Adamson
2931 Darren Aronofsky
9247 Zach Braff

11652 James (I) Cameron
14927 Ron Clements

Directing Genre
director_id movie_id

429 300229
2931 254943
9247 124110

11652 10920
11652 333856

movie_id genre
10920 Action
10920 Horror
10920 Sci-Fi
10920 Thriller
17173 Comedy

Genres for directors
director_id genre prob

429 Adventure 0.75
429 Music 0.25
429 Fantasy 0.75
429 Romance 0.50
429 Family 0.75

3



Example

Problems
I redundant

I film_count can be computed
I prob can be computed

I incomplete/inconsistent
I directors’ gender?
I can directors be actors?

4



Database design process

Overview
I domain expert interaction

I data needs
I functional requirements

I conceptual design
I what are the entities described in the database?
I how are they related one to another?

I logical design: translation of the conceptual design into a
relational model

I physical design: storage and other aspects (out of the scope of
this course)

5



Outline

Conceptual design

Logical design

6



Entity Relationship Model

Proposed by Peter Chen in 1976

Concepts
I Entity: uniquely identified object under study (e.g. a person)
I Relationship: a way to relate entities (e.g. a has access to b)
I Attribute: a property of an entity or of a relationship. An attribute

has a domain (the set of values it can take)
I an ER model describes types, e.g. entity type (also called entity

sets), not values

7



Example

Loan application data set
I https://relational.fit.cvut.cz/dataset/Financial

I 8 tables including
I client table
I account table
I credit card table
I loan table
I etc.

8

https://relational.fit.cvut.cz/dataset/Financial


Example

(part of the) Client table
client_id gender birth_date

1 F 1970-12-13
2 M 1945-02-04
3 F 1940-10-09
4 M 1956-12-01
5 F 1960-07-03

ER model
I entity type: client
I attributes

I gender with domain F and
M

I birth_date with a date
domain

I client_id

key attribute

9



Example

(part of the) Client table
client_id gender birth_date

1 F 1970-12-13
2 M 1945-02-04
3 F 1940-10-09
4 M 1956-12-01
5 F 1960-07-03

ER model
I entity type: client
I attributes

I gender with domain F and
M

I birth_date with a date
domain

I client_id

key attribute

Client

gender birth_date client_id

9



Example

(part of the) Client table
client_id gender birth_date

1 F 1970-12-13
2 M 1945-02-04
3 F 1940-10-09
4 M 1956-12-01
5 F 1960-07-03

ER model
I entity type: client
I attributes

I gender with domain F and
M

I birth_date with a date
domain

I client_id key attribute

Client

gender birth_date client_id

9



Graphical representation

Entity type
Entity types are represented by rectangles link to attributes

Attribute type

I an ellipse per type
I key attribute type

I a unique identifier of the
corresponding entity

I underlined in the
representation

I composite attribute type
I can be decomposed into

sub-attributes
I linked ellipses

I derived attribute type
I can be computed from

another one (e.g. age
from birth date)

I dashed border
I multi-valued attribute type

I several values are
authorized

I double border

10



Example

Person

gender birth_date age client_id

email

name

First name

Last name

11



Typical domains

Numerical
I integers
I decimal numbers
I possible constraints: positive

numbers, number of
significant digits, etc.

Temporal
I dates
I times

Textual
I words
I codes (such as post codes)
I structured strings (e.g.

emails)

Others
I truth values (boolean)
I binary content (such as

images)

12



Relationship

Principle
I a relationship represents an association between at least two

entities (binary relationships are the most common)
I it can have attributes
I it is characterized by cardinalities

I minimum and maximum number of relationships to which a given
entity can participate

I asymmetric
I a relationship type (also called relationship set) is graphically

represented by a rhombus

13



Example

Loan application data set
I client entities and account entities
I relationships

I a client can be the owner of an account
I a client can be allowed to use an account

I cardinalities
I owner:

I each account has exactly one owner
I each client can own at most one account (in this database)

I user:
I each account may have some users
I each client can be the user of some accounts

14



Example

Clientclient_id

Owner

Account account_id

0-1 1-1

User

0-n 0-m

15



Outline

Conceptual design

Logical design

16



ER to relational

Mapping
I ER models are abstract
I must be mapped to a concrete database model
I the relational model is close enough to ER to enable a simple

mapping strategy

Principles
I Entity type→ relation schema
I Simple attribute type→ relational attribute
I Key attribute type→ primary or alternative key
I All the rest (relationship types and complex attribute types)→

relation schemas and keys

17



Mapping Entity Types

With simple attribute types
I direct mapping
I an entity type is mapped to a relation schema
I each attribute type corresponds to a relational attribute
I a key is mapped to a primary or alternative key
I composite attribute types are mapped to a set of relational

attributes

ER model

Client

gender birth_date client_id

Relation schema
Client(gender, birth_date,
client_id)

18



Multi-valued attribute types

Method
I a multi-valued attribute type cannot be mapped to a column type

because of the domain integrity constraint
I representation via a relation schema

I a relation schema per multi-valued attribute type
I a relational attribute for the attribute
I a foreign key to map back the attribute to the entity

ER model

Client

gender email client_id

Relation schemas
I Client(gender, client_id)
I ClientEmail(email, client_id)

19



Mapping relationship types

Principles
I the mapping depends on the cardinalities of the relationship type
I 0-1 cardinalities on a least one side foreign key
I other cases: foreign keys or specific relational schema

One to one (1:1) relationship type
I each side is 0-1 or 1-1
I mapped to a foreign key:

I in the 1-1 relation type if it exists with a non nullable relational
attribute

I nullable if both side are 0-1

20



Example

Clientclient_id Owns Account account_id0-1 1-1

Relation schemas
I Client(client_id)
I Account(account_id,client_id)
I client_id is non nullable in

Account

Inferior alternative
I Client(client_id,account_id)
I account_id is nullable in Client
I Account(account_id)

Cardinalities
I Owns↔ Account is enforced
I but an account can be shared by

several clients
I Client↔ Owns is 0−m

Cardinalities
I Client↔ Owns is enforced
I but an account can be assigned

to any number of clients
I Owns↔ Account is 0−m

21



Example

Clientclient_id Owns Account account_id0-1 1-1

Relation schemas
I Client(client_id)
I Account(account_id,client_id)
I client_id is non nullable in

Account

Inferior alternative
I Client(client_id,account_id)
I account_id is nullable in Client
I Account(account_id)

Cardinalities
I Owns↔ Account is enforced
I but an account can be shared by

several clients
I Client↔ Owns is 0−m

Cardinalities
I Client↔ Owns is enforced
I but an account can be assigned

to any number of clients
I Owns↔ Account is 0−m

21



Higher cardinalities

One to N (1:N) relationship type
I mapped to a foreign key in the 1 side entity relation schema
I nullable if this side is 0− 1, non nullable if it is 1− 1
I the minimal cardinality on the N side cannot be enforced

Example

Region

region_id

Contains Department

department_id

1-N 1-1

I Department(departement_id,region_id)
I Region(region_id)

22



Higher cardinalities

M to N (M:N) relationship type
I mapped to a relation type
I two foreign keys, one for each table
I the primary key of the relation type is the combination of the

foreign keys
I minimal cardinalities cannot be enforced

23



Example

Clientclient_id Uses Account account_id0-n 1-m

I Client(client_id)
I Account(account_id)
I Uses(client_id, account_id) both non nullable

24



Normal forms

Principle
I normal forms are “good design” constraints

I a database (schema) is in a given normal form if it fulfills the
corresponding constraints

I basic normal forms are core aspects of the relational model
I advanced normal forms enforce good design (no redundancy)

I normalization
I process that turns an unnormalized database into a normalized one
I generally works by decomposition: split a relation into multiple

relations
I leverages knowledge about the data (especially when operating as

the schema level)

25



First normal form

1NF
I proposed by E. Codd in 1971
I a relation schema is in first normal form if all its attributes have

atomic domains
I normalization by splitting

Atomic domain
I a domain is atomic if its elements are indivisible units
I non atomic domains

I sets or lists of values: several emails or phone number in a single
attribute (e.g. multi-valued attributes)

I structured objects such addresses (city, street name, etc.)
I french social security number

I somewhat ambiguous notion: is toto@domain.com atomic?

26

toto@domain.com


Examples

Structured domain
I split the domain into several

domains
I e.g. address into

I country
I city
I zipcode
I street name
I number
I etc.

Multi-valued attribute
I use one tuple per value
I do not use one attribute per

value

Original
name email
Toto Toto@d1.com, Toto@d2.com

27



Examples

Structured domain
I split the domain into several

domains
I e.g. address into

I country
I city
I zipcode
I street name
I number
I etc.

Multi-valued attribute
I use one tuple per value
I do not use one attribute per

value

Original
name email
Toto Toto@d1.com, Toto@d2.com

Do not do that!
name email1 email2
Toto Toto@d1.com Toto@d2.com

27



Examples

Structured domain
I split the domain into several

domains
I e.g. address into

I country
I city
I zipcode
I street name
I number
I etc.

Multi-valued attribute
I use one tuple per value
I do not use one attribute per

value

Original
name email
Toto Toto@d1.com, Toto@d2.com

1NF
name email
Toto Toto@d1.com
Toto Toto@d2.com

27



Functional dependencies

Specifying constraints
I functional dependencies represent constraints associated to the

context
I definition

I R(A) a relation schema with attributes A = {A1, . . . ,AK}
I α ⊂ A and β ⊂ A
I a functional dependency is denoted α→ β
I α→ β holds on r an instance of R(A) if

∀t1 ∈ r , t2 ∈ r , t1[α] = t2[α]⇒ t1[β] = t2[β]

I in informal terms, the attributes α uniquely determine the attributes β
I property: if K is a super key of r an instance of R(A) then k → A

holds on r

28



Example

French population INSEE file (single relation)
Code région Nom de la région Code département Code arrondissement Code canton Code commune

76 Occitanie 46 2 16 195
76 Occitanie 34 2 09 010
76 Occitanie 34 3 23 248
32 Hauts-de-France 62 1 09 671
76 Occitanie 46 3 04 308

Nom de la commune Population municipale Population comptée à part Population totale
Missy-lès-Pierrepont 110 6 116
La Villeneuve-en-Chevrie 601 8 609
Lawarde-Mauger-l’Hortoy 181 0 181
Valleroy-le-Sec 169 5 174
Vitray 101 2 103

Some functional dependencies
I (Code département, Code Commune) is the primary key
I Code région→ Nom de la région
I Code département→ (Code région, Nom de la région)
I (Population municipale, Population comptée à part)→ Population

totale

29



Second normal form

2NF
I a relation r instance of R(A) is in the second normal form if

1. R(A) is in the first normal form and
2. if a functional dependencies α→ β holds on r then

I α is not a strict subset of the primary key of R(A)
I or β contains only attributes that belong to a candidate key of r

I in informal terms, when an attribute Ak is not part of a candidate
key of r , then it depends on the full key, not a subset of the key

I design problem
I redundancy
I Ak is not unique: values are repeated
I if α→ Ak and α is only a subset of the key, α is not unique!
I we should gather (α,Ak ) in another relation

30



Example

French population INSEE file (single relation)
Code région Nom de la région Code département Code arrondissement Code canton Code commune

11 Île-de-France 93 2 14 051
11 Île-de-France 93 1 06 010
11 Île-de-France 93 1 15 055
11 Île-de-France 93 2 19 078
11 Île-de-France 93 2 20 074

Nom de la commune Population municipale Population comptée à part Population totale
Noisy-le-Grand 64619 521 65140
Bondy 53074 307 53381
Pantin 54852 323 55175
Villepinte 35864 198 36062
Vaujours 6867 167 7034

2NF constraint not enforced
I (Code département, Code Commune) is the primary key
I Code région is not in a candidate key
I but Code département→ (Code région, Nom de la région)

31



Decomposition

Principle
I starting schema R(A)

I two attribute subsets A = A1 ∪ A2

I a decomposition of r instance of R(A) over A1 and A2 is the pair
of relations

r1 = ΠA1 (r) r2 = ΠA2 (r)

I a decomposition is lossless if

r = r1 ./ r2 = ΠA1 (r) ./ ΠA2 (r)

I notice that is A1 ∩ A2 = ∅, the natural join is the cartesian product

32



Decomposition and normalization

Principle
I if r ∈ R(A) is decomposed in a lossless way over A1 and A2 then

either
I A1 ∩ A2 → A1
I or A1 ∩ A2 → A2

I in the relational model if e.g. A1 ∩ A2 → A1
I A1 ∩ A2 is the primary key of ΠA1 (r)
I A1 ∩ A2 is a foreign key from ΠA2 (r) to ΠA1 (r)

I can be leveraged to enforce normal form(s)

33



Example

Possible solution with two relations
Code département Code arrondissement Code canton Code commune
93 2 14 051
93 1 06 010
93 1 15 055
93 2 19 078
93 2 20 074

Nom de la commune Population municipale Population comptée à part Population totale
Noisy-le-Grand 64619 521 65140
Bondy 53074 307 53381
Pantin 54852 323 55175
Villepinte 35864 198 36062
Vaujours 6867 167 7034

and
Code département Code région Nom de la région
01 84 Auvergne-Rhône-Alpes
02 32 Hauts-de-France
03 84 Auvergne-Rhône-Alpes
04 93 Provence-Alpes-Côte d’Azur
05 93 Provence-Alpes-Côte d’Azur

34



Trivial depencies and closure

Definitions
I if β ⊂ α then α→ β and the dependency is trivial
I if F is a set of functional dependencies, F+ is its closure defined

as the smallest set of functional dependencies S such that
I F ⊂ S
I if α→ β ∈ S and β → γ ∈ S, then α→ γ ∈ S
I for all α, β ⊂ α, α→ β ∈ S
I if α→ β ∈ S, for all δ, αδ → βδ ∈ S

Example
I if F = { Code département→ Code région, Code région→ Nom

de la région }
I then F+ contains Code département→ Nom de la région and

many others

35



Third normal form

3NF
I a relation r instance of R(A) is in the third normal form if

1. r is in the second normal form with respect to F and
2. for all α→ β ∈ F+, at least one of the following property is true

I α→ β is trivial
I α is a super key of r
I each attribute A in β − α is contained in a candidate key of r

I design problem
I redundancy
I not covered by the 2NF (more general dependencies)
I non trivial α→ β when α is not a super key: α is repeated and so is
β

I in addition β is not unique even combined by other attributes

36



Example

Main relation from the 2NF city database
Code département Code arrondissement Code canton Code commune
93 2 14 051
93 1 06 010
93 1 15 055
93 2 19 078
93 2 20 074

Nom de la commune Population municipale Population comptée à part Population totale
Noisy-le-Grand 64619 521 65140
Bondy 53074 307 53381
Pantin 54852 323 55175
Villepinte 35864 198 36062
Vaujours 6867 167 7034

3NF constraint not enforced
I (Population municipale, Population comptée à part)→ Population

totale
I (Population municipale, Population comptée à part) is not a super

key
I Population totale is not part of a super key

37



Example

Theoretical solution
I remove Population totale from the main relation
I create relation with (Population municipale, Population comptée à

part, Population totale) using (Population municipale, Population
comptée à part) as the primary key

In practice
I Population totale=Population municipale + Population comptée à

part
I remove Population totale from the relation!

38



Boyd-Codd Normal Form

BCNF
I a relation r instance of R(A) is in the Boyd-Codd normal form if

1. r is in the second normal form with respect to F and
2. for all α→ β ∈ F+, at least one of the following property is true

I α→ β is trivial
I α is a super key of r

I 3NF with additional restriction
I trade off between redundancy and dependency preservation
I a database can always be put in 3NF with dependency preservation

(i.e. functional dependencies can be verified relation by relation)
I a database can always be put in BCNF but not always with

dependency preservation

39



Changelog

I November 2020: initial version

40



Licence

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/

41

http://creativecommons.org/licenses/by-sa/4.0/


Version

Last git commit: 2020-12-08
By: Fabrice Rossi (Fabrice.Rossi@apiacoa.org)
Git hash: f4c571dde251990da4b13badf5b505a8ef2647f6

42


	Conceptual design
	Logical design
	Translating an ER model to a Relational Model
	Normal forms


