
Clustering

Fabrice Rossi

CEREMADE
Université Paris Dauphine

2021



Outline

Introduction

Hierarchical clustering

K-means and related methods

DBSCAN

Fuzzy and probabilistic models

2



Unsupervised learning

Setting
I D = ((Xi )1≤i≤N)

I no target value!
I goal: “understanding” the data
I in practice, many concrete goals such as

I finding clusters
I finding frequent patterns
I finding outliers
I modeling the data distribution
I etc.

3



Unsupervised learning

Setting
I D = ((Xi )1≤i≤N)

I no target value!
I goal: “understanding” the data
I in practice, many concrete goals such as

I finding clusters
I finding frequent patterns
I finding outliers
I modeling the data distribution
I etc.

3



Clusters

Definition
In a data set, a cluster is a group of objects that are more similar to
each other than to objects from the rest of the data set.

Difficulties
I group?
I similar?
I more than?
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Non obvious task
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Applications

Simplification (pre-processing)
I large scale data analysis: replace a group of objects by a single

typical object
I coarse grain analysis before a finer grain one (see e.g. Yippy)

Knowledge discovery
I consumer analysis
I image analysis (zone extraction)
I evolutionary biology
I etc.
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Yippy example

10



Yippy example

10



Yippy example

10



Image quantization

Image as data set
I a pixel: a vector in R3

I image: set of pixels a.k.a.
vectors

I clustering: comparable pixels
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Image quantization

Pixels
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Image quantization

50 typical pixels
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Image quantization

50 typical pixels
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How to build a clustering method?

Ingredients
I similarity or dissimilarity: how to compare objects?
I group structure: set, “fuzzy” set, probabilistic membership?
I clustering structure: disjoint sets, overlapping sets, complete

partition?

Classical example: standard k-means
I dissimilarity: euclidean distance on numerical variables (i.e.
X = RP)

I groups: standard sets
I clustering structure: groups for a partition of the data set
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Clustering is ill posed

Problems
I vague definition with possible extensions (e.g. find groups that

reflect the “underlying structure” of the data set)
I vastly different practical goals (from pre-processing to knowledge

discovery)
I no universal quality criterion:

I almost one criterion per method!
I lack of task oriented criterion

I impossibility result in some situations

Clustering as a process
I for knowledge discovery
I usefulness rather than quality
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Results and tools

Using a clustering
I cluster analysis: what do they contain?

I list of the members
I representative element(s)

I cluster “positioning”:
I relative positioning in space
I significant differences

Tasks oriented analysis
I can the analyst understand the clusters?
I can the clustering summarize the data? In what sense?
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Families of clustering algorithms

Four main families...
I hierarchical algorithms: hierarchical clustering
I centroid based algorithms: k-means
I density based algorithms: DBSCAN
I probabilistic algorithms: mixture models and EM

but a complex landscape
I k-means as a limit case of some mixture models
I DBSCAN is somewhat related to single linkage hierarchical

clustering
I numerous hybrid techniques
I etc.
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Clustering and dissimilarity

Minimal assumption
I X is equipped with a dissimilarity d
I d is a dissimilarity on X iff:

1. d is a function from X × X to R+

2. ∀X,X′, d(X,X′) = d(X′,X)
3. ∀X,X′, X 6= X′ ⇔ d(X,X′) > 0

Links with clustering
I many algorithms can work with arbitrary dissimilarities
I density, separability, compactness, in general quality metrics are

expressed in terms of the dissimilarity
I results strongly depend on the dissimilarity
I plain RP : euclidean dissimilarity!
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Partitions

Clustering and partition
D = ((Xi )1≤i≤N)

I group: a subset of {1, . . . ,N}
I clustering structure: each observation (i.e. index in {1, . . . ,N}) is

in one unique group + no empty group
I building a clustering⇔ choosing a partition!
I here a cluster is also a class

Remarks
I this is only one possible structure among others!
I one can have Xi = Xj for i 6= j

I we expect i and j to be in the same group!
I groups are described at the index level
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Hierarchy

Partial order on partitions
I a partition P is finer than a partition Q (P ≤ Q) if any class of P is

a subset of a class of Q
I example

P =
{
{1,2}, {3,4}, {5,6}

}
≤
{
{1,2,3,4}, {5,6}

}
= Q

Hierarchy
A hierarchy for D = ((Xi )1≤i≤N) is a fully ordered set of partitions
containing the trivial partitions

1. {{1, . . . ,N}}
2. {{1} , {2} , . . . , {N}}
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Dendrogram

Graphical representation of a hierarchy by a tree

I most refined partition (trivial)
I B and C are in the same

class at level 2: leaves of a
common node

I same thing for D and E, but
a level 3

I A, B, and C: new node that
shows the order between
partitions

I more nodes until the
coarsest partition
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Dendrogram

Understanding dendrograms
I provides a summary of the

hierarchy
I a level in the tree (a.k.a. a node)

corresponds to merging two
classes

I the height of a level/node gives the
“quality” of the merging

I horizontal cut⇒ partition

A B C D E F

Common errors
I the dendrogram summarizes the hierarchy not the data
I do not interpret the order of the leaves: it is almost arbitrary (2N−2

orders for N leaves)
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Example
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I look for “gaps” between levels: potential candidates for interesting
partitions

I local partitions (i.e. branches) might also be interesting
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Hierarchical clustering

Agglomerative methods
I start with P = {{1} , {2} , . . . , {N}}
I merge two classes in such a way that the resulting class is a

cluster
I keep doing that until reaching Q = {{1, . . . ,N}}

Divisive methods
I start with Q = {{1, . . . ,N}}
I split one class into two sub-classes that are clusters
I keep doing that until reaching P = {{1} , {2} , . . . , {N}}
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Hierarchical clustering

Common elements
I those methods produce a hierarchy with N partitions
I they need a way to assess suitability of the classes as clusters
I dissimilarity based algorithms

Differences
I numerous agglomerative methods
I relatively few divisive ones
I very different computational problems:

I agglomerative: Θ
(
N2) potential merges at each step

I divisive: Θ
(
2N−1) possible splits at the first step

29



Agglomerative methods

Core principle
I merge classes when they contain similar objects
I for singleton classes {Xi} and {Xj} use d(Xi ,Xj ) to judge similarity
I key point: extend the dissimilarity to groups of objects

General algorithm
I initial partition: P1 = {{1} , {2} , . . . , {N}}
I for k from 2 to N:

I compute the dissimilarity between all current classes in Pk−1

I build Pk from Pk−1 by merging the two least dissimilar classes
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Inter-classes dissimilarities

Aggregation functions
Let A and B be two classes (of indices)
I single linkage (min)

dS(A,B) = min
i∈A,j∈B

d(Xi ,Xj )

I complete linkage (max)

dS(A,B) = max
i∈A,j∈B

d(Xi ,Xj )

I average linkage

dS(A,B) =
1
|A||B|

∑
i∈A,j∈B

d(Xi ,Xj )
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Illustration
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Computational complexity

Naive approach
I N − 1 steps
I step k searches for the best merge over (N−k+1)(N−k)

2 pairs of
classes

I overall Θ
(
N3
)

with adapted dissimilarity calculations
I standard implementation in many packages

Optimized solution
I simple priority list based solutions in Θ

(
N2 log N

)
I optimized algorithms in Θ

(
N2
)

(see fastcluster in R)
I notice that the dissimilarity must be calculated! For X = RP , this

adds in general a Θ
(
N2P

)
cost.

34
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In practice

Outline
1. choose a dissimilarity
2. choose an aggregation function
3. build the hierarchy
4. study the dendrogram:

I the heights are the dissimilarities between merged classes
I gaps can be seen as abrupt changes in merge qualities
I visualization methods can be used to display the classes (e.g.

Principal Component Analysis)

Limitations
I results strongly depend on both the dissimilarity and the

aggregation function
I somewhat slow
I exploratory tool rather than clustering tool
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Example

Remarks
I initial behaviors are quite independent from the aggregation

function
I single linkage:

I tendency to produce “long” classes (chaining)
I outlier isolation

I complete linkage:
I balanced class sizes
I classes can be close one to another (crowding)

I average linkage
I average behavior...
I resistant to noise but sensitive to dissimilarity transformation

38



Cluster quality

Classes as clusters
A partition provides a good clustering if its classes are
I homogeneous
I well separated

Criteria
I homogeneity via the diameter

D(A) = max
i∈A,j∈A

d(Xi ,Xj )

I separation via dissimilarity
I a good clustering: small diameters and large dissimilarities!

39



Aggregation function

Single linkage
I no control over D(A) during the merge
I could end up with classes with very different diameters
I distances between classes can be very small relatively to their

diameter

Complete linkage
I the diameter is the quality measure of a merge!
I however, no control at all over separability

Two extreme cases
with the average linkage in between...

40



In practice

General rules of thumb
I single linkage

I gives frequently poor results
I might be useful to spot outliers

I average linkage
I gives generally good clusters
I interesting compromise between diameter and separation

I complete linkage
I maximally homogeneous classes
I useful when there are no real clusters (i.e., clusters that can be

easily separated)
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Partition quality

Quality versus distance
I aggregation functions express the quality of a merge in terms of

distances (min, max or average)
I alternative solution: express the quality using the resulting cluster

Within “variance”
I within variance of a class A (homogeneity measure)

W (A) =
1
|A|

∑
i∈A,j∈A

d(Xi ,Xj )

I total within variance of a partition P = {A1, . . . ,AK}

W (P) =
K∑

k=1

W (Ak )

42



Ward’s method

Optimizing the within variance
I same aggregative algorithm than with dissimilarities
I (non)quality of a merge:

I the increase in within variance induced by merging A with B
I local computation

∆(A,B)→A∪B = W (A ∪ B)−W (A)−W (B)

I can be seen as a greedy optimization of W (P) at each stage of
the hierarchy
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Discussion

Ward versus average
I somewhat related hierarchy
I Ward’s method tend to favor more balanced class size
I Ward’s method is closely related to other methods (e.g. K-means)
I outliers are more easily aggregated with other points in the Ward’s

method

Numerous other variants
I centroid and median linkage (distances between classes induced

by prototype based representation)
I minimax linkage (enclosing ball diameter)
I etc.
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Divisive methods

Generic algorithm
I initial partition: P1 = {1, . . . ,N}
I for k from 2 to N:

I chose a class to split
I build Pk from Pk−1 by splitting the chosen class into two sub classes

Difficulties
I choosing the class to split is relatively easy by using e.g. a

diameter criterion
I but splitting is hard: too many possible splits (2N−1 − 1)!

DIANA
I DIvisive ANAlysis Clustering (available in R in cluster)
I reference algorithm by Kaufman & Roussew, 1990

47
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DIANA

P1 ← {1, . . . ,N}
for k in 2, . . . ,N do

find Cj in Pk−1 with the largest diameter
find Xl for l ∈ Cj that maximizes

∑
l′∈Cj

d(Xl ,Xl′)

Ca
j ← {l} and Cb

j ← Cj \ {l}
repeat

for all t in Cj compute

D(t) =
1
|Cb

j |
∑

u∈Cb
j

d(Xt ,Xu)− 1
|Ca

j |
∑
u∈Ca

j

d(Xt ,Xu)

if v = arg maxt D(t) is such that D(v) > 0 move v from Cb
k to Ca

k
until maxt D(t) < 0
define Pk as Pk−1 in which Cj is replaced by Ca

j and Cb
j

end for
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Summary

Hierarchical clustering

provide a hierarchy and a dendrogram
applicable to any dissimilarity
Θ
(
N2
)

running time for aggregative methods

not much guarantees about the final result
inferior results for some methods (e.g. single linkage)

Generic questions
I dissimilarity?
I hierarchical method?
I cluster number?
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Criterion based clustering

Optimization point of view
I define a quality criterion for a clustering structure
I optimize this quality over “all” clustering structures
I typical example:

I within variance as quality measure
I optimized over partitions

Difficulties
I no obvious quality criterion for exploratory tasks
I very difficult discrete optimization problems (NP-hard in some

cases)
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Quantization point of view

Summarizing a data set
I key idea: represent a data set D = (Xi )1≤i≤N by a smaller set of

prototypes D = (γk )1≤k≤K

I Xi is presented by a prototype: zi is the index in {1, . . . ,K} of this
prototype

I natural risk associated to the problem

E(Γ, z) =
N∑

i=1

d(Xi ,γzi
),

where z = (z1, . . . , zN) and Γ = (γ1, . . . ,γK ).

I natural clustering interpretation: z defines a partition of {1, . . . ,N}
into K classes!
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Summarizing a data set
I key idea: represent a data set D = (Xi )1≤i≤N by a smaller set of

prototypes D = (γk )1≤k≤K

I Xi is presented by a prototype: zi is the index in {1, . . . ,K} of this
prototype

I natural risk associated to the problem

E(Γ, z) =
N∑

i=1

d(Xi ,γzi
),

where z = (z1, . . . , zN) and Γ = (γ1, . . . ,γK ).
I natural clustering interpretation: z defines a partition of {1, . . . ,N}

into K classes!
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Optimization

Difficult!
I minimizing E(Γ, z) is a combinatorial problem
I for standard d (such as the squared Euclidean distance when
X = RP) this is NP-hard

Simple sub-problems
I minimizing E(Γ, z) with respect to z is easy

arg min
z
E(Γ, z) =

(
arg min

k∈{1,...,K}
d(X1,γk ), . . . , arg min

k∈{1,...,K}
d(XN ,γk )

)
I if prototypes are restricted to be elements of the data set D,

optimizing with respect to Γ is also easy

arg min
Γ
E(Γ, z) =

arg min
γk∈D

∑
i,zi =k

d(Xi ,γk )


1≤k≤K
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Coordinate descent

A.k.a. alternating optimization
a simple minimization algorithm for a function F (u, v):

select u0 randomly
k ← 1
repeat

vk = arg minv F (uk−1, v)
uk = arg minu F (u, vk )
k ← k + 1

until convergence

Properties
I converges to a local minimum
I but not to a global one
I improved by multiple restarts
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K-medoids

Algorithm
select Γ as a random subset of D
repeat

zi ← arg mink∈{1,...,K} d(Xi ,γk ) . assignment phase
γk ← arg minγ∈D

∑
i,zi =k d(Xi ,γ) . representation phase

until convergence

Comments
I one of the most well known clustering algorithm for arbitrary

dissimilarities
I complexity Θ (NK ) + Θ

(
N2
)

(assuming d is known)
I complex quantization effects when N is small (“data holes”)
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Euclidean/Hilbert case

When X = RP

I one uses in general d(Xi ,Xj ) = ‖Xi − Xj‖2

I then we do need to restrict γ to elements of D
I we have

E(Γ, z) =
K∑

k=1

∑
i,zi =k

‖Xi − γk‖
2

I and thus

arg min
Γ
E(Γ, z) =

 1
sk

∑
i,zi =k

Xi


1≤k≤K

,

where sk = | {i|zi = k} |
I identical results when X is a Hilbert space (a RHKS for instance)
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K-means algorithm

Algorithm
select Γ as a random subset of D
repeat

zi ← arg mink∈{1,...,K} ‖Xi − γk‖2 . assignment phase
γk ← 1

sk

∑
i,zi =k Xi . representation phase

until convergence

Comments
I one of the most well known clustering algorithm
I complexity Θ (NKP)

I numerous variants and improvements (kmeans++ for instance)
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Initialization

Standard solution
I random prototypes chosen uniformly at random in the data set

without replacement
I random clusters do not work properly

k-means++ (Arthur & Vassilvitskii, 2007 [1])

1. γ1 chosen uniformly at random in the data set
2. for k in 2 to K :

2.1 for Xi ∈ D \
{
γ1, . . . ,γk−1

}
compute pi =

mink∈{1,...,k−1} d(Xi ,γk )2∑
j 6=i mink∈{1,...,k−1} d(Xj ,γk )2

2.2 chose γk in D \
{
γ1, . . . ,γk−1

}
according to the probabilities (pi )i

I theoretical guarantees
I practical efficiency
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K-means and general clustering

Variance decomposition
I for any C ⊂ {1, . . . ,N}∑

i∈C

∑
j∈C

‖Xi − Xj‖2 = 2|C|
∑
i∈C

∥∥∥Xi − X̂C

∥∥∥2
,

where
X̂C =

1
|C|

∑
i∈C

Xi

I and therefore if Ck = {i ∈ {1, . . . ,N} | zi = k}

min
Γ

N∑
i=1

∥∥Xi − γzi

∥∥2
=

1
2

K∑
k=1

1
|Ck |

∑
i∈Ck

∑
j∈Ck

‖Xi − Xj‖2

=
1
2

W ({C1, . . . ,Ck})
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Variance and clustering

Quantization and within variance
I minimizing the quantization error is equivalent to maximizing the

total within variance
I K-means is very close to Ward’s method!

Total variance

I the total variance is
∑N

i=1

∥∥∥Xi − X̂D
∥∥∥2

I we have
N∑

i=1

∥∥∥Xi − X̂D
∥∥∥2

= min
Γ

N∑
i=1

∥∥∥Xi − X̂Cγzi

∥∥∥2
+

K∑
k=1

|Ck |
∥∥∥X̂k − X̂D

∥∥∥2

=
1
2

W ({C1, . . . ,Ck}) +
1
2

K∑
k=1

K∑
k′=1

|Ck ||Ck′ |
∥∥∥X̂k − X̂k′

∥∥∥2
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Variance and clustering

Between variance

I B(C1, . . . ,Ck ) = 1
2

∑K
k=1

∑K
k ′=1 |Ck ||Ck ′ |

∥∥∥X̂k − X̂k ′

∥∥∥2

I weighted pairwise distances between prototypes
I measures how spread the clusters are

Within and between variance
I total variance = within variance + between variance
I the total variance does not depend on the clustering
I by minimizing the within variance, one maximizes the between

variance!
I clusters are both compact and well separated (at least at the

prototype level)
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Summary

K-means
clear quantification interpretation
compact clusters with separated prototypes
Θ (NKP) running time
efficient initialization strategy (k-means++)
K ?
spherical clusters which might be very close one to another
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Density based clustering

Cluster = dense region
I clusters are areas of high density compared to other areas
I density based separation: clusters are separated by low density

areas
I no direct assumption on cluster shape and on relative distances

DBSCAN
I Ester, Kriegel, Sander & Xu, 1996 [2]
I most well known density based algorithm
I simple density model:

I enough points in a tight region
I two parameters:

I minPts: minimal number of points in a region
I ε: radius of the region
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DBSCAN

Several types of points
I core point: Xi such that |{X ∈ D|d(Xi ,X) ≤ ε}| ≥ minPts
I directly density reachable point from a core point Xi : Xj such that

d(Xi ,Xj ) ≤ ε
I density reachable point from a core point Xi : Xj such that there is

a chain of core points Xk1 , . . . ,Xkl with d(Xkt ,Xkt+1 ) ≤ ε, Xk1 = Xj
and Xkl = Xi

I border point: density reachable points that are not core points
I density connected points: two points are density connected is they

are density reachable from the same (core) point
I noise point: points that are not density reachable from a core point
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Types of points

I A and red points: core
points

I B and C: border points
I N: noise point

illustration from https://commons.wikimedia.org/wiki/File:DBSCAN-Illustration.svg
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Clusters and noise

DBSCAN clusters
A cluster in DBSCAN is a maximal set of density connected points.

Noise
Points that do not belong to DBSCAN clusters form the noise.

Clustering model
I DBSCAN produces a partition of D into C1, . . . ,CK ,N, where the

Ck are the clusters and N is the noise
I K is not specified directly but only a consequence of minPts and ε
I notice that K ≤ N

minPts as a cluster must contain a core point and
has therefore a minimal size of minPts

I border points can belong to several clusters and a tie breaking
criterion is used to assign them to a single one
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Algorithmic aspects

Algorithm
for all X ∈ D do

if X is not labelled then
N ← ε-neighborhood of X
if |N| < minPts then

label X as noise
else

label X with a new cluster label k
label with k all density reachable points from X (including

noise ones)
end if

end if
end for
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Algorithmic aspects

Complexity
I core operation: ε-neighborhood calculation
I done once for each point in D
I naive complexity in N ⇒ Θ

(
N2
)

I spatial indexing (R∗ tree, for instance) might decrease the cost but
not to Θ (() N log N)

I minimal cost: Θ
(

N
4
3

)
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Parameters

minPts
I limited impact on the results above a minimal value
I original recommendation: minPts = 4
I current recommendation: minPts = 2× P (larger values for noisy

data)

ε

I very difficult to set
I plays a role similar to the one of k in the k -means
I one should explore the effects of using different values of ε
I “elbow” approach on the k -nn distance graph

74



Example

1 2 3 4 5

11
12

13
14

15

Flavanoids

A
lc

oh
ol

0 50 100 150

0.
5

1.
0

1.
5

2.
0

4−
N

N
 d

is
ta

nc
e

75



Diagnostic plots
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Clusters

ε = 0.65   k = 1 noise = 1
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Clusters

ε = 0.62125   k = 1 noise = 1
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Clusters

ε = 0.5925   k = 1 noise = 2
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Clusters

ε = 0.56375   k = 1 noise = 3
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Clusters

ε = 0.535   k = 1 noise = 3

77



Clusters

ε = 0.50625   k = 1 noise = 3
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Clusters

ε = 0.4775   k = 1 noise = 4
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Clusters

ε = 0.44875   k = 1 noise = 4
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Clusters

ε = 0.42   k = 1 noise = 4
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Clusters

ε = 0.39125   k = 1 noise = 5
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Clusters

ε = 0.3625   k = 1 noise = 10
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Clusters

ε = 0.33375   k = 1 noise = 17
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Clusters

ε = 0.305   k = 2 noise = 23
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Clusters

ε = 0.27625   k = 3 noise = 24
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Clusters

ε = 0.2475   k = 6 noise = 30
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Clusters

ε = 0.21875   k = 7 noise = 36
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Clusters

ε = 0.19   k = 11 noise = 56
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Clusters

ε = 0.16125   k = 12 noise = 93
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Clusters

ε = 0.1325   k = 11 noise = 112
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Clusters

ε = 0.10375   k = 6 noise = 151
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Clusters

ε = 0.075   k = 2 noise = 170
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Summary

DBSCAN
noise detection
arbitrary shaped clusters
mostly deterministic
Θ
(
N2P

)
running time in the worst case

arbitrary shaped clusters
very sensitive to the value of ε
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Non crisp clusters

Ambiguous points
I some points are difficult to associate to a given cluster
I numerous situations: very close clusters, “interpolation” points,

etc.

Soft clusters
I Xi belongs to Ck with “intensity”
I clustering through an assignment matrix: (Mik )1≤i≤N,1≤k≤K , with

I Mik ∈ [0, 1]: intensity between 0 and 1
I
∑K

k=1 Mik = 1: total unitary grade
I crisp limit: Mik ∈ {0, 1}

I interpretations:
I Mik as a membership grade: fuzzy sets
I Mik as a membership probability: mixture models
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Fuzzy vector quantization

Vector quantization with membership
I prototypes: Γ = (γ1, . . . ,γK )

I assignment matrix: (Mik )1≤i≤N,1≤k≤K

I quality criterion

Eb(Γ, z) =
N∑

i=1

K∑
k=1

Mb
ik d(Xi ,γk ),

Fuzziness parameter
I b represents the non crispness of the assignment
I b = 1 corresponds to the standard quantization problem
I b > 1 generates fuzzy assignments
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Fuzzy c-means

Principle
I Eb(Γ, z) is easily optimized with alternate optimization
I constrained optimization with respect to M

Algorithm
for d(Xi ,γk ) = ‖Xi − γk‖2

select Γ as a random subset of D
repeat

compute dik = ‖Xi − γk‖2

Mik =
(1/dik )1/(b−1)∑K
j=1(1/dij )1/(b−1)

. assignment phase

γk ← 1∑N
j=1 Mb

jk

∑N
i=1 Mb

ik Xi . representation phase

until convergence
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Examples

Standard K−means
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Examples

b = 1.1
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Examples

b = 1.2
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Examples

b = 1.5
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Examples

b = 2
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Examples

b = 5
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Examples

b = 10
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Fuzziness evolution

Kmeans

b=1.1

b=1.2

b=1.5

b=2

b=5

b=10
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Defuzzified clustering

Standard K−means
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Defuzzified clustering

b = 1.1
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Defuzzified clustering

b = 1.2
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Defuzzified clustering

b = 1.5
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Defuzzified clustering

b = 2
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Defuzzified clustering

b = 5
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Defuzzified clustering

b = 10
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Summary

Fuzzy c-cmeans

soft clustering
simple interpretation and implementation
identify points that are complex to cluster
slightly more expansive than the k-means
quite sensitive to the additional parameter b

Strategy
I test several values of b
I use diagnostic plots
I can be used to identify core points
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Fuzzy versus probabilistic

Mik as a membership grade
I intrinsic fuzziness
I clusters are inherently ill defined
I no randomness

Mik as a probability
I missing information
I belief
I clusters are perfectly defined but unknown to the analyst
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Probabilistic approach

Generative models
I parametric model for the distribution of (Xi )1≤i≤N

I parameter estimation from a data set via maximum likelihood (or
other techniques)

Clustering oriented models
I mixture models
I K parametric models with prior probabilities πk (

∑K
k=1 πk = 1)

I generative process for Xi

1. chose zi ∈ {1, . . . ,K} with probability πk for k
2. generate Xi according to the parametric model zi
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Formal model

Hidden variable model
I each observation Xi is associated to a hidden variable Zi

I each Zi takes values in {1, . . . ,K}, with P(Zi = k) = πk

I the Zi are independent and given Z1, . . . ,ZN , the Xi are
independent

I we are given K parametric distributions (pk )1≤k≤K on X with
parameters θ = (θk )1≤k≤K

I Xi | Zi = k is distributed according to pk

I then the log likelihood of the data set D = (xi )1≤i≤N is given by

log p(D | π, θ) =
N∑

i=1

log

(
K∑

k=1

πk pk (xi | θk )

)
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Complete likelihood

Notations
I integer notation Zi ∈ {1, . . . ,K}
I binary notation Zi ∈ {0,1}K with

∑K
k=1 Zik = 1

I Zi = k ⇔ Zik = δik

I then p(zi | π) =
∏K

k=1 π
zik
k

Complete likelihood
I the log likelihood of the full data set DF = (xi , zi )1≤i≤N is given by

log p(DF | π, θ) =
N∑

i=1

K∑
k=1

zik (log πk + log pk (xi | θk ))

I easy to optimize compare to log p(D | π, θ)
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Guessing the hidden variables

Reversing the model
I according to the Bayes rule

P(Zi = k | xi , π, θ) =
pk (xi | θk )πk∑K
l=1 πlpl (xi | θl )

I γik = P(Zi = k | xi , π, θ) is the responsibility of component k for
generating xi

I zi can be “guessed” in a probabilistic sense given the true
parameters of the model

91



EM algorithm

Key ideas
I averaging

∑N
i=1
∑K

k=1 zik (log πk + log pk (xi | θk )) over the
probabilistic guesses of the zi

I using the best possible guess γik = P(Zi = k | π, θ)

I alternating between improving the estimates of the parameters π
and θ and improving the estimates of the hidden variables γik
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EM algorithm

initialize π(0) and θ(0)

t ← 1
repeat

compute . E Phase

γ
(t)
ik =

pk (xi | θ(t−1)
k )π

(t−1)
k∑K

l=1 π
(t−1)
l pl (xi | θ(t−1)

l )

compute . M Phase

N(t)
k =

N∑
i=1

γ
(t)
ik π

(t)
k =

N(t)
k

N

θ
(t)
k = arg max

θk

N∑
i=1

γ
(t)
ik log pk (xi | θk )

t ← t + 1
until convergence
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Gaussian mixture

Standard approach for X = RP

I each pk is a multivariate Gaussian distribution
I θk = (µk ,Σk ) and

p(xi |µk ,Σk ) =
1

(2π)P/2|Σk |1/2 e−
1
2 (xi−µk )T Σ−1

k (xi−µk )

I then we have

µ
(t)
k =

1

N(t)
k

N∑
i=1

γ
(t)
ik xi

Σ
(t)
k =

1

N(t)
k

N∑
i=1

γ
(t)
ik (xi − µ(t)

k )T (xi − µ(t)
k )
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Summary

Mixture models
soft clustering
rich outputs
automatic model selection (via BIC)
very flexible framework
somewhat complex implementation
high computational cost in some cases
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Conclusion
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Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
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Version

Last git commit: 2021-01-19
By: Fabrice Rossi (Fabrice.Rossi@apiacoa.org)
Git hash: 97cfd0a9975cf193f5790845c00e476c1572a327
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Changelog

I April 2019:
I added k-means++
I added DBSCAN
I added fuzzy c-means
I added mixture models

I March 2018: initial version
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