Clustering

Fabrice Rossi

CEREMADE
Université Paris Dauphine

2021



Introduction



Unsupervised learning

Setting

> D = ((Xi)1<i<n)

> no target value!

» goal: “understanding” the data

» in practice, many concrete goals such as
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> finding frequent patterns
> finding outliers
>
>
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Definition
In a data set, a clusteris a group of objects that are more similar to
each other than to objects from the rest of the data set.



Definition
In a data set, a clusteris a group of objects that are more similar to
each other than to objects from the rest of the data set.

Difficulties
> group?

> similar?
» more than?
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Applications

Simplification (pre-processing)

> large scale data analysis: replace a group of objects by a single
typical object

» coarse grain analysis before a finer grain one (see e.g. Yippy)
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Applications

Simplification (pre-processing)
> large scale data analysis: replace a group of objects by a single
typical object
» coarse grain analysis before a finer grain one (see e.g. Yippy)

Knowledge discovery

» consumer analysis

» image analysis (zone extraction)
> evolutionary biology

> etc.


http://www.yippy.com/
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Image quantization

Image as data set
» apixel: a vector in R3

> image: set of pixels a.k.a.
vectors

» clustering: comparable pixels




Pixels




Image quantization

50 typical pixels
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How to build a clustering method?

Ingredients

» similarity or dissimilarity: how to compare objects?
» group structure: set, “fuzzy” set, probabilistic membership?

» clustering structure: disjoint sets, overlapping sets, complete
partition?

Classical example: standard k-means
» dissimilarity: euclidean distance on numerical variables (i.e.
X =RP)
> groups: standard sets
» clustering structure: groups for a partition of the data set



Clustering is ill posed

Problems
» vague definition with possible extensions (e.g. find groups that
reflect the “underlying structure” of the data set)
» vastly different practical goals (from pre-processing to knowledge
discovery)
» no universal quality criterion:

> almost one criterion per method!
> lack of task oriented criterion

> impossibility result in some situations



Clustering is ill posed

Problems
» vague definition with possible extensions (e.g. find groups that
reflect the “underlying structure” of the data set)

» vastly different practical goals (from pre-processing to knowledge
discovery)

» no universal quality criterion:

> almost one criterion per method!
> lack of task oriented criterion

> impossibility result in some situations

Clustering as a process

» for knowledge discovery
» usefulness rather than quality



Results and tools

Using a clustering

» cluster analysis: what do they contain?

> list of the members
> representative element(s)

» cluster “positioning”:
> relative positioning in space
> significant differences

Tasks oriented analysis

» can the analyst understand the clusters?
» can the clustering summarize the data? In what sense?



Families of clustering algorithms

Four main families...
» hierarchical algorithms: hierarchical clustering
» centroid based algorithms: k-means
» density based algorithms: DBSCAN
» probabilistic algorithms: mixture models and EM



Families of clustering algorithms

Four main families...
» hierarchical algorithms: hierarchical clustering
» centroid based algorithms: k-means
» density based algorithms: DBSCAN
» probabilistic algorithms: mixture models and EM

but a complex landscape

» k-means as a limit case of some mixture models

» DBSCAN is somewhat related to single linkage hierarchical
clustering

» numerous hybrid techniques
> etc.



Clustering and dissimilarity

Minimal assumption
> X is equipped with a dissimilarity d
> dis a dissimilarity on X iff:
1. dis a function from X x X to Rt
2. VX, X', d(X,X) = d(X,X)
3. VX, X', X £ X' < d(X,X) > 0

Links with clustering

» many algorithms can work with arbitrary dissimilarities

> density, separability, compactness, in general quality metrics are
expressed in terms of the dissimilarity

> results strongly depend on the dissimilarity
» plain R”: euclidean dissimilarity!



Hierarchical clustering



Clustering and partition
D = ((Xj)1<i<n)
> group: a subset of {1,..., N}
> clustering structure: each observation (i.e. index in {1,...,N})is
in one unique group + no empty group
» building a clustering < choosing a partition!
» here a clusteris also a class



Clustering and partition
D = ((Xj)1<i<n)
> group: a subset of {1,..., N}
> clustering structure: each observation (i.e. index in {1,...,N})is
in one unique group + no empty group
» building a clustering < choosing a partition!
» here a clusteris also a class

Remarks

» this is only one possible structure among others!
» one can have X; = X; for j # j

> we expect i and j to be in the same group!
» groups are described at the index level



Partial order on partitions
» a partition P is finer than a partition Q (P < Q) if any class of P is
a subset of a class of Q
» example

P={{1,2},{3,4},{5.6}} < {{1,2,3,4},{5,6}} = Q

Hierarchy

A hierarchy for D = ((X;)1<i<n) is a fully ordered set of partitions
containing the trivial partitions

1. {{1,...,N}}
2. {{1}.{2},...,{N}}



Graphical representation of a hierarchy by a tree

20



Graphical representation of a hierarchy by a tree

A B C D E F

20



Graphical representation of a hierarchy by a tree

» most refined partition (trivial)

Al [B] IC] DI [El [F]

20



Graphical representation of a hierarchy by a tree

» most refined partition (trivial)

» B and C are in the same
class at level 2: leaves of a
common node

-
Al [B] IC] DI [El [F]

20



Graphical representation of a hierarchy by a tree

» most refined partition (trivial)

» B and C are in the same
class at level 2: leaves of a
common node

» same thing for D and E, but
alevel 3

— [ ]
Al B €] D [E [F

20



Graphical representation of a hierarchy by a tree

» most refined partition (trivial)

» B and C are in the same
class at level 2: leaves of a
common node

» same thing for D and E, but
alevel 3

—l_l_l |—| > A, B, and C: new node that
shows the order between
“E ‘ partitions

20



Graphical representation of a hierarchy by a tree

C] D l\

2
>

most refined partition (trivial)

B and C are in the same
class at level 2: leaves of a
common node

same thing for D and E, but
alevel 3

A, B, and C: new node that
shows the order between
partitions

more nodes until the
coarsest partition

20



Graphical representation of a hierarchy by a tree

C] D l\

2
>

most refined partition (trivial)

B and C are in the same
class at level 2: leaves of a
common node

same thing for D and E, but
alevel 3

A, B, and C: new node that
shows the order between
partitions

more nodes until the
coarsest partition

20



Understanding dendrograms

» provides a summary of the
hierarchy

» a level in the tree (a.k.a. a node)
corresponds to merging two
classes

> the height of a level/node gives the
“quality” of the merging AT B CDEE R

21
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height

level

> look for “gaps” between levels: potential candidates for interesting
partitions

» local partitions (i.e. branches) might also be interesting
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Hierarchical clustering

Agglomerative methods

> startwith P = {{1},{2},...,{N}}

» merge two classes in such a way that the resulting class is a
cluster

> keep doing that until reaching Q = {{1,...,N}}

Divisive methods

> start with Q = {{1,...,N}}
» split one class into two sub-classes that are clusters
> keep doing that until reaching P = {{1},{2},...,{N}}

28



Hierarchical clustering

Common elements
» those methods produce a hierarchy with N partitions
> they need a way to assess suitability of the classes as clusters
» dissimilarity based algorithms

Differences

» numerous agglomerative methods
> relatively few divisive ones
> very different computational problems:

> agglomerative: © (NZ) potential merges at each step
> divisive: © (2V") possible splits at the first step

29



Agglomerative methods

Core principle
> merge classes when they contain similar objects
» for singleton classes {X;} and {X;} use d(X;, X;) to judge similarity
> key point: extend the dissimilarity to groups of objects

General algorithm

> initial partition: P = {{1},{2},...,{N}}
» for k from 2 to N:

» compute the dissimilarity between all current classes in P*~!
» build P* from P¥~! by merging the two least dissimilar classes

30



Inter-classes dissimilarities

Aggregation functions
Let A and B be two classes (of indices)
» single linkage (min)

ds(A,B) = min _d(X;, X))

» complete linkage (max)

ds(A, B)= max d(X,-7X,-)

icA,jeB

> average linkage

1
ds(A,B) = — d(X;, X;
S( ) |AHB| /e;jGB ( ! l)

31
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Computational complexity

Naive approach

> N —1 steps

> step k searches for the best merge over
classes

> overall © (N®) with adapted dissimilarity calculations

» standard implementation in many packages

W pairs of

Optimized solution
> simple priority list based solutions in © (N?log N)
> optimized algorithms in © (N?2) (see fastcluster in R)

» notice that the dissimilarity must be calculated! For X = R, this
adds in general a © (N2P) cost.

34


https://cran.r-project.org/package=fastcluster

In practice

Outline

choose a dissimilarity

choose an aggregation function
build the hierarchy

study the dendrogram:

> the heights are the dissimilarities between merged classes

> gaps can be seen as abrupt changes in merge qualities

» visualization methods can be used to display the classes (e.g.
Principal Component Analysis)

PoOD =

35



In practice

Outline

1. choose a dissimilarity

2. choose an aggregation function
3. build the hierarchy
4

. study the dendrogram:

> the heights are the dissimilarities between merged classes

> gaps can be seen as abrupt changes in merge qualities

» visualization methods can be used to display the classes (e.g.
Principal Component Analysis)

Limitations

> results strongly depend on both the dissimilarity and the
aggregation function

» somewhat slow

> exploratory tool rather than clustering tool

35
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Remarks

» initial behaviors are quite independent from the aggregation
function
» single linkage:
» tendency to produce “long” classes (chaining)
> outlier isolation
» complete linkage:
> balanced class sizes
> classes can be close one to another (crowding)
» average linkage

» average behavior...
> resistant to noise but sensitive to dissimilarity transformation

38



Cluster quality

Classes as clusters
A partition provides a good clustering if its classes are

» homogeneous
> well separated

Criteria
» homogeneity via the diameter

D(A) = e d(X;, X;)

» separation via dissimilarity
» a good clustering: small diameters and large dissimilarities!

39



Aggregation function

Single linkage

> no control over D(A) during the merge
» could end up with classes with very different diameters

» distances between classes can be very small relatively to their
diameter

Complete linkage

> the diameter is the quality measure of a merge!
» however, no control at all over separability

Two extreme cases
with the average linkage in between...

40



In practice

General rules of thumb

> single linkage
> gives frequently poor results
» might be useful to spot outliers

> average linkage

» gives generally good clusters
> interesting compromise between diameter and separation

» complete linkage

» maximally homogeneous classes
> useful when there are no real clusters (i.e., clusters that can be
easily separated)

41



Partition quality

Quality versus distance

» aggregation functions express the quality of a merge in terms of
distances (min, max or average)

» alternative solution: express the quality using the resulting cluster

Within “variance”
» within variance of a class A (homogeneity measure)

1
W(A) = A Y d(Xi,X))
i€A jeA
» total within variance of a partition P = {Aq,..., Ak}

K

W(P) =) W(A)

k=1

42



Ward’s method

Optimizing the within variance

» same aggregative algorithm than with dissimilarities
» (non)quality of a merge:

» the increase in within variance induced by merging A with B
> local computation

Aapy—aus = W(AU B) — W(A) — W(B)

> can be seen as a greedy optimization of W(P) at each stage of
the hierarchy

43
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Discussion

Ward versus average

» somewhat related hierarchy
» Ward’'s method tend to favor more balanced class size
» Ward’s method is closely related to other methods (e.g. K-means)

» outliers are more easily aggregated with other points in the Ward’s
method

Numerous other variants

» centroid and median linkage (distances between classes induced
by prototype based representation)

» minimax linkage (enclosing ball diameter)
> etc.
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Divisive methods

Generic algorithm

> initial partition: P! = {1,..., N}
» for k from 2 to N:

> chose a class to split
» build P from P*~" by splitting the chosen class into two sub classes

Difficulties

» choosing the class to split is relatively easy by using e.g. a
diameter criterion

> but splitting is hard: too many possible splits (2V=" — 1)!

DIANA

» Dlvisive ANAlysis Clustering (available in R in cluster)
» reference algorithm by Kaufman & Roussew, 1990
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https://cran.r-project.org/package=cluster

DIANA

Pl {1,...,N}
forkin2,...,Ndo
find C; in P*~" with the largest diameter
find X, for I € C; that maximizes Z,,Ecj d(X;, X,)

C? «+ {I}and C’ + G\ {I}

repeat
for all t in C; compute
d(Xe, Xu) — d(X, Xy
|Cb Z ( ty ‘ é ‘ ( t )
uech uec?

if v = arg max; D(t) is such that D(v) > 0 move v from C{ to C?
until max; D(t) < 0
define P* as P*~" in which C; is replaced by C? and C?
end for
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Ward Diana
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Hierarchical clustering
© provide a hierarchy and a dendrogram
© applicable to any dissimilarity
© © (N?) running time for aggregative methods

® not much guarantees about the final result
@ inferior results for some methods (e.g. single linkage)

Generic questions

» dissimilarity?
» hierarchical method?
» cluster number?
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K-means and related methods
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Criterion based clustering

Optimization point of view

» define a quality criterion for a clustering structure
> optimize this quality over “all” clustering structures
> typical example:

» within variance as quality measure
> optimized over partitions

Difficulties

» no obvious quality criterion for exploratory tasks

> very difficult discrete optimization problems (NP-hard in some
cases)

53



Quantization point of view

Summarizing a data set

> key idea: represent a data set D = (X;)1<i<n by a smaller set of
prototypes D = (v, )1<k<k

> X, is presented by a prototype: z; is the index in {1,..., K} of this
prototype

> natural risk associated to the problem

N
‘c"(rv Z) = Z d(X,, 72,-)a

i=1

wherez = (zy,...,zy) and T = (v4,...,vk)-
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Quantization point of view

Summarizing a data set

> key idea: represent a data set D = (X;)1<i<n by a smaller set of
prototypes D = (v, )1<k<k

> X, is presented by a prototype: z; is the index in {1,..., K} of this
prototype

> natural risk associated to the problem

N
‘c"(rv Z) = Z d(X,-, 72,-)a

i=1

wherez = (zy,...,zy) and T = (v4,...,vk)-

» natural clustering interpretation: z defines a partition of {1,..., N}
into K classes!
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Optimization

Difficult!
» minimizing £(T, z) is a combinatorial problem

» for standard d (such as the squared Euclidean distance when
X = RP) this is NP-hard

Simple sub-problems
» minimizing £(I, z) with respect to z is easy
arg mzin El,z) = (argke{q‘lin d(X1,vy),---,arg ke{r1nin d(XN,'yk))
> if prototypes are restricted to be elements of the data set D,

optimizing with respect to I is also easy

i,zi=k

argmrmé'(l',z) = (argvTénD Z d(X,-,'yk))
1<k<K
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Coordinate descent

A k.a. alternating optimization
a simple minimization algorithm for a function F(u, v):

select up randomly

k+1

repeat
vk = argminy, F(Uk_1, V)
Uk = arg miny F(u, vg)
K<+ k+1

until convergence

Properties

» converges to a local minimum
> but not to a global one
» improved by multiple restarts
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Algorithm
select I' as a random subset of D
repeat
Zj < arg minkeqq,. k3 A(Xi, k) > assignment phase
Vi < argmingep >, d(Xi, ) > representation phase

until convergence

Comments
» one of the most well known clustering algorithm for arbitrary
dissimilarities
> complexity © (NK) + © (N?) (assuming d is known)
» complex quantization effects when N is small (“data holes”)
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Euclidean/Hilbert case

When X = R”
> one uses in general d(X;, X;) = ||X; — X}||2
» then we do need to restrict ~ to elements of D

> we have B
EMz)=>" > IIXi— vl
k=1 i,zi=k

argmlnS r,z) ( Z X) ,
hzi= 1<k<K

where s = |{i|zi = k}|
> identical results when X is a Hilbert space (a RHKS for instance)

» and thus
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K-means algorithm

Algorithm
select I' as a random subset of D
repeat
zj + argminkeq1, k3 [1Xi — Y42 > assignment phase
Yi 517 D iz Xi > representation phase

until convergence

Comments

» one of the most well known clustering algorithm
» complexity © (NKP)
» numerous variants and improvements (kmeans++ for instance)
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Initialization

Standard solution
» random prototypes chosen uniformly at random in the data set
without replacement
» random clusters do not work properly

k-means++ (Arthur & Vassilvitskii, 2007 [1])

1. +4 chosen uniformly at random in the data set

2. for kin2to K:
, S mingeqa, k13 9067k)?
2.1 forXi € D\ {~y,...,7k_1} compute p; = S minke (1, k1} 92

2.2 chose v, in D\ {~v4,...,7,_4} according to the probabilities (p;);

> theoretical guarantees
» practical efficiency
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K-means and general clustering

Variance decomposition
» forany C C {1,...,N}

> IXi = X7 =

ieC jeC

where

o= g X

i€eC
» and therefore if Cxk = {ie {1,...,N} | zi = k}

N K
min 3 %=, )P = 33 5 3 S I% - X1
i=1 k:

/ECk JECK

W({Ci,...,Ck})

l\)\—*
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Variance and clustering

Quantization and within variance

» minimizing the quantization error is equivalent to maximizing the
total within variance

» K-means is very close to Ward’s method!

Total variance

> the total variance is 3"V, ‘ X — )A(DH2

> we have
N R 2 N R 2 K R R )
Z‘XI—XDH :ml_inZ‘Xi—Xc.Yzl +Z\CK|HX;(—XDH
il i=1 k=1

& 2
k=

K
1 1
= SW({Cr,...,CH) + 5 > S ICKICw|

1 k'=1

R0 %
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Variance and clustering

Between variance
> B(Cry... C) = $ hy Tty |Gl Curl [Ri = X

» weighted pairwise distances between prototypes
» measures how spread the clusters are

2

Within and between variance
» total variance = within variance + between variance
» the total variance does not depend on the clustering

» by minimizing the within variance, one maximizes the between
variance!

» clusters are both compact and well separated (at least at the
prototype level)
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K-means
© clear quantification interpretation
© compact clusters with separated prototypes
© © (NKP) running time
© efficient initialization strategy (k-means++)
® K?

® spherical clusters which might be very close one to another
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DBSCAN
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Density based clustering

Cluster = dense region

» clusters are areas of high density compared to other areas

> density based separation: clusters are separated by low density
areas

» no direct assumption on cluster shape and on relative distances

DBSCAN

> Ester, Kriegel, Sander & Xu, 1996 [2]
» most well known density based algorithm
» simple density model:

> enough points in a tight region
> two parameters:

»> minPts: minimal number of points in a region
> ¢: radius of the region
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DBSCAN

Several types of points

>
>

>

core point. X; such that |{X € D|d(X;, X) < ¢}| > minPts

directly density reachable point from a core point X;: X; such that
d(X;, Xj) <e

density reachable point from a core point X;: X; such that there is
a chain of core points X, , ..., Xk with d(Xk,, Xx,.,) < &, Xg, = X;
and Xk/ = X;

border point. density reachable points that are not core points

density connected points: two points are density connected is they
are density reachable from the same (core) point

noise point: points that are not density reachable from a core point
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Types of points

> A and red points: core
points

» B and C: border points
» N: noise point

illustration from
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https://commons.wikimedia.org/wiki/File:DBSCAN-Illustration.svg

Clusters and noise

DBSCAN clusters
A cluster in DBSCAN is a maximal set of density connected points.

Noise
Points that do not belong to DBSCAN clusters form the noise.

Clustering model

» DBSCAN produces a partition of D into Cy, ..., Ck, N, where the
Cx are the clusters and N is the noise

» K is not specified directly but only a consequence of minPts and ¢

» notice that K < %Pts as a cluster must contain a core point and

has therefore a minimal size of minPts

» border points can belong to several clusters and a tie breaking
criterion is used to assign them to a single one
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Algorithmic aspects

Algorithm

forall X € D do
if X is not labelled then
N <+ e-neighborhood of X
if [IN| < minPts then
label X as noise
else
label X with a new cluster label k
label with k all density reachable points from X (including
noise ones)
end if
end if
end for
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Algorithmic aspects

Complexity

> core operation: e-neighborhood calculation

» done once for each point in D

> naive complexity in N = © (N?)

» spatial indexing (R* tree, for instance) might decrease the cost but
not to © (() Nlog N)

minimal cost: © (N%)

v
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Parameters

minPts

» limited impact on the results above a minimal value
» original recommendation: minPis = 4

» current recommendation: minPts = 2 x P (larger values for noisy
data)

very difficult to set

plays a role similar to the one of k in the k-means

one should explore the effects of using different values of ¢
“elbow” approach on the k-nn distance graph

vvyyvyy
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DBSCAN

© noise detection

© arbitrary shaped clusters

© mostly deterministic

© © (N2P) running time in the worst case
@ arbitrary shaped clusters

@ very sensitive to the value of ¢
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Fuzzy and probabilistic models
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Non crisp clusters

Ambiguous points

» some points are difficult to associate to a given cluster

» numerous situations: very close clusters, “interpolation” points,
etc.

Soft clusters

> X; belongs to Cx with “intensity”

» clustering through an assignment matrix: (Mi)1<i<n,1<k<k, With
> M € [0, 1]: intensity between 0 and 1
> K, My = 1: total unitary grade
» crisp limit: My € {0,1}

> interpretations:

> Mj as a membership grade: fuzzy sets
> M; as a membership probability: mixture models
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Fuzzy vector quantization

Vector quantization with membership

» prototypes: T = (v4,...,7k)
> assignment matrix: (M, )1Si§N,1SkSK
» quality criterion

K
EPrz) =) > Mid(Xi, i),

i=1 k=1

Fuzziness parameter

» b represents the non crispness of the assignment
» b =1 corresponds to the standard quantization problem
> b > 1 generates fuzzy assignments
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Fuzzy c-means

Principle

> £°(T,z) is easily optimized with alternate optimization
» constrained optimization with respect to M

Algorithm
for d(Xi,v) = II1Xi — vl?
select I as a random subset of D

repeat
compute dj = H);éb— ~)yk||2
1/dy)"/ (0~ _
ik = E( /G > assignment phase
3= (1/dy)1/ =1
Vi ﬁ SN MEX; > representation phase
j=1 Yk

until convergence
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Standard K-means
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b=1.1
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b=1.2
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b=15
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b=2
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b=10
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Fuzziness evolution

Kmeans

b=1.1
[

b=1.2
oll=g [.avac

b=1.5
|| | | I| [l ||

b=2

bzs Il
A
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Defuzzified clustering

Standard K-means
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Defuzzified clustering

b=1.1
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Defuzzified clustering

b=1.2
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Defuzzified clustering

b=15
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Defuzzified clustering
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Defuzzified clustering
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Defuzzified clustering
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Fuzzy c-cmeans

© soft clustering

© simple interpretation and implementation

© identify points that are complex to cluster
@ slightly more expansive than the k-means
@ quite sensitive to the additional parameter b

Strategy

> test several values of b
> use diagnostic plots
» can be used to identify core points
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Fuzzy versus probabilistic

My as a membership grade

» intrinsic fuzziness
» clusters are inherently ill defined
» no randomness

M as a probability

» missing information
> belief
» clusters are perfectly defined but unknown to the analyst
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Probabilistic approach

Generative models

» parametric model for the distribution of (X;)1<i<n

» parameter estimation from a data set via maximum likelihood (or
other techniques)

Clustering oriented models

» mixture models
» K parametric models with prior probabilities 7y (Z,’f:1 T =1)
> generative process for X;

1. chose z; € {1,..., K} with probability 7 for k
2. generate X; according to the parametric model z;
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Formal model

Hidden variable model

>
>
>

each observation X; is associated to a hidden variable Z;
each Z takes values in {1,..., K}, with P(Z; = k) = 7y

the Z; are independent and given Zi, ..., Zy, the X; are
independent
we are given K parametric distributions (pk)1<k<k on X with

parameters 6 = (6x)1<k<k
Xi | Z; = k is distributed according to py
then the log likelihood of the data set D = (x;)1<i<n is given by

logp(D | 7,0) = Zlog (Zﬂ'kpk X/9k>

89



Complete likelihood

Notations
> integer notation Z; € {1,..., K}
> binary notation Z € {0, 1} with Y5 | Zx = 1
> Z =k e Zik = bk
> then p(z; | ) = [T}, 72

Complete likelihood
» the log likelihood of the full data set Dr = (X, zi)1<i<n iS given by

N K

log p(DF | m,0) = > > zi (log mk + log px(X; | bk))
i=1 k=1

> easy to optimize compare to log p(D | 7, 6)
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Guessing the hidden variables

Reversing the model

» according to the Bayes rule

P(Z) = k | x;,m, ) = DR |G
> i1 miPi(Xi | 0r)

> vk = P(Z = k | x;,7,0) is the responsibility of component k for
generating X;

» Zz; can be “guessed” in a probabilistic sense given the true
parameters of the model
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EM algorithm

Key ideas
> averaging Zf\; Zf=1 Zi (log mx + log pk(X; | Ox)) over the
probabilistic guesses of the z;
» using the best possible guess vk = P(Z; = k | 7, 6)

> alternating between improving the estimates of the parameters =
and 0 and improving the estimates of the hidden variables i
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EM algorithm

initialize 7(© and 6(©

t+1
repeat
compute > E Phase
—1 =
L0 = P 07 Y
i 1 =
S p(xi | 6 Y)
compute > M Phase
o 0)
N
MO =30 o - M
i=1
N
o = arg "}":XZ%(;? log pk (i | Ok)
i=1
t—t+1

until convergence
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Gaussian mixture

Standard approach for X = RP
» each py is a multivariate Gaussian distribution
» Ok = (uk, k) and

1

_l(xi— Ts—1(xi—
P(Xilpk, i) = (CETEN 2 (k) 2y (X = k)

» then we have
0_ 1 N~
t t
P = @ 2 ik Xi
k =1

N
t 1 t t t
T = NO SR — )T (xi — )
k=
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Mixture models

© soft clustering

© rich outputs

© automatic model selection (via BIC)

© very flexible framework

® somewhat complex implementation

® high computational cost in some cases
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Conclusion
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Changelog

> April 2019:

» added k-means++

» added DBSCAN

» added fuzzy c-means
» added mixture models

» March 2018: initial version
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