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Analysis of algorithms

Resources
I running a program uses resources
I two most obvious ones:

1. time
2. memory (as in volatile one)

I less obvious ones:
I permanent memory
I hand drive bandwidth
I network bandwidth
I etc.

Algorithm analysis
I abstract analysis of the resource consumption of an algorithm
I predicts the typical behavior of a program that implements the

algorithm given the characteristics of its inputs
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Basic example

R illustration: maximum

x <- rnorm(16)
y <- x[1]
for(i in 2:length(x)) {

if(x[i] > y) {
y <- x[i]

}
}

I very sub-optimal R code (use
max(x)!)

I input: the x vector
I output: the y value
I questions:

I how long will this code run
given the length of x?

I how much memory will it
use?

Experimental measurements
I time: microbenchmark package
I memory: profmem package
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https://cran.r-project.org/package=microbenchmark
https://cran.r-project.org/package=profmem
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Experimental measurements

Use
I evaluate the platform, the implementation and the algorithm
I profiling:

I validating formal models
I finding hot spots for further optimization

Difficulties
I data size
I measurement precision (especially for small input)
I resource consumption
I environment

Must be done after programming!
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Theoretical analysis

Advantages
I generic analysis (algorithmic level)
I asymptotic behavior: predicts the complexity for large scale input
I no implementation needed

Limitations
I a bit too abstract in some situations (e.g. most analysis disregard

the memory hierarchy)
I very difficult to conduct in some cases
I mismatch between observed behavior and predicted ones in

complex cases (e.g. simplex algorithm under simple analyses)
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Principles

Main components
I abstract model of the computer
I worst-case or average-case analysis
I asymptotic analysis

Asbtract model
I theoretical level: Turing machine
I practical level:

I uniform cost model: each instruction has the same cost (one!)
I instructions:

I reading or writing a single value in a variable
I comparing two values
I standard arithmetic operations

I variations: taking into account only floating point operations,
taking care of transcendental functions (e.g. exp), etc.
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https://en.wikipedia.org/wiki/Turing_machine


Basic example

Find the maximum

x <- rnorm(16)
y <- x[1]
for(i in 2:length(x)) {

if(x[i] > y) {
y <- x[i]

}
}

I we disregard the first line: this
is the input

I outside of the loop: 2
instructions (one assignment,
one read)

I inside the loop: everything
depends on the values!

How to handle this difficulty?
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Worst-case analysis

Principle
I in general, the exact instructions performed by an algorithm

depend on the input
I this renders the analysis very difficult
I simple solution:

I always consider the worst case: worst-case analysis
I in tests, always chose the most complex branch
I in loops, always assume the loop will run for the maximum time

Average-case analysis
I principle:

I chose a probabilistic distribution on the input space
I compute the cost for each possible input
I average the costs using the distribution

I frequently more realistic but very difficult
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Basic example

Find the maximum

x <- rnorm(16)
y <- x[1]
for(i in 2:length(x)) {

if(x[i] > y) {
y <- x[i]

}
}

I outside of the loop: 2
instructions (1 assignment, 1
read)

I inside the loop:
I always 3 instructions (2

reads, 1 comparison)
I 2 additional ones in some

cases
I the loop runs N − 1 times for

an input of length N

What about the for itself?
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High level constructs

Problem
I most programming languages feature high level instructions and

data structures
I those might seem opaque on a cost point of view
I specifications and/or documentations are needed to make a

proper cost analysis

In R
I a:b

I creates a vector of length b-a+1
I the creation cost should be proportional to the length

I i in z
I access to all the content: a number of access equal to length z
I moving from one cell to another might take only a fix number of

operations
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Basic example

Find the maximum

x <- rnorm(16)
y <- x[1]
for(i in 2:length(x)) {

if(x[i] > y) {
y <- x[i]

}
}

I outside of the loop: 2
instructions (1 assignment, 1
read)

I inside the loop (worst-case): 5
instructions per iteration

I the loop runs N − 1 times for
an input of length N

I the loop costs 2(N − 1)
operations (creating the index
and browsing it)

Total: 2 + 7(N − 1)
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Example
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Asymptotic analysis

Principle
Calculate resource usage formulaes of an algorithm that are valid
when the size of the input goes to infinity.

Motivations
I practical:

I small size inputs drive implementations into very complex zones with
problems of overheads and caches

I benchmarking is easy for small size inputs not for large ones!
I theoretical:

I eases a lot the analysis
I enables one to define classes of comparable algorithm
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Big O notations

Definitions
Let f and g be functions from N to R
I f is O (g) (f = O (g)) if there are M and n0 such that for all n ≥ n0,
|f (n)| ≤ M|g(n)|

I f is o (g) (f = o (g)) if limn→∞
f (n)
g(n) = 0 (with a natural extension to

g that can take 0 values)
I f is Θ (g) (f = Θ (g)) if there are m, M and n0 such that for all

n ≥ n0, m|g(n)| ≤ f (n)| ≤ M|g(n)|
I f ∼ g if limn→∞

f (n)
g(n) = 1
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Big O notations

Properties
Numerous interesting properties, such as
I f = Θ (g) if and only if f = O (g) and g = O (f )

I if f is a polynomial of degree d , then f = Θ
(
nd

)
(with n0 = 1)

I if λ is a non zero constant and f = Θ (g), then λf = Θ (g)

I if f1 = O (g1) and f2 = O (g2), then

f1 + f2 = O (|g1|+ |g2|)
f1f2 = O (g1g2)

I if f = Θ (g) and h = o (g) then f + h = Θ (g)
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Asymptotic analysis

Principle revisited
Given an algorithm with an input of size N, find a function g(N) such
that true resource usage of the algorithm f is O (g) (or better Θ (g))

Practical consequences
I precise instruction counting is generally useless
I on the fly approximation can be used to analyze complex

structures
I documentation/specification need only to give asymptotic

guarantees
I any program with only basic instructions and no loop is Θ (1) in

time!
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Basic example

Find the maximum

x <- rnorm(16)
y <- x[1]
for(i in 2:length(x)) {

if(x[i] > y) {
y <- x[i]

}
}

I outside of the loop: do not
care!

I inside the loop (worst-case):
Θ (1) instruction

I the loop runs N − 1 times for
an input of length N

I the loop costs Θ (N)
operations (creating the index
and browsing it)

Total: Θ (N)
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Complexity hierarchy

Important complexity levels

Complexity Name

Θ (1) constant
Θ (log N) logarithmic
Θ
(

N
1
c

)
for c > 1 fractional

Θ (N) linear
Θ (N log N) quasilinear
Θ
(
N2

)
quadratic

Θ
(
N3

)
cubic

Θ (Nc) for c > 1 polynomial
Θ
(
cN

)
for c > 1 exponential

Θ (N!) factorial
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Analysing an algorithm

Simple cases
I when:

I no high level operations are called
I no recursion is used

I identify the loops
I determine their worst case number of iterations
I for nested loops multiply the costs

Remarks
I mechanisms that handle loops are generally accounted for

implicitly by considering each iteration has a constant
bookkeeping cost associated to those mechanisms

I the input size might be characterized by several parameters (e.g.,
rows and columns for a matrix)
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Example

Find the maximum

X <- matrix(rnorm(10*10),
ncol=10,nrow=10)

y <- -Inf
for(i in 1:nrow(X)) {

for(j in 1:ncol(X)) {
if(X[i,j] > y) {

y <- X[i,j]
}

}
}

I input size N2 (or N depending
on the point of view)

I nested loops with N iteration
each: Θ (N × N)

I inside the inner most loop:
Θ (1) (as always!)

I the loop costs are
automatically taken care off

Total: Θ
(
N2

)
I quadratic with respect to N
I but in fact linear with respect to the input size!
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More complex programs

Recursion
I difficult case
I leads in general to recursive definition of f (N) the resource usage

function
I general theorems help expressing f in closed form (the so-called

Master theorem)
I outside the scope of this introduction

High level operations and API calls
I use documentation/specification for API calls
I rely on general complexity theory results (and hope for the best!)
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https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)


Well known results

Problem Complexity

Finding a value in a hash table of size N Θ (1) or Θ (N)
Finding a value in a sorted table of size N Θ (log N)
Sorting N values Θ (N log N)
Multiplying a matrix N × P by a vector P Θ (NP)
Multiplying two matrices of size N × P and P ×Q Θ (NPQ)
Inverting a N × N matrix Θ

(
N3

)
Eigenvalue decomposition of a N×N dense matrix Θ

(
N3

)
Singular value decomposition of a M × N matrix
(M ≥ N)

Θ
(
MN2

)
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Example

Power method

X <- matrix(rnorm(10*10),
ncol=10,nrow=10)

X <- X+diag(1:10)
X <- X + t(X)
y <- rnorm(nrow(X))
y <- y/sqrt(sum(y^2))
repeat {

ny <- X %*% y
ny <- ny/sqrt(sum(ny^2))
delta <- sum((ny-y)^2)
y <- ny
if(delta < 1e-8) {

break
}

}

I problem characteristics: N
(N × N matrix)

I initialization: Θ
(
N2

)
I inside the inner loop: Θ

(
N2

)
I how many iterations?

I need some advanced
mathematical results

I here the convergence is linear:
the precision is multiplied by a
fixed quantity at each iteration

I loop number O
(
log

( 1
ε

))
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NP problems

Decision problems
I decision problem: a recognition problem in which given an input

the answer is yes or no
I solving the problem consists in building a program that associate

the correct answer to any input
I P class: problems for which an algorithm in O

(
Nk

)
is known

I NP problems:
I NP stands nondeterministic polynomial (for complex reasons)
I a problem is NP if a proof that the correct answer is yes can be

verified in polynomial time

Examples

P is A = BC? for A, B and C matrices
NP does a given graph possess a Hamiltonian cycle?
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NP-complete and NP-hard

Reduction
I A and B two problems
I A reduces to B if any input for A can be transformed into an input

for B such that the answer for this transformed input is the correct
one for original input

NP-hard
B is NP-hard if any NP problem is reducible to B in polynomial time.

NP-complete
A NP-complete problem is a NP problem that is also NP-hard.
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NP-hard problems

A complicated class
I NP-hard problem include strictly NP-complete problem
I some problems in NP-hard are not in NP and not even in the class

of decidable problems (e.g. the halting problem)

Optimization problems
I optimization problems are more general than decision problems
I translation to decision problems is straightforward: given an

optimization problem T one can ask a series of yes/no questions
of the form “is there a solution to T with cost below t?”

I iconic NP-hard problems are optimization ones, for instance the
travelling salesman problem
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P versus NP

In a nutshell
See the wikipedia for details
I in practice, we only know exponential time algorithms for solving

NP-complete problems
I can we either prove either that there are effectively no polynomial

time solutions for NP-complete problem or that P = NP?
I this is one million price problem...

In practice
I if a problem is NP-hard, we cannot currently solve it exactly in

reasonable time
I but many of NP-hard optimization problems admit fast algorithms

that provide approximate results with reasonable quality
guarantees
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https://en.wikipedia.org/wiki/P_versus_NP_problem


Concluding remarks

What about memory consumption?
I in general this is straightforward
I but in practice one might run into problems, especially with R
I semantics of x ← y?

Complexity and machine learning
I machine learning is strongly related to optimization
I many ML optimization problems are NP-hard:

I empirical risk minimization for the binary cost
I k-means criterion optimization
I etc.

I strong reliance on approximate algorithms
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http://creativecommons.org/licenses/by-sa/4.0/

30

http://creativecommons.org/licenses/by-sa/4.0/


Version

Last git commit: 2021-01-19
By: Fabrice Rossi (Fabrice.Rossi@apiacoa.org)
Git hash: 97cfd0a9975cf193f5790845c00e476c1572a327

31



Changelog
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