Loss and risk

Fabrice Rossi

Exercise 1

We consider a tiny data set with 10 observations $(\mathbf{x}_i, y_i)_{1 \leq i \leq 10}$, with $\mathbf{x}_i \in \mathcal{X}$ et $y_i \in \{-1,1\}$. Using different machine learning algorithms, two models are built from this data set: g_1 and g_2 . The outputs of the models on the learning data set are given by the following table:

\mathbf{x}_i	$g_1(\mathbf{x}_i)$	$g_2(\mathbf{x}_i)$	y_i
\mathbf{x}_1	1	1	1
\mathbf{x}_2	1	-1	1
\mathbf{x}_3	-1	1	1
\mathbf{x}_4	1	-1	1
\mathbf{x}_5	1	-1	1
\mathbf{x}_6	1	-1	-1
\mathbf{x}_7	-1	-1	-1
\mathbf{x}_8	-1	-1	-1
\mathbf{x}_9	-1	1	-1
\mathbf{x}_{10}	1	-1	-1

Question 1 Compute the confusion matrices of both models on the learning set.

Question 2 We use the loss function l_1 given by:

$$\begin{array}{c|cccc} l_1(p,t) & t = -1 & t = 1 \\ \hline p = -1 & 0 & 1 \\ p = 1 & 3 & 0 \\ \end{array}$$

where p is the predicted value and t the true value. Compute the empirical risk of both models on the learning set for l_1 .

Question 3 Determine the best model based on the available information using the loss function $l_0(p,t) = \mathbf{1}_{p \neq t}$.

Exercise 2

In this exercise, we study a classification problem in which the target variable \mathbf{Y} can take three different values in $\mathcal{Y} = \{A, B, C\}$. From a learning set \mathcal{D} , two models have been constructed g_1 and g_2 . Their predictions on a new set \mathcal{D}' are summarized by the following confusion matrices (we use the convention that the predicted values are in rows while the true values are in columns):

g_1				g_2			
	A	В	С		A	В	
Α	44	0	0	A	44	4	
В	5	62	1	В	2	64	
С	1	8	54	$^{\mathrm{C}}$	4	2	

Question 1 Using the confusion matrices, compute an estimation of the distribution of \mathbf{Y} , i.e. of the probabilities $\mathbb{P}(\mathbf{Y} = \mathbf{y})$ for $\mathbf{y} \in \mathcal{Y}$.

Question 2 What minimal consistency checks between \mathcal{D} and \mathcal{D}' should be done?

Question 3 Compute the accuracy of each model on \mathcal{D}' (the accuracy is the percentage of correct classification).

Question 4 Determine the best model between g_1 and g_2 according to the loss function $l_0(p,t) = \mathbf{1}_{p \neq t}$ using the empirical risk on \mathcal{D}' .

Question 5 Is the selected model the best one according to the risk associated to l_0 ?

Question 6 We define a new loss function l_2 as follows:

We use the convention that p is the predicted value and t the true value. Compute the empirical risk of each model according to this loss function on \mathcal{D}' .