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Standard programming

Solving a task with a computer
I input and output definition
I algorithm design
I implementation

Examples
I jpeg image converter
I interactive 3D world
I computational fluid dynamics
I chess program
I spam filtering (with e.g. SpamAssassin)

100% human design
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SpamAssassin
Return-Path: <lojhsouek@alite.ae>
Date: Thu, 5 Dec 2019 16:24:57 +0800 (CST)
From: jitao25526187006 <jitao25526187006@126.com>
Sender: lojhsouek <lojhsouek@alite.ae>
To: "fabrice.rossi" <fabrice.rossi@apiacoa.org>
Subject: Re: Newer dealers are cheaper due to the expansion of the

new projector lamp
MIME-Version: 1.0
Content-Type: text/html; charset=UTF-8
Content-Transfer-Encoding: quoted-printable

<p style=3D"margin-top:2px;margin-bottom:2px;">This is the Selina of the HA=
ITTON projector lamp.</p><p style=3D"margin-top:2px;margin-bottom:2px;">goo=
d luck!</p><p style=3D"margin-top:2px;margin-bottom:2px;">Thank you for tak=
ing the time to read my email.</p><p style=3D"margin-top:2px;margin-bottom:=
2px;">If you need to buy a projector lamp , I look forward to your reply.</=
p><p style=3D"margin-top:2px;margin-bottom:2px;">We are the second professi=
onally produced projector lamp in China with 10 years of manufacturing expe=
rience, &nbsp;</p><p style=3D"margin-top:2px;margin-bottom:2px;">Burner=E2=
=80=99s quality is well,Longer service life.</p><p style=3D"margin-top:2px;=
margin-bottom:2px;"><br/></p><p style=3D"margin-top:2px;margin-bottom:2px;"=
>I have known your company for a long time, even though we have not really =
cooperated.</p><p style=3D"margin-top:2px;margin-bottom:2px;">Maybe you hav=
e a fixed supplier now, it doesn&#39;t matter, if you need it, we will be y=
our second choice.</p><p style=3D"margin-top:2px;margin-bottom:2px;">In ord=
er to promote market expansion, we hope to offer new distributors a more fa=
vorable price than last year.</p><p style=3D"margin-top:2px;margin-bottom:2=
px;">Are you interested in creating brilliance with us?</p><p style=3D"marg=
in-top:2px;margin-bottom:2px;">For more information, please reply to the em=
ail for more information.</p><p style=3D"margin-top:2px;margin-bottom:2px;"=
><br/></p><p style=3D"margin-top:2px;margin-bottom:2px;">If you have any ot=
her questions, please feel free to contact me.</p><p style=3D"margin-top:2p=
x;margin-bottom:2px;">wish you a happy life!</p><p style=3D"margin-top:2px;=
margin-bottom:2px;">Selina Lau</p><p style=3D"margin-top:2px;margin-bottom:=
2px;"><br/></p><p style=3D"margin-top: 2px; margin-bottom: 2px;"><br/></p>
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SpamAssassin
Return-Path: <lojhsouek@alite.ae>
Delivered-To: fabrice.rossi@apiacoa.org
X-Spam-Flag: YES
X-Spam-Score: 6.297
X-Spam-Level: ******
X-Spam-Status: Yes, score=6.297 tagged_above=-15 required=4.9

tests=[BAYES_50=0.8, FREEMAIL_FORGED_FROMDOMAIN=0.001,
FREEMAIL_FROM=0.001, FROM_LOCAL_DIGITS=0.001, FROM_LOCAL_HEX=0.006,
HEADER_FROM_DIFFERENT_DOMAINS=0.249, HTML_MESSAGE=0.001,
HTML_MIME_NO_HTML_TAG=0.377, MIME_HTML_ONLY=0.723, RCVD_IN_PBL=3.335,
RDNS_NONE=0.793, T_SPF_PERMERROR=0.01] autolearn=no autolearn_force=no

Date: Thu, 5 Dec 2019 16:24:57 +0800 (CST)
From: jitao25526187006 <jitao25526187006@126.com>
Sender: lojhsouek <lojhsouek@alite.ae>
To: "fabrice.rossi" <fabrice.rossi@apiacoa.org>
Subject: ***SPAM*** Re: Newer dealers are cheaper due to the expansion of the

new projector lamp
MIME-Version: 1.0
Content-Type: text/html; charset=UTF-8
Content-Transfer-Encoding: quoted-printable

<p style=3D"margin-top:2px;margin-bottom:2px;">This is the Selina of the HA=
ITTON projector lamp.</p><p style=3D"margin-top:2px;margin-bottom:2px;">goo=
d luck!</p><p style=3D"margin-top:2px;margin-bottom:2px;">Thank you for tak=
ing the time to read my email.</p><p style=3D"margin-top:2px;margin-bottom:=
2px;">If you need to buy a projector lamp , I look forward to your reply.</=
p><p style=3D"margin-top:2px;margin-bottom:2px;">We are the second professi=
onally produced projector lamp in China with 10 years of manufacturing expe=
rience, &nbsp;</p><p style=3D"margin-top:2px;margin-bottom:2px;">Burner=E2=
=80=99s quality is well,Longer service life.</p><p style=3D"margin-top:2px;=
margin-bottom:2px;"><br/></p><p style=3D"margin-top:2px;margin-bottom:2px;"=
>I have known your company for a long time, even though we have not really =
cooperated.</p><p style=3D"margin-top:2px;margin-bottom:2px;">Maybe you hav=
e a fixed supplier now, it doesn&#39;t matter, if you need it, we will be y=
our second choice.</p><p style=3D"margin-top:2px;margin-bottom:2px;">In ord=
er to promote market expansion, we hope to offer new distributors a more fa=

4



SpamAssassin

Rule examples
# PBL is the Policy Block List: https://www.spamhaus.org/pbl/
header RCVD_IN_PBL eval:check_rbl('zen-lastexternal', 'zen.spamhaus.org.', '^127\.0\.0\.1[01]$')
describe RCVD_IN_PBL Received via a relay in Spamhaus PBL
tflags RCVD_IN_PBL net
reuse RCVD_IN_PBL

meta RDNS_NONE (__RDNS_NONE && !__CGATE_RCVD && !__DOMINO_RCVD)
describe RDNS_NONE Delivered to internal network by a host with no rDNS

meta HTML_MIME_NO_HTML_TAG MIME_HTML_ONLY && !__TAG_EXISTS_HTML
describe HTML_MIME_NO_HTML_TAG HTML-only message, but there is no HTML tag

body DRUG_DOSAGE m{[\d\.]+ *\$? *(?:[\\/]|per) *d.?o.?s.?e}i
describe DRUG_DOSAGE Talks about price per dose

# jm: keep this case-sensitive, otherwise it FP's
body DRUG_ED_CAPS /\b(?:CIALIS|LEVITRA|VIAGRA)/
describe DRUG_ED_CAPS Mentions an E.D. drug

body DRUG_ED_SILD /\bsildenafil\b/i
describe DRUG_ED_SILD Talks about an E.D. drug using its chemical name

body DRUG_ED_GENERIC /\bGeneric Viagra\b/
describe DRUG_ED_GENERIC Mentions Generic Viagra

body DRUG_ED_ONLINE /\bviagra .{0,25}(?:express|online|overnight)/i
describe DRUG_ED_ONLINE Fast Viagra Delivery

100% human design
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Machine learning

Machine programming
I climbing one step in abstraction
I designing programs with a program
I output: a program that solves a task
I input?

Learning from examples
I input: a learning set of pairs (input, output)
I output: a program g
I if (x, y) is in the set, g should output y if given x as input (i.e.,

g(x) = y)
I this is called supervised learning
I example: produce SpamAssassin using tagged emails!
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Example

X

Y 0 1 2 3 4

X

Y 5 6 7 8 9

MNIST data set
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Example

X

Y ? ? ? ? ?

X

Y ? ? ? ? ?

MNIST data set

8

http://yann.lecun.com/exdb/mnist/


Examples

Pattern recognition
I finding specific patterns in

signals
I “low” level

I character recognition
I whole image categorization
I spoken word recognition

I higher level
I licence plate recognition
I face detection and

recognition
I speech analysis

Entity assessment
I scoring (a.k.a. probability

estimation)
I credit scoring
I ad click

I pricing
I market price for second

hand objects
I financial instrument pricing

I embedding
I representing a non

numerical entity by some
numerical quantities

I e.g. words by vectors
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Minimal formal model

Data spaces
I X : input space (X ∈ X )
I Y: output space (Y ∈ Y)

I if |Y| <∞: classification (and a given Y is a label or a class label)
I if Y = R: regression

Programs
I mathematical version: a function g from X to Y
I running the program: g(X) = Y
I preferred term: model

Machine learning program
I input: a data set D = {(Xi ,Yi)}1≤i≤N (or a data sequence)
I output: a function from X to Y (a model)

10



Is machine learning feasible?

Yes!
I strong theoretical guarantees
I Probably Approximately Correct (PAC) framework

I we look for g (the task solving program/model) in some class of
models

I is the class is not too complex, g can be recovered approximately
with high probability given a reasonable amount (N) of input data

I Asymptotic framework
I in addition the class of models can grow in complexity with the data

size
I then the best possible g (no restriction) can be reached

asymptotically (almost surely in some cases): this is a consistency
property

How?
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Neighbors

Additional hypothesis
I X is equipped with a dissimilarity d
I d is a dissimilarity on X iff:

1. d is a function from X × X to R+

2. ∀X,X′, d(X,X′) = d(X′,X)
3. ∀X,X′, X 6= X′ ⇔ d(X,X′) > 0

Neighbors
I D = ((Xi ,Yi))1≤i≤N

I nn is the function from X × {1, . . . ,N} to {1, . . . ,N} such that

(1) d(x,Xnn(x,1)) ≤ d(x,Xnn(x,2)) ≤ · · · ≤ d(x,Xnn(x,N))

(2) if d(x,Xnn(x,k)) = d(x,Xnn(x,k+1)) then nn(x, k) < nn(x, k + 1)

I denoted nnD if needed
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nn function
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K nearest neighbors

Finite output space
I when |Y| <∞
I given as input the data set D = ((Xi ,Yi))1≤i≤N and the parameter

K , the K nearest neighbors (K -nn) machine learning program
outputs gK−nn defined by

gK−nn(x) = argmax
y∈Y

∣∣{k ∈ {1, . . . ,K} |YnnD(x,k) = y
}∣∣

I in simple terms: gK−nn(x) is the most common value of y in the
examples that are the K closest ones to x

Consistency
I if X is a finite dimensional Banach space and |Y| = 2
I then the K -nn method is consistent if K depends on N, KN , in

such a way that KN →∞ and KN
N → 0
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g(x)?
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g1−nn(x)
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g3−nn(x)
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Example

N=100
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Example

N=100, K=11
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Example

N=500
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Example

N=500, K=23
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Example

N=2500
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Example

N=2500, K=51
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Example

N=5000
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Example

N=5000, K=71
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Example

N=10000
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Example

N=10000, K=101
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Example
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In practice?

Algorithm choice
I numerous ML algorithms
I with parameters (e.g., K for the K -nn method)
I How to chose the “best” model?

Efficiency
I computational efficiency
I data efficiency

And many other issues...
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Machine learning vs AI

Artificial Intelligence
Artificial Intelligence (AI) is intelligence displayed by machines,
in contrast with the natural intelligence (NI) displayed by hu-
mans and other animals.

Wikipedia AI page

Machine learning
I is about learning:

I this is only a small part of intelligence!
I a data set is needed: it is produced by humans (limited autonomy)

I ML is only a tool that might be useful (in the future!) to build real AI
I beware of syllogisms: what can be solved with human intelligence

does not always need intelligence to be solved

24
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Outline

Introduction

Loss and risk
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Judging a ML algorithm

Supervised learning
I input: D = {(Xi ,Yi)}1≤i≤N
I output: g : X → Y
I “ideally” we would like that ∀i ,g(Xi) = Yi

Weakening the goal
I ∀i ,g(Xi) = Yi is too strong

I limited knowledge
I intrinsic randomness

I approximate answers, i.e. ∀i ,g(Xi) ' Yi

26



Quality of an output

Loss function
A loss function l is
I a function from Y × Y to R+

I such that ∀Y ∈ Y, l(Y,Y) = 0

Interpretation
l(g(X),Y) measures the loss incurred by the user of a model g when
the true value Y is replaced by the value g(X).

Weakening the goal
I ∀i ,g(Xi) = Yi is replaced by
I ∀i , l(g(Xi),Yi) should be as small as possible

27



Examples

Y = R (Regression)
I l2(p, t) = (p − t)2

I l1(p, t) = |p − t |
I lAPE(p, t) =

|p−t|
|t|

|Y| <∞ (Classification)
I lb(p, t) = 1p 6=t

I general case when Y = {y1, y2}

l(p, t) t = y1 t = y2

p = y1 0 l(y1, y2)
p = y2 l(y2, y1) 0

asymmetric costs are important in practice (think SPAM versus
non SPAM)
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Quality of a model

From local to global
I loss functions work at a local scale: what happens for one input
I we need a global assessment of a model g: how will the model

behave if deployed?

I expected loss

Empirical risk
I simple aggregation of local losses: average loss
I the empirical risk of a model g on a data set D = {(Xi ,Yi)}1≤i≤N

for a loss function l is

R̂l(g,D) =
1
N

N∑
i=1

l(g(Xi),Yi) =
1
|D|

∑
(x,y)∈D

l(g(x),y)

I a good model has a low empirical risk
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Data science intermezzo

Loss functions
I should not be chosen lightly
I have complex consequences, for instance

I asymmetric losses can be seen as example weighting
I APE loss induces underestimation

I a good data scientist knows how to translate objectives into loss
functions

Empirical risk
I is only an average: does not rule out extreme behavior
I in particular, the actual loss can strongly vary with the “location” of

x in X
I reporting only the empirical risk is not sufficient!
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Confusion matrix and co.

Confusion matrix
I when Y is finite, one should report a confusion matrix Ĉ(D) with

entries

Ĉy,y′ = |{i ∈ {1, . . . ,N} | g(Xi) = y and Yi = y′}|

I Ĉy,y′ counts the number of times g outputs y while it should output
y′

I transposed conventions have been used

Positive and negative
I when Y = {−1,1}
I true positive: g(Xi) = Yi = 1
I false negative: g(Xi) = −Yi = −1
I etc.

31



Regression

Diagnostic plots
I when Y = R
I originally for linear regression (standard statistical model)
I some are useful for general regression models:

I scatter plot of Yi as a function of g(Xi)
I scatter plot of Yi − g(Xi) as a function of g(Xi) (residual plot)
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Generalization

New data
I assume g is such as R̂l(g,D) is small
I what can we expect on a new data set R̂l(g,D′)?
I generalization performances
I if g is learned on D and R̂l(g,D)� R̂l(g,D′), g is overfitting

Mathematical model
I stationary behavior: D ' D′
I hypotheses:

I observations are random variables with values in X × Y
I they are distributed according to a fixed and unknown distribution D
I observations are independent

33



Generalization

New data
I assume g is such as R̂l(g,D) is small
I what can we expect on a new data set R̂l(g,D′)?
I generalization performances
I if g is learned on D and R̂l(g,D)� R̂l(g,D′), g is overfitting

Mathematical model
I stationary behavior: D ' D′
I hypotheses:

I observations are random variables with values in X × Y
I they are distributed according to a fixed and unknown distribution D
I observations are independent

33



Risk

Data set revisited
I D = ((Xi ,Yi))1≤i≤N
I (Xi ,Yi) ∼ D
I D ∼ DN (product distribution)

Risk of a model
I The risk of g for the loss function l is

Rl(g) = E(X,Y)∼D(l(g(X),Y))

I we should write Rl(g,D)

I the empirical risk R̂l(g,D) is a random variable

I if g is fixed or independent from D, then R̂l(g,D)
a.s.−−−−−→
|D|→∞

Rl(g)

(strong law of large numbers)
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Formal definition of ML

Supervised learning
I input: a data set D = ((Xi ,Yi))1≤i≤N with D ∼ DN and a loss

function l
I output: a function gD : X → Y
I goal: ensure that Rl(gD) is as small as possible
I best risk

R∗l = inf
g:X→Y

Rl(g)

Consistency
a machine learning algorithm is universally (i.e. for any D)
I consistent if ED∼DN (Rl(gD)) −−−−→

N→∞
R∗l

I strongly consistent if Rl(gD)
a.s.−−−−→

N→∞
R∗l
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ML and statistical models

Statistical models
I specification for D (in general parametric)
I estimation with maximum likelihood
I numerous variants (especially Bayesian approaches)

Very different philosophies
I Machine Learning

I performance oriented
I universal consistency
I limited post learning tuning, exploration, interpretation, etc.

I Statistical models
I strong hypotheses
I bad behavior under wrong specification
I very rich framework for post estimation exploitation

I but many links!
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Empirical risk minimization

A simple idea
I Rl(g) cannot be computed as D is unknown

I but if g ⊥⊥ D, R̂l(g,D)
a.s.−−−−−→
|D|→∞

Rl(g)

I let’s replace Rl(g) by R̂l(g,D)!

ERM algorithm
I choose a class of functions G from X to Y
I define

gERM,D = argmin
g∈G

R̂l(g,D)

I machine learning as an optimization problem
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Empirical risk and learning

Empirical risk can be misleading
I for the 1-nn, in general:

R̂l(g1−nn,D) = 0

if g1−nn has been constructed on D
I indeed if all the Xi are distinct, nn(Xi ,1) = i and thus

g1−nn(Xi) = Yi

I unrealistic value for Rl(g1−nn)

Source of the problem
I the strong law of large numbers applies when the random

variables are independent
I the (l(gD(Xi),Yi))1≤i≤N are dependent variables!
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Example

N=10000
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Example

N=10000, K=101
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Example

N=10000, K=1
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Example
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K = 1
K ≈ N
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Decision functions

N=100, K=1 N=100, K=11
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Decision functions

N=500, K=1 N=500, K=23
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Decision functions

N=2500, K=1 N=2500, K=51
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Decision functions
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Decision functions
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Remark

Theorethical guarantees for the 1-nn
I under simple hypotheses for a binary classification problem with

l(p, v) = 1p 6=v and defining R∗1 = limN→∞ Rl(1− nnDN ) we have

R∗l ≤ R∗1 ≤ 2R∗l (1− R∗l )

I for R∗l = 0 (no noise case): R∗1 = 0!
I with M classes

R∗l ≤ R∗1 ≤ R∗l

(
2− M

M − 1
R∗l

)
I overfitting is a complex problem
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Methodology

Does ERM work?
I Yes!

I but one needs to control the complexity of the class of models G
I this is a form of regularization: one cannot look for the model in an

arbitrary class of models
I this will be addressed latter in the course

Basic element for a solution
I apply the ML method to a data set D, the training set
I evaluate its risk on another independent data set D′

I in summary: R̂l(gD,D′)
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Example

Data and loss
I chemical analysis of wines derived from three cultivars

(Y = {1,2,3})
I 178 observations with 2 variables (X = R2)
I l(a,b) = 1a 6=b

K-nn model
I use half the data for the training set D
I use the other half for empirical risk evaluation D′
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Results
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Outputs of the model
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Outputs of the model
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Basic general framework

1. split the data into D (training), D′ (validation) and D′′ (test)
2. for each machine learning algorithm A under study

2.1 for each value θ of the parameters of the algorithm
2.1.1 compute the model using θ on D, gA,θ,D
2.1.2 compute R̂l (gA,θ,D,D′)

3. chose the best algorithm with the best parameter, A∗ and θ∗

(according to R̂l(.,D′))
4. compute the best model g∗ = gA∗,θ∗,D∪D′

5. compute R̂l(g∗,D′′)

Goals of this course
I describe state-of-the-art alternative for the algorithms
I study some theoretical aspects, e.g. empirical risk minimization
I describe better frameworks
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Other learning contexts

Variations over supervised learning
I different prediction spaces

I data in X × Y
I model g from X to Y ′

I loss function l from Y ′ × Y to R+

I typically: scoring
I pairwise supervised learning

I data in X
I relation on data points r(X,X′)
I model g from X to Y
I pairwise “loss” function l(g(X), g(X′), r(X,X′))
I typically: learning to rank, representation learning
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Other learning contexts

Unsupervised learning
I D = ((Xi)1≤i≤N)

I no target value, no relation, nothing else!
I goal: “understanding” the data
I in practice, many concrete goals such as

I finding clusters
I finding frequent patterns
I finding outliers
I modeling the data distribution
I etc.

53



Other learning contexts

Semi-supervised learning
I a data set D = ((Xi ,Yi))1≤i≤N
I another data set D′ = ((X′i )1≤i≤N′)

I supervised point of view
I build a classical model using D
I use D′ to get better results than those obtained with D only

I unsupervised point of view
I build a clustering model using D′

I use D as constraints for the clustering
I if Yi = Yj then Xi and Xj must be in the same cluster
I opposite constraints in the reverse situation
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Other learning contexts

Reinforcement learning
I completely different context:

I an agent and its environment with associated states
I a set of actions the agent can take
I probabilistic transitions: when the agent takes an action, the global

state changes as a consequence, possibly in a stochastic way
I immediate reward: the reward gained by taking an action

I goal: computing an optimal policy
I a policy maps states to actions
I the value of a policy is the expected total reward obtained by

following it
I “easy” if everything is known

I learning: discovering the optimal policy by performing actions
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Difficulties

Data collection
I labeled data can be difficult to collect: questionable human

labeling “farms”
I privacy (and GDPR compliance)

Bias
I biased data lead to biased models
I e.g. COMPAS recidivism algorithm

Interpretability
I trade-off between interpretable models (white box) and accurate

models (black box)
I the best current models (from deep learning) are very opaque
I interpretability is requested by the GDPR (in a way)
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https://www.nytimes.com/2019/08/16/technology/ai-humans.html
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https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm


Conclusion

Machine Learning
Discipline that designs algorithms to build programs that solve complex
tasks using examples of successful completion of those tasks

Building blocks
I data

I task dependent form (e.g. (input, output) pairs for supervised
learning)

I being able to compare entities is mandatory
I quality measures: how “good” is the solution to the given task?
I optimization techniques
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Licence

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
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Changelog

I December 2019:
I new examples: spam, MNIST, artificial data set for knn
I practical application examples
I graphical illustration of k-nearest neighbors
I more learning paradigm
I difficulties
I summary and conclusion

I January 2018: initial version
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