
K nearest neighbors

Fabrice Rossi

The goal of the following exercises it to implement the k nearest neighbors algorithm and
experiment with it.

Data sets
Data sets used in the exercises are available on the course page.

Artificial 2 dimensional data set

The 2d data set zip file contains:

• 2d-learn.csv: a learning set with 10000 examples described by 2 numerical variables and
a target variable Y;

• 2d-eval.csv: a test set with 50000 examples described by 2 numerical variables and
without the target variable;

• 2d-eval-labels.csv: the labels for the test set, with 2 variables. Y is the target variable
while Yopt is the decision for an optimal model obtained using the true data distribution.

Exercise 1 (Naive k-nn implementation)

In this exercise, the goal is to implement completely the k-NN algorithm even if the implementation
is somewhat naive (in terms of computational efficiency).

Question 1 Write a function distance with two parameters a and b and which returns the
squared Euclidean distance between the parameters, assuming they are numpy vectors.

Question 2 Write a function m_distance with two parameters A and b and which returns the
squared Euclidean distance between the rows of the A matrix and the vector b. The use of numpy
broadcasting is recommended (no loop is required).

Question 3 Write a function k_closest with three parameters A, b and k which returns the
indices (row numbers) of the k rows of the matrix A that are the closest to the vector b. It is
recommended to use the function numpy.argsort which returns the indices that would sort its
argument.

Question 4 Write a function mode with a parameter a which finds and returns the most frequent
value in a.

Question 5 Write a function knn with four parameters A, y, b and k with returns the output of
the k-NN model constructed on A (input vectors of the learning set) and y (output labels of the
learning set), evaluated at b.

Page 1 / 3



Question 6 Write a function mknn with four parameters A, y, B and k with returns the outputs
of the k-NN model constructed on A (input vectors of the learning set) and y (output labels of
the learning set), evaluated on all the rows of the B matrix.

Question 7 Write a function confusion with two parameters a and b which outputs the
confusion matrix associated to predicting a while the true output is b. The pandas.crosstab
function is recommended for this calculation.

Question 8 Load the 2d-learn.csv data set in a pandas DataFrame and compute the confusion
matrix of the model built by the k-NN model constructed on the data set and evaluated on the
same data set, for several values of k (including k = 1).

Exercise 2 (Improving the implementation)

The naive implementation constructed in the previous exercise is too slow to be usable in practice
on realistic data sets. We study in this exercise a faster solution.

Lecture notes
The SciPy collection of tools contains the NumPy library but also the SciPy library. The
later contains numerous useful functions to complement NumPy for scientific calculations.
For the k-NN implementation, several functions can be used.

The module scipy.spatial.distance provides a function cdist which takes as argu-
ments two matrices and computes all the pairwise distances between the rows of the matrices
(interpreted as vectors). A third argument can be used to select other distances than the
Euclidean distance. A typical use is

import scipy.spatial.distance as ssd
A2B = ssd.cdist(A, B, 'euclidean')

After the execution of those lines, A2B[i,j] contains the Euclidean distance between A[i,]
and B[j,].

In addition the module scipy.stats contains numerous statistical functions, among
which the mode function that compute the most frequent value in a vector. It can be applied
to any array provided the axis over which the calculation is done is specified.

Question 1 Write a function mk_closest with three parameters A, B and k which returns a
matrix C such that C[i,] contains the indices of the rows of A that are the k closest to B[i,]
(according to the Euclidean distance).
Notice that the numpy.argsort function can be applied to an array, provided the axis over which
the calculation is done is specified.

Question 2 Write a function mknn with four parameters A, y, B and k with returns the outputs
of the k-NN model constructed on A (input vectors of the learning set) and y (output labels of
the learning set), evaluated on all the rows of the B matrix.

Question 3 Load the 2d-learn.csv data set in a pandas DataFrame and compute the confusion
matrix of the model built by the k-NN model constructed on the data set and evaluated on the
same data set, for several values of k (including k = 1).

Page 2 / 3

https://www.scipy.org/


Lecture notes
The time module contains functions for date and duration manipulation. In particular the
time.time function return the number of seconds since a reference time (in general January
the 1st, 1970). While this is only for crude time measurement, this function can be used to
evaluate the run time of a long running code. For instance

import time
before = time.time()
print(min(range(1000000)))
after = time.time()
print(after - before)

can print something like

0
0.02694082260131836

The second value depends on the computer but it corresponds to the time in seconds between
the two calls to time.time.

Question 4 Compare the running time between the two versions of mknn.

Page 3 / 3


