Contrôle continu : automates finis Sujet 1

Exercice 1

Soit un automate A défini par $A = (Q, \Sigma, q_0, \delta, F)$ avec

$$Q = \{0, 1, 2, 3\}$$
 $\Sigma = \{a, b\}$
 $q_0 = 0$ $F = \{3\},$

et par les tables suivantes pour δ :

q	t	q'	q	t	q'
0	a	1	1	\overline{a}	3
0	a	2	2	b	2
0	b	2	2	b	3

Question 1 Dessinez l'automate.

Question 2 Donnez un mot reconnu par l'automate le plus court possible.

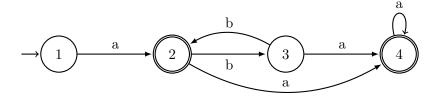
Question 3 Donnez un exemple de mot non reconnu par l'automate.

Question 4 Construisez par la méthode de votre choix un automate B déterministe et équivalent à A. Vous donnerez la représentation graphique de B et sa représentation formelle.

Exercice 2

On étudie le langage rationnel L = (a|b)(c*)c défini sur l'alphabet $\Sigma = \{a,b,c\}$.

Question 1 Appliquez l'algorithme de Thompson pour obtenir un automate A reconnaissant L. Attention, vous ne devez pas simplifier l'automate pendant sa construction!


Question 2 Construisez un automate B synchrone (sans ε -transitions) équivalent à A en appliquant l'algorithme backward à A. Veillez à simplifier B en suppriment les états non atteignables.

Question 3 Construisez un automate C déterministe équivalent à B par la méthode de votre choix appliquée à B. Indiquez distinctement la composition des états de C en fonction des états de B.

Question 4 Construisez un automate D déterministe équivalent à A en déterminisant directement A (algorithme forward). Indiquez distinctement la composition des états de D en fonction des états de A.

Exercice 3

Soit l'automate suivant défini sur l'alphabet $\Sigma = \{a, b\}$:

Question 1 Déterminez les équations satisfaites par les $(X_q)_{q \in \{1,2,3,4\}}$.

Question 2 Déterminez explicitement X_1 par une expression qui ne fasse intervenir aucun des X_q .