Part IV

Iconic and pixel based displays

ъ

Outline

Introduction

Iconic displays

- Chernoff's faces
- Star glyph
- Glyph Positioning
- Pixel based displays
 Dense pixel displays
 Dissimilarity matrix

3 > 4 3

< 🗇 🕨

Two opposite ways of addressing scalability issues:

- Glyph/Iconic displays:
 - Scatter plot "dots" are replaced by rich icon or glyphs
 - Locality is enforced: all characteristics of an object are mapped in a small area of the display
- Pixel based displays:
 - A numerical value is mapped to a single pixel
 - Displays are dense: nothing is "vasted"

10 Introduction

Iconic displays

- Chernoff's faces
- Star glyph
- Glyph Positioning

Pixel based displays Dense pixel display

Dissimilarity matrix

____ ▶

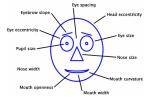
- B

Replacing dots by icons or glyphs:

- Each object is represented by an icon
- Variations in shape/color/etc. of the icon encode variables
- Icon position:
 - Structure driven
 - Data driven
- Examples:
 - Chernoff's faces
 - Star glyph
 - Stick-figure icon
 - etc.

< 🗇 🕨 < 🖃 >

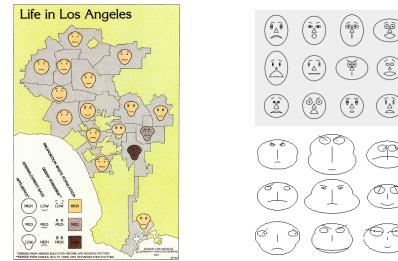
Pros:


- complete independent display of each object
- pre-attentive processing
- can be very intuitive (good learning curve)
- Cons:
 - glyph design
 - variable mapping: important variation in feature expressive power
 - glyph positioning
 - glyph overlapping

Chernoff's faces

Proposed by Chernoff in 1973:

- Values mapped to characteristics of faces:
 - eyes, nose, mouth, ears, head, hair, eyebrows, etc.
 - position, size, curvature, etc.
 - combined with color
- Pros:
 - Easy to understand
 - Can convey strong messages
- Cons:
 - Numerous variants
 - Strongly depends on the chosen characteristics
 - Uses a lot of screen surface



27-28/02/2007 115 / 172

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Examples

http://kspark.kaist.ac.kr/Human%20Engineering.files/Chernoff/Chernoff%20Faces.htm http://mathworld.wolfram.com/ChernoffFace.html http://aoki2.si.gunma-u.ac.jp/R/face.html

F. Rossi (INRIA)

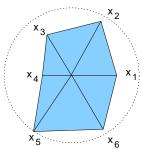
Infovis & ML

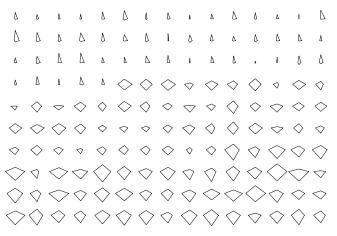
27-28/02/2007 116 / 172

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

Anderson's/Fisher's Iris


A	\odot	\odot	(i)				\odot	\odot	\odot		\odot	\odot	$\overline{\mathbf{O}}$	
~		1	1				\	\odot	•	\odot	1		(\odot
\odot	1	*	~	\odot		N		\odot	©		•	\odot	1	
\odot		\odot		\odot	•	•	•	T	T	T	T	•	T	T
•	T	$\overline{\mathbf{v}}$	T	T	T	•	T	Ì	T	T	T	Ŕ	T	T
T	T	•	T	\odot	T	\odot	T	T	T	T	T	Ì	T	T
T	T	T	•	T	T	T	T	T	T	Ŧ	T	6	Ŧ	Ŧ
ð	T	Ŧ	Ŧ	Ŧ	Ŧ	T	Ŧ	Ŧ	T	Ŧ	Ŧ	S		T
Ŧ	T	Ĩ	Ŧ	•	•	Ŧ	T	T	•	Đ	S	Ŧ	T	Ì
T	Ŧ	T	T	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	T	Ŧ	Ŧ	T

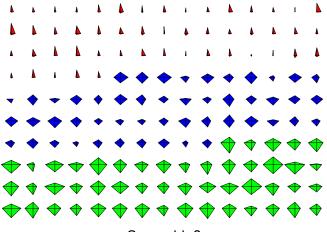

27-28/02/2007 117 / 172

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ の Q @

Proposed by Siegel, Farrell, Goldwyn & Friedman in 1972:

- *p* variables are mapped to a polygon with *p* - 1 edges (*p* vertices)
- the distance between the center and vertex *i* is proportional to *x_i*
- radii are optional
- corresponds to individual polar parallel coordinates

Anderson's/Fisher's Iris


Obviously two classes

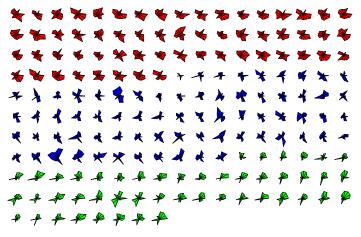
э

Iris

4	٨	١	٨	V	4	ł	A	ł	۸	Δ	٨	٨	ı	7
4	4	۵	4	٨	4	4	I	4	4	4	4	4	4	۵
۵	4	V	4	۵	4	4	V	i	4	4	•	I	Ą	4
4	V	ł	4	V	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\bigtriangledown	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	4	\Leftrightarrow	\diamondsuit
∇	\Leftrightarrow	Φ	\Leftrightarrow	\oplus	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	∇	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow
\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\diamondsuit	♦	\Leftrightarrow	\diamondsuit	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\bigtriangledown	\Leftrightarrow	\diamondsuit
\Leftrightarrow	\oplus	\Leftrightarrow	4	\diamondsuit	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	♦	\Leftrightarrow	\bigoplus	\Diamond	\diamondsuit	\diamondsuit	\diamondsuit
\Leftrightarrow	\mathbb{A}	\Leftrightarrow	\diamondsuit	\Leftrightarrow	\Leftrightarrow	\diamondsuit	\diamondsuit	\bigtriangledown	\bigcirc	\bigoplus	\Leftrightarrow	\Leftrightarrow	\bigtriangledown	∇
\Leftrightarrow	\bigcirc	\Leftrightarrow	\diamondsuit	\Leftrightarrow	\Leftrightarrow	\diamondsuit	\diamondsuit	\diamondsuit	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	∇	\Leftrightarrow	\Leftrightarrow
\diamondsuit	\bigoplus	\diamondsuit	\diamondsuit	\diamondsuit	\bigcirc	\diamondsuit	\bigcirc	\diamondsuit	\diamondsuit	\diamondsuit	\bigtriangledown	\diamondsuit	\bigoplus	\diamondsuit
Obviously two classes														

Anderson's/Fisher's Iris

Anderson's/Fisher's Iris


Separable?

Ξ.

< 同 > < ∃ >

Wines

Italian Wines

Separable?

= nar

Glyph Positioning

Anderson's/Fisher's Iris

4	٨	٤	٨	V	4	Ł	V	ı	۵	4	٨	٨	ı	Δ
4	4	4	4	٨	4	4	١	4	4	4	4	۵	V	۵
۵	4	V	4	A	4	4	V	i	4	4	•	ı	₽	4
4	V	L	Δ	٨	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\bigtriangledown	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	♦	\Leftrightarrow	\diamondsuit
∇	\oplus	\blacklozenge	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	∇	\Diamond	\Leftrightarrow	\Leftrightarrow	\diamondsuit	\Leftrightarrow	\Leftrightarrow
\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\diamondsuit	♦	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\diamondsuit	\Leftrightarrow	\diamondsuit
\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	⊅	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	♦	\Leftrightarrow	\bigcirc	\bigcirc	\diamondsuit	\diamondsuit	\Leftrightarrow
\Leftrightarrow	4	\Leftrightarrow	\diamondsuit	\Leftrightarrow	\diamondsuit	\diamondsuit	\diamondsuit	\bigtriangledown	\bigcirc	\diamondsuit	\Leftrightarrow	\Leftrightarrow	\bigtriangledown	\bigtriangledown
\Leftrightarrow	\bigcirc	\Leftrightarrow	\diamondsuit	\Leftrightarrow	\Leftrightarrow	\diamondsuit	\diamondsuit	\diamondsuit	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\forall	\Leftrightarrow	\Leftrightarrow
\diamondsuit	\bigoplus	\Leftrightarrow	\diamondsuit	\diamondsuit	\diamondsuit	\diamondsuit	\bigcirc	\diamondsuit	\diamondsuit	\diamondsuit	\bigtriangledown	\diamondsuit	\bigoplus	\diamondsuit
										مامہ				

Class based order: two classes

æ

Glyph Positioning

Anderson's/Fisher's Iris

Random order: no structure

æ

イロン イ理 とくほと くほとう

- Strong impact on perception
- Two classes of algorithms:
 - Structure driven:
 - Prior choice of a structure (e.g., a grid)
 - Layout in the structure can be data driven (ordering)
 - Data driven:
 - Positions of the glyphs is extracted from the data
 - User guided (scatter plot like)
 - Automated (e.g., via a projection)
- Overlapping is a major problem:
 - Additional constraints for data driven solution
 - Rendering solutions (transparency, auto-size, post processing)

Based on a prior structure

- No overlapping
- "Reading order"
- Glyph ordering:
 - A seriation problem (like variable ordering)
 - User guided (target variable, chosen input variable, etc.): also called query based order
 - Automated:
 - Minimize a dissimilarity between close glyphs
 - NP complete
 - Heuristics

イロト イ押ト イヨト イヨト

Structure driven with user ordering

Boston Housing (UCI)

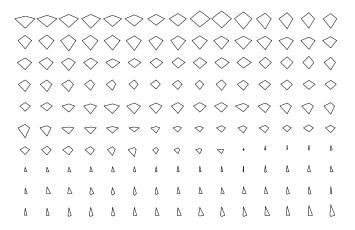
N N N N ****** ***** ***** **** ***************************** *********** ***** *********** ****************************** ****************** ******************************* ****** ***** ****** ************************* ************************************* *********************************** ************************* *******

Structure driven with user ordering

Boston Housing (UCI), Target ordered

************************* ******************************** ************************************ ****************************** ******************************* ******************************* ******************************* ***** ***************************** ************************* ****************************** ********** ********************

э


Structure driven with automated ordering

Anderson's/Fisher's Iris

Random order: no structure

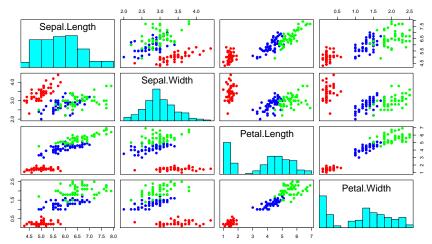
Structure driven with automated ordering

Anderson's/Fisher's Iris

Hierarchical clustering based order: two classes

F. Rossi (INRIA)

Infovis & ML

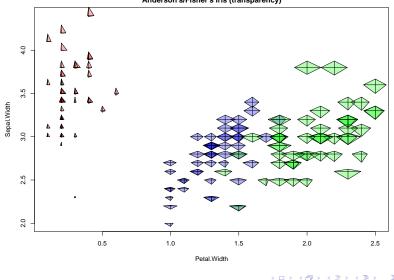

27-28/02/2007 126 / 172

Based on the data

- Coordinates of glyphs are computed from the data
- User guided:
 - Choose two variables among p
 - Scatter plot of the glyphs
- Automated: projection based approaches
- Overlapping:
 - Rendering (as for scatter plots)
 - Built in prevention (e.g., SOM, Relational Perspective Map)
 - Post processing:
 - Jitter, GridFit, Force directed placement, etc.
 - Adapted size: small glyphs in dense area, larger ones in empty places
 - Zooming interface and clustering

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Data driven under user control

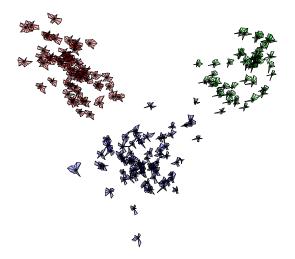


Anderson's/Fisher's Iris

F. Rossi (INRIA)

27-28/02/2007 128 / 172

Data driven under user control

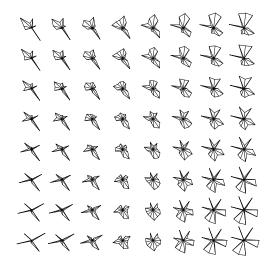


Anderson's/Fisher's Iris (transparency)

27-28/02/2007 128 / 172

Automated data driven

Italian Wines (LDA + transparency)



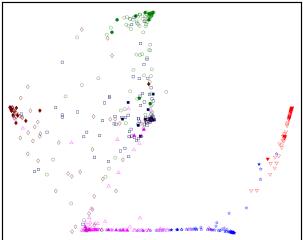
æ

・ロト ・聞 ト ・ ヨト ・ ヨト

Automated data driven

Self Organizing Map (Boston Housing)

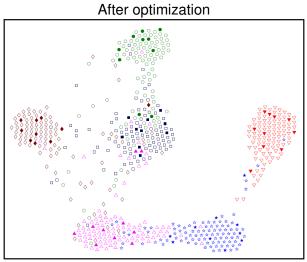
Post-processing


Reducing overlapping after positioning

- Optimization problem:
 - original glyph positions: x_i
 - new positions: y_i
 - movement minimization: $y_i \simeq x_i$
 - overlapping minimization: $y_i \neq y_j$ when $i \neq j$
- Objective function

$$E(\mathbf{y}) = \sum_{i=1}^{n} \|y_i - x_i\|^2 + \eta \sum_{i \neq j} \exp\left(-\frac{\|y_i - y_j\|^2}{2\sigma^2}\right)$$

- η: trade off between faithfulness and overlapping (σ: overlapping radius)
- N-body like problem (frequent also in projection)


Original layout

from "Visual nonlinear discriminant analysis for classifier design" by Iwata et al., ESANN 2006

F. Rossi (INRIA)

< A

from "Visual nonlinear discriminant analysis for classifier design" by Iwata et al., ESANN 2006

F. Rossi (INRIA)

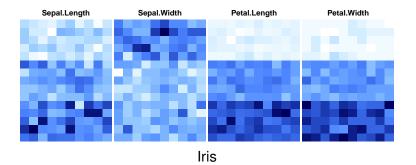
27-28/02/2007 132 / 172

10 Introduction

Iconic displays

- Chernoff's faces
- Star glyph
- Glyph Positioning

Pixel based displaysDense pixel displays

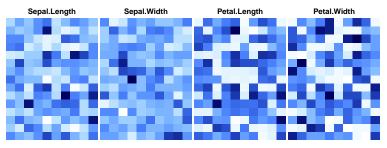

Dissimilarity matrix

____ ▶

- B

Dense pixel displays

- One pixel per value
- *n* objects with *p* variables \Rightarrow *n* × *p* pixels
- Values are color coded
- One block of pixels per variable



A (10) A (10) A (10)

Dense pixel displays

Pros:

- Very good scalability
- No overlapping
- Pre-attentive processing
- Cons:
 - Extremely order dependent

Iris (random order)

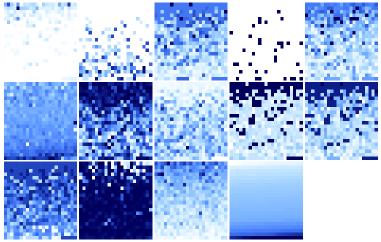
F. Rossi (INRIA)
------------	--------

< ロ > < 同 > < 回 > < 回 >

Two distinct problems

- Pixel layout for one variable:
 - Object order (user chosen or based on seriation)
 - Order mapping: grid "reading order" (same problem for glyphs)
- Variable layout:
 - "Related" variables should be close
 - Problem already encountered for parallel coordinates
 - NP complete

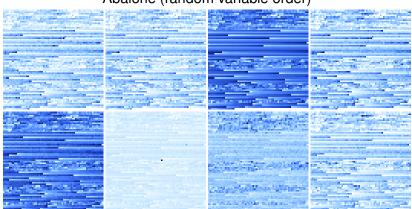
User directed pixel ordering


Boston Housing (no pixel order)

A >

User directed pixel ordering

Boston Housing (target pixel order)

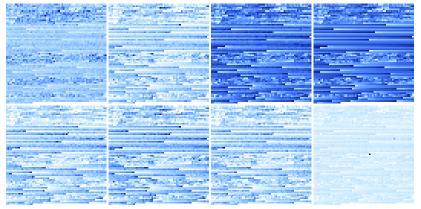

F. Rossi (INRIA)

Infovis & ML

27-28/02/2007 137 / 172

< 17 ▶

Automatic ordering



Abalone (random variable order)

イロト イヨト イヨト イヨト

Automatic ordering

Abalone (ordered variables)

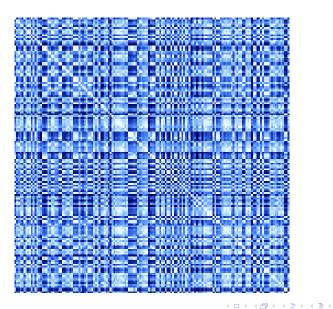
F. Rossi (INRIA)

Infovis & ML

27-28/02/2007 138 / 172

イロト イヨト イヨト イヨト

Automatic ordering

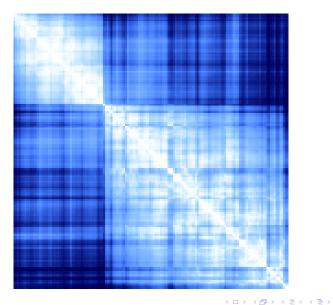

Abalone (ordered on variables and pixels)

		and the second second	and a second second
			-
		and the second second	
and the state	in the second	the states	

F. I	Rossi	(INRIA)

27-28/02/2007 138 / 172

- Pairwise (dis)similarities between objects
- One pixel per dissimilarity: n^2 pixels $(\frac{n(n-1)}{2})$
- Square matrix display
- Values are color coded
- Ordering is mandatory:
 - random order gives random results
 - many different objective functions:
 - correlation between matrix rows
 - "small" diagonal
 - etc.
 - YAFSP (Yet Another Family of Seriation Problems)
 - YAFNPCP (Yet Another Family NP Complete Problems)

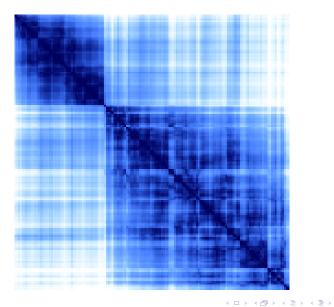


F. Rossi (INRIA)

27-28/02/2007 140 / 172

æ

Iris dataset



F. Rossi (INRIA)

27-28/02/2007 140 / 17

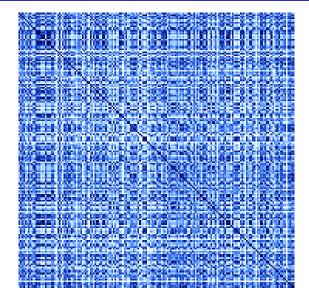
э.

Iris dataset

F. Rossi (INRIA)

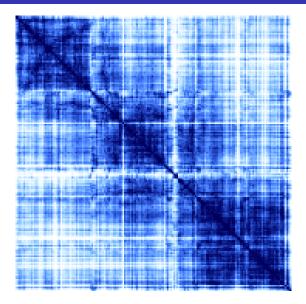
Infovis & ML

27-28/02/2007 140 / 17

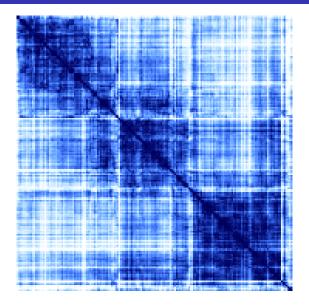

э.

• Pros:

- Dimension Independent (but beware of distances problems in high dimension)
- Applies to non vector data
- Clustering analysis
- Outlier detection
- Cons:
 - Ordering algorithm are costly (NP complete!)
 - Scalability impaired by ordering costs and by screen occupation
 - Results depends on many parameters:
 - Dissimilarity
 - Ordering criterion
 - Ordering method
 - Color map
 - Usability has not been studied

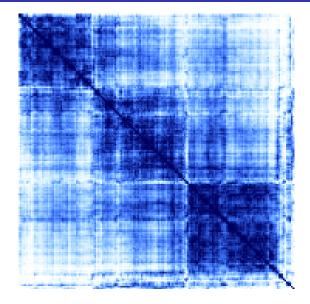

< 回 > < 三 > < 三 >

Random order

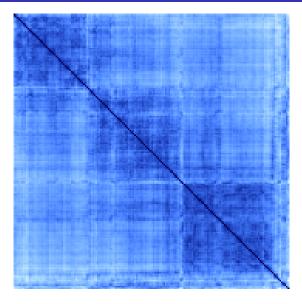


A D > <
 A P >
 A

Correlation similarity, complete linkage, optimal leaf order



Correlation similarity, average linkage, optimal leaf order



< 17 ▶

Euclidean dissimilarity, average linkage, optimal leaf order

Euclidean dissimilarity, average linkage, optimal leaf order, linear color map

