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Goals of this lecture

1. To give an introduction to Information Visualization (Infovis)
I enhancement methods for classical displays
I specialized displays
I why you should leverage infovis in your everyday work

2. To outline links between Infovis and Machine Learning
I why do they exist?
I current solutions
I open research problems

3. To give examples of successful joint researches:
I Machine learning methods designed for visualization
I Visualization of machine learning algorithm results



Outline

Information Visualization
Definition
Infovis applications
Limitations of Infovis and VDM
An introductory example: the histogram
Another example: categorical data
Interactivity

Machine learning and visualization
One dimensional data
Two dimensional data



Information Visualization

The use of computer-supported interactive, visual
representation of abstract data to amplify cognition

Card, Mackinlay & Shneiderman

Human preattentive processing capabilities
I non conscious processing (no thinking involved)
I low level visual system
I extremely fast: 200 ms
I scalable (no browsing⇒ sublinear scaling)
I feature type must match data type (e.g., hue is suitable for

categories, less for real values)
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Preattentive features
Hue



Preattentive features
Shape



Information Visualization

The use of computer-supported interactive, visual
representation of abstract data to amplify cognition

Card, Mackinlay & Shneiderman

Tool metaphor (hammer, microscope, etc.)
I extending user possibilities:

I more scalable processing (speed and/or volume)
I details enhancement
I multi-source fusion
I etc.

I under user control
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Information Visualization

The use of computer-supported interactive, visual
representation of abstract data to amplify cognition

Card, Mackinlay & Shneiderman

Overview first, zoom and filter, and then details-on-demand

Information Seeking Mantra, Shneiderman

Interactivity
I enables user control:

I exploration (panning)
I zooming
I 3D world

I reduces clutter on the screen



Information Visualization

The use of computer-supported interactive, visual
representation of abstract data to amplify cognition

Card, Mackinlay & Shneiderman

Abstract data
I digital data with no real world “visual” counterpart, e.g.:

I sound
I high dimensional vectors

I no “natural” visual representation of the data, e.g.:
I requests received by a web server
I file systems
I source code

Infovis 6= scientific visualization (Scivis)



Data visualization

Closely related to information visualization
I data ' a data table (N objects described by P variables)
I no real consensus on a boundaries between infovis and datavis:

I datavis ⊂ infovis: data ' preprocessed information (turned into
numerical quantities)

I datavis ∩ infovis = ∅ : information (in infovis) is explicitly non
numerical (is it?)

I infovis ⊂ datavis: because data include scientific data...

Also related to statistical graphics
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What is infovis used for?

Some specific goals
I easier access (learning curve):

I GUI in general
I e.g., File system browsing

I productivity (doing the same things but faster):
I IDE (on the fly documentation, multi-view, graphical programming,

etc.)
I on the fly search (Google suggest)

I organization:
I tree paradigm (sorting)
I metadata (image, music, etc.)
I overview



Visual data mining (VDM)

A.k.a. Visual Analytics and Visual Data Analysis:

Interactive visual exploration of massive data sets
I cluster analysis
I outlier detection
I dependency assessment
I pattern detection (repetition, sub-structure, etc.)
I etc.

Interactive visualization of the results of data mining
algorithms

I parameter tuning
I quality assessment
I mining on the results (e.g., meta-clustering)
I etc.



But...

Limited external impact
Many discoveries of infovis are not used (or even known) outside the
infovis community

External “state-of-the-art”
I mostly static graphics
I with broken defaults (color-wise, shape-wise, etc.)

Serious state-of-the-art
I interactive graphics
I high quality static graphics
I sound defaults



For instance, in default R...

Sepal.Length

2.0 3.0 4.0 0.5 1.5 2.5

4.
5

5.
5

6.
5

7.
5

2.
0

3.
0

4.
0

Sepal.Width

Petal.Length

1
3

5
7

4.5 5.5 6.5 7.5

0.
5

1.
5

2.
5

1 2 3 4 5 6 7

Petal.Width

Fisher/Anderson’s Iris



Rather than...
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Limitations of Infovis and VDM

I Visual illusions
I Distortion, occlusion, etc.
I Visual semiotics
I Scalability

I number of objects
I number of descriptors
I human scalability
I computer scalability

I Art or Science?



Café wall illusion

http://en.wikipedia.org/wiki/File:Caf%C3%A9_wall.svg

http://en.wikipedia.org/wiki/File:Caf%C3%A9_wall.svg


Grey levels

http://web.mit.edu/persci/people/adelson/index.html

http://web.mit.edu/persci/people/adelson/index.html


Grey levels

http://web.mit.edu/persci/people/adelson/index.html

http://web.mit.edu/persci/people/adelson/index.html


Area and size
Ebbinghaus illusion

http://en.wikipedia.org/wiki/File:Mond-vergleich.svg

http://en.wikipedia.org/wiki/File:Mond-vergleich.svg


Area and size
Ebbinghaus illusion

http://en.wikipedia.org/wiki/File:Mond-vergleich.svg

http://en.wikipedia.org/wiki/File:Mond-vergleich.svg


Color blindness

http://en.wikipedia.org/wiki/File:Ishihara_9.png

http://en.wikipedia.org/wiki/File:Ishihara_9.png


The scalability issue

I Vision is limited to 2 or 3 dimensions
I Position can be combined with other features:

I color (intensity and hue)
I shape (e.g., star icon)
I texture
I etc.

I But fast pre-attentive processing is limited to roughly 5 combined
features (for some combination only!)

I Correlating distant things is difficult
I Computer screens have a “low” resolution (HD is 2 millions pixels)
I Complex HD interactive display requires dedicated graphic board

and associated software (OpenGL and Direct3D, Shader
languages)



Broken preattentive features
Hue + shape



How to scale?

Complementary solutions
I interactivity (zooming, distorting, details on demand, etc.)
I data transformation:

I interaction between objects rather than objects themselves
I similarity between objects

I data simplification:
I reduction of the number of objects (summary, clustering, etc.)
I reduction of the number of characteristics (selection, projection, etc.)
I compact layout: one glyph per object or one pixel per measurement

I data ordering:
I positioning related things closely on the screen
I one to three dimensional ordering

Obviously linked to Machine Learning (clustering, projection, etc.)
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A classical example

Displaying a one dimensional numerical variable
I dataset: N observations (Xi)1≤i≤N described by P numerical

variables
I objective: display (Xij) for a fixed j and all i

Classical solution
A histogram:

I a rough density
estimator

I enormous scalability
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Histograms in detail

Visualization algorithm
1. choose a number of bins and their widths:

I numerous possibilities:
√

N, log N, etc.
I no perfect one

2. for each bin ]a,b] compute the fraction of i such that Xij ∈]a,b]
3. display a bar per bin, with an area proportional to the fraction

computed at step 2

Remarks
I this is statistical learning: non parametric estimation of p(X.j)
I the original data is not displayed
I the drawing itself remains rather unspecified (at this point) but has

crucial consequences: color, aspect ratio, labels, position, etc.
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1. choose a number of bins and their widths:

I numerous possibilities:
√

N, log N, etc.
I no perfect one

2. for each bin ]a,b] compute the fraction of i such that Xij ∈]a,b]
3. display a bar per bin, with an area proportional to the fraction

computed at step 2

Remarks
I this is statistical learning: non parametric estimation of p(X.j)
I the original data is not displayed
I the drawing itself remains rather unspecified (at this point) but has

crucial consequences: color, aspect ratio, labels, position, etc.



Chi & Riedl’s Operator Model
A formal view of infovis [CR98]

Production of the View from the Data:

Data Analytical Abstraction Visualization Abstraction View

Data Transformation Analytical Transformation

Transformation
Visual Mapping

Arrows represent transformation operators.



Chi & Riedl’s Operator Model

Applied to histograms

data (Xij)1≤i≤N for a fixed j
analytical abstraction K bins (ak ,bk , fk )1≤k≤K , where fk is the fraction

of objects falling in bin k
visual abstraction K adjacent bars (wk , hk )1≤k≤K , where the width

wk is proportional to bk − ak and the hk is
proportional to fk

wk

view the histogram itself

Remarks
I the visual mapping step gathers most of the wizard’s tricks
I machine learning may operate at numerous stages
I the model includes feedback and interactivity



Machine learning operators

Some examples

data transformation main field: density estimation, clustering,
etc.

analytical transformation second field: dimensionality reduction
techniques

visual mapping seldom used: optimal ordering and optimal
coloring

Internal operators

data stage de-noising, clustering as a pre-processing
analytical stage some form of dimensionality reduction,

feature selection, model building
visualization stage visual oriented transformation (e.g., second

clustering)



Visual Mapping Transformation

View “Language”
Graphical primitives:

I coordinates (two or three)
I symbols (dots, ticks, glyphs)
I lines and areas (larger scale symbols)
I text
I color:

I Hue and Saturation
I Ligthness

Mapping
I expression of the visual abstraction in terms of the graphical

language
I arrangement, color choice, axes, etc.



View design

The difficult part
I probably the most difficult part of infovis
I many heated debates...
I between art and science
I tricky evaluation:

I experimental psychology
I long and complex
I task oriented

Graph visualization



Histogram mapping

The mapping

bar a solid rectangle, no
border

layout horizontal data axis,
vertical density axis

key data description,
value description,
horizontal grid
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Rationale?
I do we need color?
I don’t we need bar borders?
I what are we trying to show?
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Let’s summon statistics...

Definition
A histogram is a (rough) density estimator. Given X1, . . . ,XN
distributed according to P(X ) is approximates f (x) such that
P(X ∈ B) =

∫
B f (x)dx .

“Natural” visualization
Then let’s draw f (x)!

I natural axes: horizontal for the values, vertical for the likelihood
I colored and borderless bars emphasize the area (as opposed to

the height): proper probabilistic interpretation

Use
I shape analysis: symmetric? unimodal? Gaussian like?
I quality control: outliers and other unexpected behaviors



Let’s summon statistics...

Definition
A histogram is a (rough) density estimator. Given X1, . . . ,XN
distributed according to P(X ) is approximates f (x) such that
P(X ∈ B) =

∫
B f (x)dx .

“Natural” visualization
Then let’s draw f (x)!

I natural axes: horizontal for the values, vertical for the likelihood
I colored and borderless bars emphasize the area (as opposed to

the height): proper probabilistic interpretation

Use
I shape analysis: symmetric? unimodal? Gaussian like?
I quality control: outliers and other unexpected behaviors



Density or counting?

Petal Width
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Unnatural visualization
So far, so good

X
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The infovis process
Wrapping up

The process

1. extract information from the raw data
2. build an abstract visualization of this information
3. map it to a view using a sound graphical language

Major points
I a view should be adapted to some specific goal
I less is more: remove interferences
I self-contained views: axes, keys, labels are part of the mapping

process
I faithful views: do what you claim to do; beware of “natural

representations”
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Another classical example

Displaying a one dimensional categorical variable
I dataset: N observations (Xi)1≤i≤N described by one categorical

variable with Q possible values in V = {V1, . . . ,VQ}
I zero structure on V (in particular, no order)
I objective: display (Xi)1≤i≤N

Classical solution

(but a very bad one)

A pie chart
I a counting like

approach
I enormous scalability

with respect to N (none
with respect to Q)

setosa

versicolor

virginica
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A pie chart

I a counting like
approach

I enormous scalability
with respect to N (none
with respect to Q)

setosa

versicolor

virginica



Chi & Riedl’s Operator Model

Applied to pie charts

data (Xi)1≤i≤N

analytical abstraction Nq the number of i such that Xi = Vq

visual abstraction a sliced pie whose Q slices have an area
proportional to Nq

view the colored pie, with labeled slices ordered
according to some rule

Representation principle
I the quantity of interest is encoded via an area (equivalently an

angle)
I inference is based on area (angle) comparisons
I in histograms, inference is based on shape analysis (skewness,

spread, etc.)
I in counting histograms, inference is based on bar lengths



Let’s play...

Please write down your estimation of the ratio of the areas of those
disks.



Let’s play...

Please write down your estimation of the ratio of the lengths of those
bars.



Bar chart

Another visual abstraction
Using the same counting data, replace the Q pie slices by Q bars with
length/height proportional to Nq

And the views are

setosa

versicolor

virginica
setosa versicolor virginica

0
10

20
30

40
50

Did you noticed the unequal proportions in the first occurrence of this
pie chart? Can you now?
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Stevens’ Power Law

Definition (Wikipedia)
Stevens’ power law is a proposed relationship between the magnitude
of a physical stimulus and its perceived intensity or strength, with the
general form ψ(I) = kIα

Some examples in visualization

length: α ∈ [0.9;1.1]
area: α ∈ [0.6;0.9]

volume: α ∈ [0.5;0.8]

We tend to underestimate large areas and to overestimate small ones.



Cheating with the pie...

Steve Jobs’ keynote at Macworld 2008, source:
http://www.engadget.com/2008/01/15/live-from-macworld-2008-steve-jobs-keynote/

http://www.engadget.com/2008/01/15/live-from-macworld-2008-steve-jobs-keynote/
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Back to the facts

With Jobs’ ordering

Other

Nokia
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Back to the facts

With a more natural ordering
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The lie factor

Definition
The lie factor is the ratio between the (relative) size of a quantity on a
graphic and its (relative) size in the data.

The representation of numbers, as physically measured
on the surface of the graphic itself, should be directly
proportional to the quantities represented.

Tufte, 1991

Jobs’ keynote lie factor

real effect 19.5%/21.2% ' 0.92
graphic effect roughly 1.5

lie factor roughly 1.6



Variations over the view

Remarks
I Pie charts and Bar charts differ mostly on the visual abstraction:

area/angle versus length/height
I Cleveland and McGill have shown that lengths encode numerical

values much more efficiently than areas and therefore that you
should

Save the pies for dessert

Stephen Few
I what about the view?

I common challenges for both charts: ordering, labelling, coloring
I but do we need to materialize the bars?



Cleveland’s dot plot

Mostly a visual mapping variation
I use the same visual abstraction (bars of length proportional to

counts)
I with a much simpler view

Nokia

Motorola

Palm

Apple

Other

RIM

5 10 15 20 25 30 35 40

I much more scalable than the bar chart with respect to the number
of modalities



Ranking visual features
Cleveland & McGill

Quality of numerical encoding
In decreasing order:

1. position on a common scale
2. position along identical scales but non-aligned
3. length
4. angle and slope
5. area
6. volume
7. color properties (brightness, etc.)



Visual elements

Summary
I the visual abstraction induces the main aspects of the view:

I lengths will be mapped to positions or actual lengths
I areas will be mapped to graphical primitives (disks, squares, etc.)

with the requested areas
I visual features are not born equal:

I positions and lengths are rather easily compared
I areas and angles are much more misleading
I colors (hue) are useful for differentiation not for coding quantities

I visual mapping can ruin the visual abstraction:
I 3D is very dangerous: it does not preserve areas, angles, etc.
I distraction, cluttering, etc. must be avoided
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Interactivity

Core feature of information visualization
Infovis research emphasizes the practical relevance of interactivity

I exploration: panning, zooming, rotating (3D)
I details on demand, distortion: reduces clutter
I conditional analysis: helps testing “what if?” scenario
I user choice: parameter tuning, guided exploration

Nice bonus: some form of interactivity is mostly orthogonal to the rest
of the infovis pipeline

Current status
I rather limited diffusion except for basic tricks, such as 3D
I still computationally demanding; for some interactions, the

hardware is there (even in smartphones!) but programming it is
still hard

I major ideas (e.g., brushing and linking) are still not mainstream



A simple example

The tips dataset
I tips received during two and half months by a food server in the

early 90s
I 7 variables including the tip received for the meal

Count histogram of the tips: bin number effect
1 dollar resolution
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A simple example

The tips dataset
I tips received during two and half months by a food server in the

early 90s
I 7 variables including the tip received for the meal

Count histogram of the tips: bin number effect
10 cents resolution
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Parameter selection

General paradigm
I some parametric visualization method:

I analytical abstraction (e.g. number of bins)
I visual abstraction (e.g. histogram vs counting histogram)
I view (e.g. aspect ratio)

I simple interactive way of modifying the parameter value (slider,
keyboard, etc.)

I real time update of the view

Strong requirements
I deterministic results (minimum surprise principle)
I real time performances
I animated transitions (recommended)



A naive example

K-means clustering
I a simple two dimensional dataset (for illustration)
I minimalist view: scatter plot with prototypes
I interaction: number of clusters
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A naive example (of failure)
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A naive example (of failure)
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State of the art

Available
I generic view interaction (including 3D): zooming, panning, rotating,

etc.
I specific view interaction: ordering, alpha blending, labelling, etc.
I visual abstraction interaction: switching from one representation to

another
I data abstraction interaction: basic control of simple things (e.g.,

histogram bandwidth)

Todo...
I deeper interaction: complex data abstraction control (e.g., number

of clusters, of variables, etc.)
I quality feedback
I hypotheses formulation and testing



Brushing and Linking

A.k.a. Conditioning
I simple but crucial technique
I represent whatever variables X and Y (numerical, categorical,

high dimensional, etc.)
I show the effect on X of selecting part of the values of Y
I technically: compare e.g. P(X |Y ∈ Y and P(X )

Definition
Brushing: selecting a subset of the data items with an input device

Definition
Linking: showing the effect of a brush on all representations of the data



Simple example

Back to the tips dataset
I tips received during two and half months by a food server in the

early 90s
I effect of the gender of the tiper?

Count histogram of the tips
10 cents resolution
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Brushing and Linking

Implementation
is not that obvious...

I complex effect: goes all the way back to the data
I process:

1. provide a selection technique
2. map selection on the screen to selection on the original data
3. apply the data transformation chain to this subset on all the views
4. display the subset together with the full set on all the views

I numerous implied hypotheses:
I deterministic methods
I context aware methods (the full data context must be imposed to the

subset)
I meaningful superimposed displays

I highly goal dependent (again...)



Main points

I infovis methods consist of a succession transformation steps from
the raw data to a view

I machine learning and statistics can play some role in most of the
transformations

I visual mapping is crucial to readability and inference:
I explicit encoding principles
I visual features encoding quality ordering

I brushing and linking enable conditional analysis
I interactivity needs real-time, animation and determinism



Outline

Information Visualization
Definition
Infovis applications
Limitations of Infovis and VDM
An introductory example: the histogram
Another example: categorical data
Interactivity

Machine learning and visualization
One dimensional data
Two dimensional data



Histograms

Can we do better?
I “numerical” summaries: median, mean, standard deviation, etc.
I smooth density estimates

Associated visualizations
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Analysis

Chi and Riedl’s model
data (Xij)1≤i≤N for a fixed j

analytical abstraction a kernel density estimate of p(x) or some basic
statistics

visual abstraction a function x 7→ p(x) or a fancy box with
whiskers (legs in French)

view see previous slide

Variations
Can we do better?

I less distraction (simpler design)
I readability
I more context



Data-Ink ratio

Less is more (sort of)
Edward Tufte’s version:

I ink is used to print data and non data
I one should maximize the ratio between the data ink and the total

ink

A large share of ink on a graphic should present
data-information, the ink changing as the data change.
Data-ink is the non-erasable core of a graphic, the
non-redundant ink arranged in response to variation in the
numbers represented.

Tufte, 1983



Examples

Original designs
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Examples

Higher data-ink ratios
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Readability
Aspect ratio
Drawing a function is simple, is it?

I the aspect ratio is the graph plays in fact a crucial role
I slopes are difficult to judge
I Cleveland, McGill and McGill have shown that slopes far away

from 45° are difficult to estimate
To maximize readability, choose the aspect ratio according to this
finding

Example
Kernel density estimator (flat)
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Readability
Aspect ratio
Drawing a function is simple, is it?

I the aspect ratio is the graph plays in fact a crucial role
I slopes are difficult to judge
I Cleveland, McGill and McGill have shown that slopes far away

from 45° are difficult to estimate
To maximize readability, choose the aspect ratio according to this
finding

Example
Kernel density estimator (peaky)
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Readability
Aspect ratio
Drawing a function is simple, is it?

I the aspect ratio is the graph plays in fact a crucial role
I slopes are difficult to judge
I Cleveland, McGill and McGill have shown that slopes far away

from 45° are difficult to estimate
To maximize readability, choose the aspect ratio according to this
finding

Example
Kernel density estimator (optimal)
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Context

Misleading aspects of density plots
I smoothing effect: generally assign weights to empty intervals
I smoothing effect again: generally extend the actual range of the

observations

⇒ Context is needed

Adding a rug to the plot
Kernel density estimator
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Complex process

Chi and Riedl’s model
data (Xij)1≤i≤N for a fixed j

analytical abstraction a kernel density estimate of p(x) and the data
themselves

visual abstraction a function x 7→ p(x)
view a function representation with optimal aspect

ratio (computed via the median of the slopes of
p), together with a rug obtained from (Xij)1≤i≤N
(maybe with some added jitter)

Added value over histograms
I smooth estimator
I no border effects (]a,b] or [a,b[...)
I less non data ink
I easier comparison between distribution



Conditioning
Comparing distributions

Conditional distribution
I estimation of p(x |y) for a discrete y
I draw p(x |y)p(y) to ease superposition with the global distribution
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Conditioning
Comparing distributions

Conditional distribution
I estimation of p(x |y) for a discrete y
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Conditioning
Comparing distributions

Conditional distribution
I estimation of p(x |y) for a discrete y
I draw p(x |y)p(y) to ease superposition with the global distribution

Counting histograms
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Scaling the comparison

Density estimator limitations
I only a small number of color codes can be distinguished quickly

(less than 10)
I overlapping occurs also quickly

Boxplots are more scalable, up to ordering issues

An example
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Scaling the comparison

Density estimator limitations
I only a small number of color codes can be distinguished quickly

(less than 10)
I overlapping occurs also quickly

Boxplots are more scalable, up to ordering issues

An example
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Interaction

Brushing and linking
I brushing induces conditioning (directly or indirectly)
I the conditional data should be superposed to or displayed close to

the original data
I boxplots are easy to superpose and/or to display side by side
I density plots also: additionally, multiple brushing is possible

(contrarily to histograms)

Other actions
I interactive bandwidth selection
I boxplots positioning (could be automated)



Outline

Information Visualization
Definition
Infovis applications
Limitations of Infovis and VDM
An introductory example: the histogram
Another example: categorical data
Interactivity

Machine learning and visualization
One dimensional data
Two dimensional data



Moving to “higher” dimensions

Mixed case
I one numerical variable, one categorical variable
I done by conditioning!
I density plots for less than 10 modalities, boxplots for more

Numerical case
I classical solution: scatter plot (to be discussed)
I less classical solution: discretize one variable
I shingles: overlapping intervals that span the discretized variable
I back to the mixed case



A trellis plot

Numerical case with shingles
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Categorical variables

Stacked bar charts
I conditional approach
I use spinograms: display P(U|V ) as a bar of length one with

sub-bars of length proportional to the conditional probability of the
modalities of U

I stack the spinograms

Mosaic plot
I recursive spinograms
I compute Q bars of width proportional to the probabilities of V
I split each bar in sub-bars with heights proportional to the

conditional probabilities of U given V



Categorical variables
Stacked bar charts

Proportion

All Postdoctorates

Social and Behavioral Sciences

Physics and Astronomy

Medical Sciences

Engineering

Earth, Atmospheric, and Ocean Sciences

Chemistry

Biological Sciences

0.0 0.2 0.4 0.6 0.8 1.0

Expected or Additional Training
Work with Specific Person

Training Outside PhD Field
Other Employment Not Available

Other



A complex example

The Titanic
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A complex example

The Titanic
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Mosaic plot

Proportion

Black

Brown

Red

Blond

0.0 0.2 0.4 0.6 0.8 1.0

Brown
Blue

Hazel
Green



Mosaic plot
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Mosaic plot
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Mosaic plot in N dim
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Mosaic plots

Built-in quality assessment
I mosaic plots show both the data and some statistical indicators
I this limits the risk of false interpretation
I should be used whenever possible
I remains an open challenge for most visualization methods

Interactivity
I show information attached to each cell (size, value of the residual)
I change the splitting order
I add or remove variables
I brush and link



Scatter plot

The standard tool for 2 numerical variables
I one point per object
I two dominant numerical characteristics per object
I a few additional characteristics:

I a nominal variable (hue or shape coded)
I a numerical variable (lightness or shape coded)
I a label

I does not scale:
I low dimension only
I very sensitive to overlapping



Simple example
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How to improve scalability?

Two scalability problems
1. Dimension (a.k.a. variable or characteristics or feature):

I Reduce the number of dimension:
I user choice
I automated: selection and extraction

I Display more than 2/3 dimensions at once: visual layout with
brushing and linking

2. Object:
I Reduce the number of objects: clustering and quantization
I Reduce the size of an object
I Constrain the display to forbid (or reduce) overlapping



Automated scalability

Reducing the number of variables
I a major research topic in machine learning
I feature selection: keeping a subset of the original variables
I feature extraction: producing new variables in small quantity
I supervised: variables should “explain” a target variable
I or unsupervised: variables optimize some quality criterion
I some methods:

I Principal Component Analysis
I Linear Discriminant Analysis
I SNE and variants
I Variable Clustering
I etc.



Difficulties

What should be optimized?
I goal dependent:

I outlier detection⇒ maximize distances between outliers and central
objects

I visual clustering⇒ respect the neighborhood relationships
I rule finding⇒ keep original variables
I etc.

I machine learning algorithms optimize abstract quantities (e.g.,
reconstruction error)

I links between ML optimality and visual usefulness is unclear (at
best!)



(Un)Supervised
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Neighborhood structure preservation

To enable visual cluster analysis on projected dataset, the
neighborhood structure of the data must be preserved by the
projection.

I Quality measures (Venna & Kaski, 2001→ 2007):
I Trustworthiness: neighbors on the screen are real neighbors
I Continuity: real neighbors are neighbors on the screen
I Precision ' Trustworthiness
I Recall ' Continuity

I Optimization methods:
I Stochastic Neighbor Embedding (Hinton & Roweis, 2002)
I Neighbor Retrieval Visualizer (Venna & Kaski, 2006)



Neighbor Preservation

Original space to projection space

6 neighbors



Neighbor Preservation

Original space to projection space

Correct projection



Neighbor Preservation

Original space to projection space

Trustworthiness violation



Neighbor Preservation

Original space to projection space

Continuity violation



Trustworthiness and Precision

Can you trust neighbors in the projection space?
I Ok (xi): k -nn of xi in the original space
I Pk (xi): k -nn of xi in the projection space
I Uk (xi) = Pk (xi) \Ok (xi)

I Precision
I maximal precision: Pk (xi) ⊂ Ok (xi)

I mean on i of 1− #Uk (xi)

#Pk (xi)

I Trustworthiness
I rank preservation: rO(xj , xi) rank of xj as a neighbor of xi in the

original space

I M1(k) = 1− 2
Nk(2N − 3k − 1)

N∑
i=1

∑
xj∈Uk (xi )

(
rO(xj , xi)− k

)



Trustworthiness and Precision

7

11

9

I Contribution to precision: 0.5
I Contribution to trustworthiness: 9



Continuity and Recall

Do you miss neighbors in the projection space?
I Ok (xi): k -nn of xi in the original space
I Pk (xi): k -nn of xi in the projection space
I Vk (xi) = Ok (xi) \ Pk (xi)

I Recall
I maximal recall: Ok (xi) ⊂ Pk (xi)

I mean on i of 1− #Vk (xi)

#Ok (xi)

I Continuity
I rank preservation: rP(xj , xi) rank of xj as a neighbor of xi in the

projection space

I M2(k) = 1− 2
Nk(2N − 3k − 1)

N∑
i=1

∑
xj∈Vk (xi )

(
rP(xj , xi)− k

)



Continuity and Recall
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I Contribution to recall: 0.5
I Contribution to continuity: 8



Stochastic Neighbor Embedding (SNE)

Approximating the “neighborhood distribution” (Hinton &
Roweis, 2002)

I Original space: pij =
exp(−d2

ij )∑
k 6=j exp(−d2

ik )
(dij dissimilarity between xi

and xj )
I xi projected to yi

I Projection space: qij =
exp(−‖yi − yj‖2)∑

k 6=j exp(−‖yi − yk‖2)

I Minimize the Kullback-Leibler divergence between pi. and qi., i.e.,

C =
∑

i

∑
j

pij log
pij

qij

I Corresponds to a smoothed version of the recall (Venna & Kaski,
2006)



Neighbor Retrieval Visualizer

Optimizing smoothed versions of precision and recall
(Venna & Kaski, 2006)

I inspired by stochastic neighbor embedding (SNE)
I minimization of

λ
∑

i

∑
j

pij log
pij

qij
+ (1− λ)

∑
i

∑
j

qij log
qij

pij

I λ = 1 (SNE)⇒ recall
I λ = 0⇒ precision
I λ is user chosen (can be chosen to optimize a quality measure)
I slow (O(N3) per iteration for N objects, as SNE)



Demonstration
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Demonstration
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Demonstration
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-2 -1 0 1 2

-2
-1

0
1

2
3

NeRV, λ = 0

V1

V
2

1
2
3



Dimensionality reduction

Status
I very active field
I numerous methods, improving results
I regular breakthroughs: non linearity, emphasizis on small

distances, importance of ranks, etc.

Limitations
I slow methods (nowhere near realtime on realistic datasets)
I highly nonlinear methods:

I no axis
I nothing is uniform

I built-in quality assessment is a work in progress
I interactivity?



Picking dimensions manually

Interactive solution
I show hints of possible interesting pairs
I let the user choose
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Reducing the overlapping problem

An open research topic
I rendering:

I transparency (alpha layer)
I stereo vision
I overlap counting

I interactivity:
I sub-sampling
I zooming and panning
I excentric labeling
I magic lenses
I distortion

I machine learning and related methods:
I clustering
I force field approach



Clustering

Reduction of the number of objects
I very general solution (not limited to scatter plot)
I clustering⇒ Cluster prototype⇒ Prototype visualization
I interactivity:

I number of clusters:
I deterministic clustering
I minimal surprise principle (e.g., hierarchical)

I cluster extension (objects or summary)
I important warning:

I clustering in 2D 6= clustering the original data
I guaranteed non overlapping: 2D!



Where to cluster?
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Where to cluster?
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2D density
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Scatter plot

The workhorse of numerical visualization
I very efficient representation for 2 numerical variables (position on

a common scale, best feature according to Cleveland and McGill)
I hue can be used to display an additional categorical variable
I luminance or shape or symbol size can encode another variable

(less efficiently)
I overlapping reduces the encoding efficient back to 2 variables

Scalability issues
I are mostly unsolved...
I should be task oriented!
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